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Abstract—In this paper, we consider polarimetric adaptive
detection in compound Gaussian clutter whose covariance ma-
trix (CM) has a Kronecker structure. We derive the Cramér–Rao
bound of a Kronecker structured CM estimate and analyze the con-
stant false alarm rate property of the adaptive subspace matched
filter detector that uses Kronecker structured estimates. We pro-
vide a general expression for the average signal-to-clutter ratio loss
(SCRL) as a function of the mean square error of the covariance
estimate. The aforementioned expression is helpful in determining
how many samples are required in order to achieve a desired av-
erage SCRL level in practical scenarios. Based on that expression,
we show that the required sample size can be effectively reduced
by exploiting the Kronecker structure of the clutter CM. We also
derive the asymptotic detection performance of the adaptive sub-
space matched filter. The analysis of SCRL and detection perfor-
mance can be extended to more general scenarios, especially when
the maximum-likelihood estimate of the structured CM involves
solving fixed point equations. Numerical simulations validate the
merits of the proposed methods.

Index Terms—Polarimetric detection, compound Gaussian
clutter, Kronecker structure, constant false alarm rate, Cramér–
Rao bound, SCR loss, asymptotic performance.

I. INTRODUCTION

I T IS well known that polarization diversity [1] is a use-
ful tool for improving the performance of radar detection

[2], [4], [9], [10], estimation [3], and tracking [5]. Unlike
conventional radar which employs only one polarization in
both transmitter and receiver, polarimetric radar can operate in
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different polarization channels, and thus can acquire complete
polarimetric information of the target and the environment [6].
In radar adaptive detection, the unknown clutter covariance ma-
trix (CM) is estimated based on sufficient amount of the training
data [7]. For polarimetric radar, the received signals are required
to be processed in the polarization-space-time joint domain [12],
[13], [39], and thus CM estimation in that context requires more
training samples as compared to conventional radar. However,
the structure of the CM in this scenario can be exploited to
reduce the amount of training data needed [17], [24], [26], [52].

In polarimetric array radar, the CM is expressed as the Kro-
necker product of the polarization covariance matrix Rp and
the spatial covariance matrix Rs [9], [11]–[13], where Rp is
determined by the clutter terrain, and Rs is related to the ar-
ray configuration (see [14] and also Sec. II). Exploiting such
structure can significantly reduce the number of unknown pa-
rameters, and can enable high estimation accuracy with fewer
training data. Maximum likelihood (ML) estimation of a Kro-
necker structured CM in the presence of Gaussian clutter is
discussed in [19], [20], while ML estimation in the presence of
compound Gaussian clutter is discussed in [21]. Further, two fast
non-iterative asymptotically efficient CM estimates are devel-
oped in [20], and CM estimation for rank deficient submatrices
Rp and Rs is discussed in [22].

The performance of adaptive detection depends on the
signal-to-clutter ratio loss (SCRL) of the minimum variance
distortioness response (MVDR) filter and the training size (con-
vergence rate) [7], [11], [23]. The SCRL is defined as the ratio
between the signal-to-clutter ratio (SCR) of the MVDR filter
using the true CM and that using a CM estimate, and quanti-
fies how close the performance of an adaptive detector using
a CM estimate is to that using the true CM. It is well known
that, to achieve a 3 dB average SCRL, the sample covariance
matrix (SCM) [7] requires approximately 2N training samples,
where N is the signal dimension. However, the required train-
ing size can be significantly reduced by exploiting structural
information on the clutter, which may be available due to ar-
ray geometry [24], [26], [52], or known clutter properties [27].
For example, for the persymmetric structured CM, 3 dB av-
erage SCRL can be achieved with N training samples [24].
The average SCRL for the Hermitian (SCM) and persymmet-
ric structured CM can be computed based on the probability
distribution of the SCRL. For determining the training size re-
quired, one needs to compute the statistics of SCRL as function
of the CM estimate. However, for the compound Gaussian case,
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or for other structured covariance matrices, such as Toeplitz
and Kronecker structures, the CM estimates are obtained by
solving fixed point equations [21]. Thus, it is rather difficult,
if not impossible, to obtain accurate statistical properties for
the SCRL.

In this paper, we consider a Kronecker structured CM, which
arises in the context of polarimetric array radar. We derive a
compact form of the Cramér-Rao bound (CRB) of a CM esti-
mate with Kronecker structure in compound Gaussian scenarios,
and provide a general expression of the average SCRL as func-
tion of the mean-square error (MSE) of the CM estimate. Based
on the invariance principle [28], we establish the constant false
alarm rate (CFAR) property and the approximate average SCRL
of the adaptive detector which uses a Kronecker structured ML
estimate. This expression can be extended to analyze the perfor-
mance of adaptive detectors using other structured CMs, such as
the ML estimate of the CM, obtained through solving fixed point
equations. We also provide the average SCRL for a CM with
group symmetric structures [30], commonly employed in radar
CFAR detection [31], such as persymmetric, circulant matrices
[52]. Finally, we derive asymptotic expressions for the probabil-
ity of false alarm and probability of detection. The asymptotic
results are found to be accurate in the small sample regime,
which is attributed to the superior convergence rate of the
estimates exploiting the Kronecker structure in the CM.

Our main contributions are the following:
1) We provide a general expression of the average SCRL as

function of the MSE of the CM estimate (see Theorem 1).
This is helpful in determining how many secondary sam-
ples are required for achieving a desired level of SCRL,
especially when the CM estimate is obtained as the
solution of fixed point equations. Examples of popu-
lar structured CMs in radar detection are provided (see
Table I). This result can be regarded as the generalization
of the well known RMB rule [7] from the unstructured
case to the structured case.

2) We show the merits of exploiting the Kronecker structure
in the CM for both radar detection and estimation. We
provide a compact expression of the CRB for Kronecker
structured CM estimation in compound Gaussian clutter
(see Proposition 2). We also provide in closed form the
required training size in order to achieve a desired average
SCRL (see Corollary 1).

3) Based on the invariance principle, we analyze the CFAR
property of detectors using Kronecker structured CM es-
timates (see Proposition 3), and determine the asymp-
totic detection performance of the adaptive subspace
matched filter that uses a Kronecker ML estimate (see
Proposition 4).

The rest of this paper is organized as follows. We describe the
signal model of the polarimetric detection problem in Sec. II.
We briefly introduce some background on the adaptive subspace
matched detector in Sec. III. We present our results on Kronecker
structured CM estimation and detection performance analysis in
Sec. IV and Sec. V respectively. Finally, we provide numerical
simulations to validate our theoretical results in Sec. VI, and
draw conclusions in Sec. VII.

Notation: Throughout this paper, R and C denote real and
complex domains, respectively. Bold-faced upper and lower let-
ters denote matrices and vectors respectively, while light-faced
lower letters denote scalar quantities. N -dimensional vector
ei ∈ RN ×1 denotes the ith column of the N -dimensional iden-
tity matrix IN . Superscripts (·)T , (·)H , (·)∗, {·}† denote the
matrix transpose, Hermitian transpose, conjugate and pseudo-
inverse operators, respectively. A−T denotes (A−1)T . [Q]ij
denotes the (i, j)th entry of the matrix Q, and det{·} and tr{·}
denote the matrix determinant and trace operators, respectively.
A � B denotes that A − B is positive semi-definite. �{·} and
�{·} denote the real and imaginary parts of a complex number
or matrix, respectively. vec{·} denotes the vectorization opera-
tor, which stacks the columns of a matrix into a vector, vech{·}
and vech{·} stack the elements below the main diagonal colum-
nwise, with “vech” including the main diagonal, and “vech” not
including the main diagonal [37]. “⊗” and “‖ · ‖” denote the
Kronecker product and the Frobenius norm, respectively. “∝”
means proportional to. E{·} and cov{·} denote mathematical
expectation and covariance, respectively.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We now consider a polarimetric array with Ns electrical-
magnetic vector-sensors, with each sensor measuring the elec-
tromagnetic wave in Np polarization channels [2], [12], [13].
Depending on the polarimetric radar scheme, Np may take the
values 1, 2, 3, 4 [6]. The received signals in the cell under
test are down-converted to baseband or to an intermediate fre-
quency in all the polarization channels at each sensor, they are
processed by the corresponding matched filters, and they are
sampled and stacked into a N -dimensional vector y ∈ CN ×1

where N = NpNs . Let yk ∈ CN ×1 , k = 1, · · · ,K be K in-
dependent identical distributed (i.i.d) signal-free training data
(secondary data), obtained from adjacent range cells. The bi-
nary hypothesis testing problem can be formulated as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H0 : y = n

yk = nk , k = 1, 2, · · · ,K

H1 : y = Aα + n

yk = nk , k = 1, 2, · · · ,K,

(1)

where A = INp
⊗ a ∈ CN ×Np is the system response of the

polarimetric array, a ∈ CNs ×1 is the spatial steering vector,
α ∈ CNp ×1 denotes the unknown deterministic polarimetric
scattering vector of the target, and n and nk denote the cor-
responding clutter returns. Based on this, we have that Aα =
α ⊗ a. The clutter is assumed to be compound Gaussian dis-
tributed, and can be expressed in terms of a real positive texture
component τ and a speckle component c as

n =
√

τc. (2)

The texture can be deterministic or random. Here, we assume
that τ obeys the inverse Gamma (IG) distribution with shape
parameter v [38]. However, the main result corresponding to
other textures can be obtained similarly. The probability density
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function (PDF) of the IG distribution is

pτ (τ) � pτ (τ ; v) =
vv

Γ(v)τv+1 exp
(
−v

τ

)
, τ > 0, (3)

where Γ(·) is the Gamma function. In this paper, we assume
that the shape parameter is known. When the shape parameter
is unknown, it can be estimated along the lines of [32]. The
speckle component is assumed to be circular complex Gaussian
distributed with zero mean and covariance matrix R, i.e., c ∼
CN (0,R). The K i.i.d training samples have a similar texture
τk and speckle ck representation, i.e., nk =

√
τkck .

In the polarimetric array context, the clutter signal can be
regarded as a sum of Nc clutter patches in the same range
cell (similar to the well known space-time adaptive processing
model [40]), i.e.,

c =
Nc∑

i=1

αc
i ⊗ ac

i ∈ CN ×1 , (4)

In the above equation, ac
i ∈ CNs ×1 and αc

i ∈ CNp ×1 are the
spatial steering vector and the polarization scattering vector
of the ith clutter patch, respectively. αc

i is complex Gaussian
distributed with zero mean, and for monostatic full polarization
radar with Np = 3, it has the covariance matrix equal to [14]

E
{
αc

i (α
c
i )

H
}

= σ2(i)

⎡

⎢
⎣

1 0 ε
√

γ

0 δ 0
ε∗
√

γ 0 γ

⎤

⎥
⎦ , (5)

where σ2(i) is the clutter power of the ith clutter patch, and is
determined by the transmitter’s power, the beamforming pro-
cess and the clutter scattering; δ, ε and γ represent correlation
parameters normalized by σ2(i), and are determined by the ter-
rain of the illuminated area. Typical values of δ, ε and γ of
various types of terrain clutter may be found in [14]. Here we
assume that all the clutter patches are associated with the same
terrain and i.i.d, and thus the polarization and spatial covariance
matrices are respectively defined as

Rp �

⎡

⎢
⎣

1 0 ε
√

γ

0 δ 0
ε∗
√

γ 0 γ

⎤

⎥
⎦ , (6)

and

Rs �
Nc∑

i=1

σ2(i)ac
i (a

c
i )

H . (7)

Based on the above, the clutter CM has a Kronecker structure
[9], [11]–[13], i.e.,

R = E{ccH } = Rp ⊗ Rs . (8)

For the sake of simplicity, we assume that both Rp and Rs

are invertible matrices. We also consider the noise-free sig-
nal model, which corresponds to high clutter-to-noise (CNR)
scenarios. In a practical scenario, the Kronecker structure is
valid within some error. The effect of structure model error is
discussed in Sec. VI.

In addition to polarimetric radar, examples of scenarios in
which such structured CM arises include channel modeling for
multiple-input multiple-output (MIMO) communications [15],
[16], MIMO radar [17], and modeling of spatio-temporal noise
of MEG/EEG data [18]. Therefore, the results that will be pre-
sented in the following can be applied in those applications as
well.

III. PRELIMINARY OF ADAPTIVE DETECTION

In this section, we employ a two-step adaptive subspace
matched filter (ASMF) detector [8], [48]. First, we derive the
generalized likelihood ratio test (GLRT) detector [23] by assum-
ing that the CM is known, and then obtain a suitable estimate
of the CM based on secondary data; this estimate is substituted
into the derived detector in place of the exact CM.

With the assumption that the CM is known a priori, the de-
tector is given by the GLRT method, i.e.,

max
α

∫
p(y |H1 ,α , τ)pτ (τ)dτ

∫
p(y |H0 , τ)pτ (τ)dτ

H1
>
<
H0

ξ, (9)

where ξ is a threshold, and for the conditional PDF of y under
Hq , q = 0, 1, it holds that

p(y|Hq ,α, τ) ∝ 1
det (τR)

· exp

{

− (y − qAα)H R−1(y − qAα)
τ

}

. (10)

Using the Gamma integral, i.e.,

∫
1

τN
exp

{

−A

τ

}

dτ =
Γ(N − 1)

AN −1 , (11)

and based on (3) and (10), (9) can be rewritten as

[
v + (y − Aα̂)H R−1(y − Aα̂)

]−v−N

[v + yH R−1y]−v−N

H1
>
<
H0

η (12)

where α̂ = (AH R−1A)−1AH R−1y is the ML estimate of α
[48]. The detector of (12) can be rewritten as

T (y,R,A, v) =
yH R−1A(AH R−1A)−1AH R−1y

yH R−1y + v

H1
>
<
H0

η1 .

(13)
On replacing the covariance matrix R in (13) by an estimate

R̂, obtained from the secondary data, we get the ASMF detector

T (y, R̂,A, v) =
yH R̂−1A(AH R̂−1A)−1AH R̂−1y

yH R̂−1y + v

H1
>
<
H0

ξ.

(14)
Two popular CM estimates are the maximum likelihood estimate
(MLE) and the normalized sample covariance matrix (NSCM)
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estimate, given respectively as [36]

R̂MLE =
v + N

K

K∑

k=1

ykyH
k

v + yH
k R̂−1

MLEyk

, (15)

R̂NSCM =
N

K

K∑

k=1

ykyH
k

yH
k yk

. (16)

MLE may be obtained recursively; convergence and uniqueness
of MLE are proven in [47]. The NSCM estimate is given in
closed form, but it is a biased estimate [45]. However, detectors
utilizing these two estimators do not work well with limited
sample size [33] (See also Sec. VI).

IV. ESTIMATION OF KRONECKER STRUCTURED CM

A. Kronecker Structured CM Estimators

In this section, we consider CM estimation for a Kronecker
structured CM. In particular, we propose two estimators, namely,
the Kronecker-structured MLE (KMLE) and the Kronecker-
structured NSCM (KNSCM). Estimates of Rp and Rs are
obtained via the proposed estimators, and subsequently, the es-
timate of R is obtained according to (8).

1) Kronecker MLE: The PDF of the training samples Y =
[y1 , · · · ,yK ] ∈ CN ×K conditioned on the textures τk s is given
by

p(Y |τ1 , · · · , τK ) ∝ 1
∏K

k=1 τkdet (R)

· exp

{

−
K∑

k=1

yk
H R−1yk

τk

}

. (17)

After integration over all the τk s, and by using (11), the marginal
PDF of Y becomes

p(Y ;R) ∝ 1

det (R)K

K∏

k=1

(
v + yH

k R−1yk

)(−v−N )
, (18)

where R = Rp ⊗ Rs .
In order to obtain KMLE, we need to maximize the likelihood

function given by (18) with respect to Rp and Rs . For the
case of compound Gaussian clutter with deterministic texture
(v = 0), KMLE is obtained via the majorization minimization
(MM) method [21]. The MM method can be easily extended
to random textures. For example, for the compound Gaussian
case with IG texture, the ML estimates of Rs and Rp can be
obtained by solving the fixed point equations

R̂s =
v + N

KNp

K∑

k=1

YkR̂−T
p YH

k

v + yH
k (R̂−1

p ⊗ R̂−1
s )yk

, (19)

R̂p =
v + N

KNs

K∑

k=1

YT
k R̂−T

s Y∗
k

v + yH
k (R̂−1

p ⊗ R̂−1
s )yk

, (20)

where Yk = [yk1 , · · · ,ykNp
]∈CNs ×Np , and yki ∈ CNs ×1 ,

i = 1, · · · , Np is the received data in the ith polarization channel

of the kth training sample yk =
[
yT

k1 yT
k2 · · · yT

kNp

]T
. Finally,

KMLE is given by

R̂KMLE = R̂p ⊗ R̂s . (21)

Note that for v = 0, KMLE corresponds to Tyler’s estimator
with deterministic texture [21]. In order to avoid the scale am-
biguity resulting from the unknown deterministic texture, nor-
malization should be applied such that tr{R̂KMLE} = N [21].
For the random texture (v > 0), this normalization could also
be applied to KMLE, however, it is not necessary to do so, be-
cause the shape parameter already provides information on the
amplitude of the clutter returns. The normalization can speed
up convergence because it brings the estimate at each iteration
closer to the solution of the fixed point equations, especially
in cases of bad initialization. For v → ∞, KMLE corresponds
to the Flip-Flop algorithm [20] for the Gaussian case. Further,
based on (19) and (20), in order to guarantee that KMLE is
non-singular, K should satisfy K ≥ max{Np

Ns
, Ns

Np
}.

It is well known that the ML estimate is asymptotically un-
biased and efficient for many common cases1 [51]. Also, the
ML estimate is invariant, which may lead to the CFAR property
of the ASMF detector used along with the ML estimate (See
Sec. V.A and [31]). Here we give some preliminaries of the
invariance principle, which is central in detection analysis.

Definition 1 (Model Invariance [28]): Let P = {P θ : θ ∈
Ω} be a family of distributions determined by the parameter
space Ω and the random variable Y ∼ P θ. Define the trans-
formation group [29] G of one-to-one functions {g} on Y . If
gY ∼ P θ′ ∈ P , then we say P is invariant under G. This in-
duces a groupF on the parameter space Ω, i.e., f ∈ F : Ω �→ Ω
such that fθ = θ′.

Definition 2 (Invariant Estimator [28]): Let P be invariant
under the group G, and Y ∼ P θ. θ̂(Y ) is an invariant estimator
of θ under the transformation group G, if θ̂(gY ) = f θ̂(Y ) for
all θ ∈ Ω, i.e., the estimate of fθ is f θ̂(Y ).

Proposition 1: LetP = {P θ : θ ∈ Ω} be invariant underG.
For g ∈ G and Y ∼ P θ, if the Jacobian of the transformation
d(gY ) = det{J }dY is independent of θ, where det{J } is the
Jacobian determinant, then the ML estimate of θ is an invariant
estimator under G.

Proof: See Appendix A. �
It is easy to verify that the PDF given by (18) is invariant

under the transformation group Gκ , where the group Gk and its
induced Fk are respectively given by

Gκ = {g|gY = GκY },Fκ = {f |fR = GκRGH
κ } (22)

whereGκ = Gp ⊗ Gs withGp ∈ CNp ×Np andGs ∈ CNs ×Ns

being nonsingular matrices, and the corresponding parameter
space being

Ωκ = {R|R = Rp ⊗ Rs ,Rp ∈ H+
Np ×Np

,Rs ∈ H+
Ns ×Ns

},
(23)

where H+
N ×N is the set of N by N positive definite Hermitian

matrices.

1The ML estimate may be biased, and not asymptotically efficient in some
cases [34], e.g., when the unknown parameters are on the boundary of a contin-
uous parameter space, or the parameter space is finite or discrete.
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Then, note that the corresponding Jacobian determinant
det{J } = det{GκGH

κ }K of Gκ is independent of R. Then,
according to Proposition 1, KMLE is an invariant estimator
under Gκ .

Remark 1: The PDF given by (18) is also invariant under the
general linear transformation group [29] Gυ , with

Gυ = {g|gY = GυY},Fυ = {f |fR = GυRGH
υ } (24)

where Gυ ∈ CN ×N is a nonsingular matrix and

Ωυ = {R|R ∈ H+
N ×N }. (25)

Therefore, MLE given by (15) is an invariant estimator under
Gυ for Ωυ . It is obvious that Gκ is a subgroup [29] of Gυ and
Ωκ is a subset of Ωυ . According to Proposition 1, MLE is also
an invariant estimator under Gκ for Ωκ . In contrast, KMLE is
not invariant under the group Gυ .

There are also some other subgroups of the general linear
group Gυ comprised by a set of structural matrices [30], such
as persymmetric matrices [33] and circulant matrices [52]. This
structural information is commonly exploited in radar CFAR
detection to improve the detection performance [31]. Also, not
all structured CMs can form a subgroup of Gυ . For example,
Toeplitz structured CMs cannot form a subgroup because the
product of two Toeplitz matrices and the inversion of a Toeplitz
matrix is not Toeplitz.

2) Kronecker NSCM Estimator: Matrix inversions and iter-
ations are required to obtain KMLE, which leads to a relatively
high computational load. Inspired by the NSCM estimator given
in (16), we now consider an alternative closed-form estimator.

It holds that

E{YkYH
k |τk } = τk tr(Rp)Rs ,

E{YT
k Y∗

k |τk } = τk tr(Rs)Rp . (26)

Eq. (26) implies that Rs (or Rp ) may be respectively estimated
by YkYH

k (or YT
k Y∗

k ) up to a real-valued scalar, e.g., τk tr(Rp)
(or τk tr(Rs)). Note that there is no loss of correlation among the
entries due to the scalar, which means that the ratio between off-
diagonal and diagonal entries is not changed. Hence, we may
impose a condition on the trace such that tr(R̂NSCM) = N and
the scale parameter can be absorbed in the clutter texture. Thus,
the estimates of the sub-matrices of KNSCM are respectively
given by

R̃s =
Ns

K

K∑

k=1

YkYH
k

β̂k

,

R̃p =
Np

K

K∑

k=1

YT
k Y∗

k

β̂k

, (27)

where β̂k = tr(YkYH
k ) is introduced to normalize R̃s and R̃p .

Subsequently, the KNSCM estimate of the CM is given by

R̂KNSCM = R̃p ⊗ R̃s . (28)

According to (27) and (28), KNSCM can be implemented
easily since there is no matrix inversion calculation. However,
KNSCM is biased due to its trace constraint, and is not invariant

under group Gκ . Thus more false alarms may occur with the
KNSCM-ASMF detector.

B. The Cramér-Rao Bound

With the Kronecker structure considered, the parameter space
Ωυ for CM estimation is reduced to Ωκ . Naturally, the estima-
tion accuracy can be improved where there are fewer unknown
parameters to be estimated.

To be specific, for the unstructured covariance matrix
R ∈ Ωυ , the unknown parameter vector is given by

θυ = [�{vech{R}}T ,�{vech{R}}T ]T ∈ RN 2 ×1 . (29)

Similarly, for R = Rp ⊗ Rs ∈ Ωκ , the unknown parameter
vector is given by

θκ � [θT
p θT

s ]T ∈ R(N 2
p +N 2

s )×1 (30)

where θp and θs contain respectively N 2
p and N 2

s real compo-
nents of the Hermitian sub-matrices Rp and Rs .

As is well known, the MSE of an unbiased estimate of the
unknown parameter vector θ ∈ Rr×1 is lower bounded by the
CRB, which is a popular metric of estimation accuracy [41].
The CRB is given by the inverse of the Fisher information
matrix (FIM) I . In the compound Gaussian case, the FIM
of the unknown elements in R (see eq. (19b) in [37]) can be
rewritten as

I = KHH ΣH, (31)

where

H =
∂vec{R}

∂θT
∈ CN 2 ×r , (32)

r = N 2 corresponds to θυ , r = N 2
p + N 2

s corresponds to θκ

and

Σ = v1(R−T ⊗ R−1) − v2vec(R−1)vec(R−1)H
, (33)

where v1 and v2 are related to the texture distribution [37]. For
the inverse Gamma texture, it holds that

v1 � v + N

v + N + 1
, v2 � 1

v + N + 1
. (34)

According to the results in [20], [41], the MSE of an unbiased
CM estimate is lower bounded by the CRB matrix, i.e.,

E � HI†HH , (35)

where

E � cov
{

vec{R̂}
}

= E
{
δRδRH

}
(36)

is the MSE of the estimate R̂ with δR � vec{R̂ − R}.
Proposition 2: The CRB matrices for Ωκ and Ωυ are respec-

tively given by

Ξ =
c1

K
(RT ⊗ R)

1
2 Pκ(RT ⊗ R)

1
2 +

c2

K
vec(R)vec(R)H ,

(37)

Λ =
c1

K
(RT ⊗ R) +

c2

K
vec(R)vec(R)H (38)
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where

c1 � 1
v1

, c2 � v2

v1(v1 − v2N)
, (39)

Pκ = [(RT ⊗ R)−
1
2 Hκ ][(RT ⊗ R)−

1
2 Hκ ]†, and Hκ =

∂vec{R}
∂θT

κ
.

Proof: See Appendix B. �
The improvement on the estimation accuracy, due to exploit-

ing the Kronecker structure, can be evaluated by the ratio of the
traces of the CRB matrices of Ωκ and Ωυ , i.e.,

L � tr {Λ}
tr {Ξ} . (40)

Since the CRBs are inversely proportional to the training size K,
the above metric also determines the training size required by
KMLE relative to MLE, in order to achieve the same estimation
accuracy.

As shown in Appendix B, it holds that Σ−1 = KΛ. Accord-
ing to (31) and (35), the trace of the CRB matrix of Ωκ may be
rewritten as

tr{Ξ} = tr{PΛ} (41)

where P is the projection matrix of the column space of Σ
1
2 H.

Note that the rank of P is N 2
s + N 2

p − 1 [20]. Using Lemma 1 of
[42], we have L > 1, which means that the estimation accuracy
of the CM improves when the Kronecker structure of the CM is
exploited.

Remark 2: In this paper, the estimation error is evaluated
based on the CRB and the MSE defined through the square of the
Frobenius norm. Although this is a common choice in estimation
problems, one needs to note that the parameter space for CM
estimation is a manifold of Hermitian positive definite matrices,
rather than a vector space. According to the intrinsic estimation
theory [43], the intrinsic CRB and the natural metric on this
manifold which involves the generalized eigenvalues of the CM
and its estimate, would be more appropriate in this context [43,
Theorem 4]. However, applying the natural metric does not
modify the hierarchy between the estimators as compared to the
flat metric (this is also mentioned in [44]). Also, the Frobenius
norm provides more intuitive and concise results for theoretic
analysis, and works well in our simulations.

V. DETECTION PERFORMANCE ANALYSIS

A. CFAR Analysis

The constant false alarm ratio (CFAR) property guarantees
that the detection threshold is independent of the clutter param-
eters, and thus is critical for radar detection. It is obvious that
the proposed ASMF detector is not CFAR with respect to the
texture component, because it is related to the shape parameter
v. If we need a CFAR detector with respect to the texture, we
can employ the adaptive subspace detector (ASD) given in [48]
and Tyler’s estimator [21], which is a special case of (14) with
v = 0. In the following, we examine the CFAR property with
respect to the Kronecker structured CM for the ASMF detec-
tor using R̂KMLE and R̂KNSCM , namely, KMLE-ASMF and
KNSCM-ASMF.

Proposition 3: The KMLE-ASMF detector is CFAR with
respect to the Kronecker structured CM estimate, while the
KNSCM-ASMF detector is not.

Proof: See Appendix C. �
The KNSCM-ASMF detector is approximately CFAR when

the true CM is close to the identity matrix, because NSCM
estimators are unbiased when the CM is the identity matrix
along the lines of [45], [46] (see also Sec. VI).

B. Average SCR Loss

The SCR loss (SCRL) of an adaptive detector is defined as
the ratio of the SCR of the MVDR filter using a CM estimate,
R̂, and that of the optimal MVDR filter using the true CM, R
[7], [24], i.e.,

ρ � ρ(R̂) =
|tH R̂−1t|2

(tH R−1t)(tH R̂−1RR̂−1t)
, (42)

where t ∈ CN ×1 is the steering vector of the target and equals
t = Aα = α ⊗ a for the polarimetric array model in (1). Note
that SCRL is scale-invariant with respect to R and R̂, so the
SCRL is only related to the texture by R̂.

We develop a unified method to quantify the relation between
the SCRL and the sample support by approximating the average
SCRL as a function of the MSE of the CM estimate.

Theorem 1: Given a covariance matrix estimate R̂ with suffi-
ciently small error, the average SCRL of the adaptive-subspace-
matched-filter detector may be approximately expressed as

ρ̄ � E{ρ(R̂)} ≈ 1 − tr{ΔĒ} (43)

where Δ �
(
IN − e1eT

1
)T ⊗ e1eT

1 ,

Ē =
(
(R− 1

2 U)T ⊗ UH R− 1
2

)
E
(
(R− 1

2 U)T ⊗ UH R− 1
2

)H

,

E is the MSE of the estimate R̂ given in (36), and the unitary
matrix U satisfies that UH R− 1

2 t = (tH R−1t)
1
2 e1 .

Proof: See Appendix D. �
According to Theorem 1, the average SCRL involves the sum

of the corresponding N − 1 diagonal entries of Ē , which can be
regarded as the whitened MSE of the CM estimate R̂. Specifi-
cally, we just need to calculate the whitened MSE corresponding
to the entries of the first column or the first row of R except for
the (1, 1)th entry. Theorem 1 is suitable when the asymptotic
MSE of a CM estimate is available. Fortunately, the asymp-
totic MSEs of several popular CM estimates can be easily ob-
tained, such as the ML estimate and the generalized least square
estimate [20].

Example 1: In the Gaussian scenario, the sample covari-
ance matrix is given by S = 1

K

∑K
k=1 ykyH

k , the MSE of
which is E = cov{vec{S}} = 1

K (RT ⊗ R). Thus, in view of
Theorem 1, we have ρ̄ ≈ 1 − N −1

K for the SCM. With ρ̄ = 0.5,
the number of training samples is K ≈ 2N − 2, which is very
close to the result K = 2N − 3, reported in [7].

Example 2: In the Gaussian scenario, the complex-valued
persymmetric structured covariance matrix R ∈ CN ×N [24]
can be equivalently transformed into a real-valued symmet-
ric counterpart Rps = TRTH ∈ RN ×N , where T ∈ CN ×N is
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given in [25, eq. (13)]. The real-valued CM estimator is given
by R̂ps = �{TSTH }, with S = 1

K

∑K
k=1 ykyH

k , and KR̂ps
is a real Wishart matrix with 2K degrees of freedom and the
parameter matrix equal to 1

2 Rps [25]. The asymptotic MSE
of R̂ps equals E = cov{vec{R̂ps}} = 1

2K (RT
ps ⊗ Rps)(IN 2 +

KN ) [50], where KN =
∑N

i=1
∑N

j=1 eieT
j ⊗ ejeT

i is the com-
mutation matrix. Note that tr{ΔKN } = 0 and KN (A ⊗ B) =
(B ⊗ A)KN . According to Theorem 1, the average SCRL of
the detector with the persymmetric structured CM is given by
ρ̄ps ≈ 1 − N −1

2K . With ρ̄ps = 0.5, the amount of training samples
is K ≈ N − 1. Thus, detectors using the persymmetric struc-
ture can reduce by one half the number of training samples as
compared to the unstructured counterpart.

Further, if the estimate R̂ is an invariant estimate under a
subgroup of Gυ , and UH R− 1

2 belongs to the subgroup, we have
that

Ē
(
R, R̂(Y )

)
= Ē

(
fR, R̂(gY )

)
= E(IN ), (44)

where E(IN ) is the MSE of the estimate when R = IN . Ac-
cording to (44), the average SCRL is an invariant loss function
[28] under the group, which means that the average SCRL is
independent of the CM and the steering vector.

To be specific, for KMLE, letGκ = UH R− 1
2 with the unitary

matrix U given by (70). Because Gκ ∈ Gκ and GκR̂(Y )GH
κ =

R̂(GκY ) is KMLE of the identity matrix according to
Definition 2, the average SCRL of KMLE is independent of
the steering vector and the CM.

Corollary 1: In compound Gaussian clutter, for a sufficiently
large K, the average SCRL for the adaptive-subspace-matched-
filter detector using the KMLE R̂KMLE is given by

E{ρ(R̂KMLE)} ≈ 1 − c1M

K
(45)

where c1 is given in (39) and

M =
Ns − 1

Np
+

Np − 1
Ns

. (46)

Proof: See Appendix E. �
According to (45), if Np = 1, we have M = Ns − 1 and

R̂KMLE is equivalent to R̂MLE . On the other hand, for large
Np and Ns , we have c1 ≈ 1 and M ≈ Ns

Np
+ Np

Ns
≥ 2. This im-

plies that the smallest number of training samples for an av-
erage SCRL of 3 dB is only K = 2c1M ≈ 4. Intuitively, this
is because the polarimetric and spatial channels provide extra
training samples for the estimation of Rs and Rp .

Remark 3: Corollary 1 can be extended to invariant esti-
mates of other group symmetric covariance matrices. To be spe-
cific, the constant c1 and M are pertinent to the texture and the
structural information, respectively. Thus, the average SCRLs
of various scenarios with different texture modeling and group
symmetric structures of the CM can be readily derived by sim-
ply substituting the corresponding c1 for the particular texture
[37], [45], and the corresponding M for the structured CM. The
corresponding M can be obtained by calculating the CRB of
the structured CM estimate at the identity matrix along the lines
of Corollary 1. In Table I , we list results of several popular

TABLE I
THE AVERAGE SCRLS FOR DIFFERENT STRUCTURES

group invariant structures [30] without a proof, namely, Hermi-
tian, persymmetric, circulant2 and the quaternion Q-proper [30],
[53] (Rp = INp

and Np = 2) CMs. Note that the improvement
factors in the denominators in Table I (e.g., the improvement
factor corresponding to the perymmetric structure equals 2)
are related to the intrinsic degrees of the freedom of the cor-
responding groups defined in [30]. Based on Corollary 1 and
Table I, we can further conjecture that the average SCRL for
the Kronecker structured CM with group symmetric structured
submatrices, e.g., Rp and Rs are endowed with the persym-
metric structure [35]. Let δp and δs be the improvement factors
for the corresponding group symmetric structures of Rp and
Rs respectively. The corresponding M for the Kronecker struc-
tured CM with group symmetric structured submatrices may be
given by

M =
Ns − 1
δsNp

+
Np − 1
δpNs

. (47)

C. Asymptotic False Alarm and Detection Probabilities

In this section, we assess the asymptotic performance of the
KMLE-ASMF detector along the lines of SCRL analysis. The
detection statistic of the KMLE-ASMF detector can be approx-
imated by its first-order Taylor expansion at the true CM, i.e.,

Tκ
Δ= T (R̂KMLE) ≈ T (R) +

∂T (R)
∂θT

κ

(θκ − θ̂κ), (48)

where we use the simplified notation T (R) � T (y,R,A, v),
and θ̂κ is the real-valued components of the KMLE similar to
θκ in (30).

With the chain rule of the derivative, we have that

∂T (R)
∂θT

κ

=
∂T (R)

∂vecT {R}
∂vec{R}

∂θT
κ

=
∂T (R)

∂vecT {R}Hκ . (49)

Note that ∂T (R)
∂θT

κ
is real-valued, because T (R) and θk are

real. According to (48) and (49), Tκ conditioned on T (R) is
asymptotically Gaussian distributed, i.e.,

Tκ∼N (T (R), σ2
KMLE), (50)

where σ2
KMLE is given by

σ2
KMLE =

∂T (R)
∂vecT (R)

Ξ
∂T (R)

∂vec(RT )
. (51)

With the whitening technique (see (73) in Appendix C), we have
that

Tκ =
qH M̃−1Q(QH M̃−1Q)−1QH M̃−1q

qH M̃−1q + v
, (52)

2Circulant matrices can be diagonalized by the discrete Fourier transform
(DFT) matrix [30], [52], and thus we only need to calculate the CRB of a
diagonal matrix at R = IN .
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where M̃ and Q are given by (72) and (74) respectively,
and q =

√
τz. Under hypothesis Hq , conditioned on τ ,

z|τ∼CN (μq , IN ), q = 0, 1, where

μq = qτ− 1
2 (αH AH R−1Aα)

1
2 e1 . (53)

Here we assume that the texture component τ at the cell under
test is independent of its corresponding speckle component c.

In light of (50), we have that

Tκ∼N (T (q, IN ,Q, v), σ2) (54)

where the variance σ2 = dH Ξ(IN )d, Ξ(IN ) is the CRB given
by (37) when R = IN and

d =
∂T (q, M̃,Q, v)

∂vec(M̃T )
|M̃=IN

=
vec{−QqqH − qqH QH + QqqH QH }

qH q + v

+
|Qq|2vec{qqH }

(qH q + v)2 . (55)

The derivation of (55) is given in Appendix F.
Based on (54), the asymptotic expressions of the probability

of false alarm Pf a and the probability of detection Pd of the
KMLE-ASMF detector are given in the following proposition.

Proposition 4: The asymptotic expressions of false alarm
probability Pf a and detection probability Pd of the KMLE-
ASMF detector are respectively given by

Pf a = P {Tκ ≥ ξ|H0}

= E|H0 ,q

{

1 − Φ
(

ξ − T (q, IN ,Q, v)
σ

)}

, (56)

Pd = P {Tκ ≥ ξ|H1}

= E|H1 ,q

{

1 − Φ
(

ξ − T (q, IN ,Q, v)
σ

)}

, (57)

where E|Hq ,q{·} denotes expectation under hypothesisHq , Φ(·)
is the cumulative distribution function of the normalized Gaus-
sian distribution, and the variance equals σ2 = dH Ξ(IN )d.

Closed-form expressions of the expectations appearing in
Proposition 4 are hardly tractable. Instead, we can use the
Monte-Carlo sampling method to evaluate the integrals in (56)
and (57). In light of the theoretical results on SCRL by exploiting
the Kronecker structure in Corollary 1, the asymptotic detection
performance may be achieved in the small sample regime.

VI. SIMULATION RESULTS

In this section, we compare the estimation accuracy of the
proposed covariance matrix estimates, namely KMLE, and KN-
SCM against MLE and NSCM. We also compare KMLE and
MLE against KNSCM and NSCM after they have been nor-
malized in the same way as KNSCM and NSCM, such that
tr(R̂) = N ; the normalized estimates will be respectively de-
noted by NKMLE and NMLE. It is assumed that [Rp ]ij = ε

|i−j |
p ,

[Rs ]ij = ε
|i−j |
s , ε = εp = εs , for the sake of simplicity. We use

Fig. 1. Estimation accuracy comparison with Np = 2, Ns = 8, ε = 0.9.

Fig. 2. Estimation accuracy comparison with Np = 2, Ns = 8, ε = 0.

the normalized root mean-square error (NRMSE) as the perfor-
mance metric, which is defined as

NRMSE
Δ=

√
√
√
√
√

E

{∥
∥
∥R̂ − R

∥
∥
∥

2
}

‖R‖2 . (58)

As illustrated in Fig. 1 and Fig. 2, by taking into account
the Kronecker structure, both Kronecker structured estimates
outperform their counterparts. Also, CM estimation under the
trace constraint corresponds to the constrained CRB with equal-
ity constraints [54], which is lower than the CRB derived in
Proposition 2. Thus, the trace constraint may provide extra in-
formation for CM estimation. Due to this reason, KNSCM and
NSCM may achieve better estimation performance in the small
sample regime as compared to KMLE and MLE. For large ε
(ε = 0.9), NKMLE and NMLE achieve lower NRMSEs than
the corresponding CRBs, and also lower than KNSCM and
NSCM estimates respectively (see Fig. 1). Also, for large ε, the
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Fig. 3. The CRB ratio L as a function of the correlation coefficient ε.

NRMSEs of both KNSCM and NSCM decrease slowly in the
large sample regime. For small ε (ε = 0), KNSCM and NSCM
can achieve better performance than NKMLE and NMLE (see
Fig. 2). This is because NSCM is unbiased only when ε = 0,
and is a special case of the theoretical fixed point (TFP) esti-
mate, which is the benchmark of Tyler’s estimator [45], [46].
Similar results can be obtained for random texture cases and for
KNSCM.

Next, we use the CRB ratio, L, defined in (40) to evaluate the
impact on the number of required training samples of exploiting
the Kronecker structure for CM estimation, for different num-
ber of antennas, Ns , or polarimetric channels, Np . As can be
seen in Fig. 3, L is generally larger than one. This means that
the Kronecker-structured estimator can accordingly achieve the
same estimation accuracy as its unstructured counterpart with
fewer secondary samples. As the correlation coefficient ε de-
creases, both the condition number of R and the sample size
required by the Kronecker-structured estimator decrease. It can
be observed that exploiting the Kronecker structure, the estima-
tion accuracy can be further improved with either more antennas
or more polarimetric channels.

To verify the CFAR property of the aforementioned detec-
tors, we consider the scenario of a polarimetric uniform linear
array [2], [12], [39] with Np = 2, Ns = 4. The thresholds of
the detectors with different correlation coefficients ε are com-
pared in Fig. 4. It is observed that the thresholds of the NSCM
and KNSCM detectors vary with different values of ε; albeit the
thresholds for both NSCM and KNSCM detectors level off in the
small correlation coefficient regime; this is because both NSCM
estimators are nearly unbiased when the true CM approaches the
identity matrix with decreasing ε, according to [45]. On the other
hand, both the MLE and KMLE detectors are endowed with the
CFAR property. Thus, both the MLE-based and KMLE-based
detectors are more robust to time varying clutter.

In Figs. 5 and 6, we evaluate the average SCRLs of the
considered detectors, namely, KMLE-ASMF, KNSCM-ASMF,
MLE-ASMF, and NSCM-ASMF, as function of the number of

Fig. 4. Detection thresholds as a function of the correlation coefficient ε,
where Np = 2, Ns = 4.

Fig. 5. Average SCRL as a function of the number of secondary data with
Ns = 4, v = 4, Np = 2.

secondary samples for Np = 2 and Np = 3 polarimetric chan-
nels, respectively. Note that we use the pseudo-inverse R̂† in
place of R̂−1 for MLE and NSCM when K < N . The the-
oretical results (see (45)) are also shown on the figures. It is
observed that the numerical results are accurately predicted by
the theoretical expression in the large secondary sample regime.
Remarkably, for KMLE, the prediction is effective even in the
small sample regime (K = 4).

The average SCRLs of KMLE and MLE remain constant as
the correlation coefficient ε varies, while the average SCRLs
of NSCM and KNSCM do not. It is also observed that the
average SCRLs of KNSCM and NSCM is higher than their MLE
counterparts, when ε = 0.01. This result is consistent with the
results of Fig. 2. With Ns = 4, according to Table I, in order
to achieve the same average SCRL, the MLE needs N −1

M =
4 times more training samples than KMLE for Np = 2, and
N −1
M ≈ 7.333 times more samples for Np = 3. This implies

that exploiting the Kronecker structure can significantly reduce
the amount of the required secondary data, especially with more
polarimetric channels. It can be observed in Figs. 5 and 6 that
for ρ̄ = 0.5, or 3 dB average SCRL, the detectors which exploit
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Fig. 6. Average SCRL as a function of the number of secondary data with
Ns = 4, v = 4, Np = 3.

Fig. 7. Probability of detection as a function of SCR with Np = 2, Ns = 8,
v = 4, ε = 0.9, Pf a = 0.001, K = N .

the prior Kronecker structure information are able to work well
even with only 4 secondary samples.

In Figs. 7 and 8, we show the detection performance of
the ASMF detectors using KMLE, MLE, KNSCM and NSCM
estimates as a function of SCR. Here, the SCR is defined as

SCR(dB) = 10log10
v − 1

v

αH AH R−1Aα

N
. (59)

It is observed in Fig. 7 that the detectors which exploit the
Kronecker structure can achieve considerably higher probability
of detection, with a small amount of secondary data (K = N ),
while the performance of their unstructured counterparts is poor
under the same conditions.

We also consider the case in which the Kronecker structure
of the CM is imperfect, i.e., R = Rp ⊗ Rs + σ2R0 , where
R0 ∈ CN ×N is a random Hermitian positive definite matrix
sampled from the complex Wishart distribution with N degrees
of freedom and the parameter matrix IN models the imperfec-
tion, with σ2 controlling the amount of imperfection. In our

Fig. 8. Probability of detection as a function of SCR with Np = 2, Ns = 8,
v = 4, ε = 0.9, Pf a = 0.001, K = 2N .

Fig. 9. Probability of false alarm as a function of the detection threshold with
v = 4, Np = 2, Ns = 4, ε = 0.9.

experiment, we normalize the CM such that tr{R} = N , and
maintain the same SCR as (59) for different levels of σ2 by ad-
justing the power of the steering vector of the target. The results
are shown in Fig. 8, where one can see that while for large σ2

(σ2 = 1), the detection performance of the KMLE-ASMF and
KNSCM-ASMF detectors is worse than that of the MLE-ASMF
detector, for small σ2 , exploiting the Kronecker structure of the
CM can achieve better performance. Determining whether the
CM has a Kronecker structure is discussed in [19], [20]. Once
the Kronecker structure exists even within a certain degree of
error, one can exploit it to achieve performance gains. This is
because the likelihood function involving the Kronecker struc-
tured CM in the hypothesis test [19], [20] is higher than its
unstructured counterpart.

Fig. 9 and Fig. 10 illustrate the asymptotic Pf a and Pd of
the KMLE-ASMF detector when K = 2N and K = 5N , re-
spectively. It is observed that the asymptotic results are fairly
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Fig. 10. Probability of detection as a function of SCR with Pf a = 0.001,
v = 4, Np = 2, Ns = 4, ε = 0.9.

accurate and can provide a good suggestion for threshold setting
and performance prediction. It is also observed that due to the
improvement on sample support, the asymptotic performance is
effective for K = 5N .

VII. CONCLUSIONS

We have considered the problem of exploiting the a priori
knowledge of a Kronecker structure of the CM for polarimet-
ric detection problem in compound Gaussian clutter. We have
shown via theory and simulations that the Kronecker-structured
estimates and detectors can achieve significantly improved per-
formance with limited number of secondary samples. We have
analyzed the CFAR property for the proposed detectors using
different CM estimates and derived a general closed-form repre-
sentation of the average SCRL that can be used to determine the
required training size for adaptive detection. It has been demon-
strated that the adaptive detector using the Kronecker MLE can
achieve asymptotically optimal performance with a relatively
small number of secondary data. This result is helpful in thresh-
old selection and performance prediction of the adaptive detec-
tor. The proposed analysis can be readily extended to adaptive
detection in more general scenarios, where the ML estimate of
the structured CM involves solving fixed-point equations.

APPENDIX

A. Proof of Proposition 1

Proof: Based on the Jacobian transformation and model
invariance, the PDF of Y ′ = gY satisfies

p(Y ′; fθ) = p(g−1Y ′;θ)det{J }−1 . (60)

The proof of Proposition 1 is obtained as follows:

θ̂ML(Y ) = arg max
θ

p(Y ;θ) = arg max
θ

p(gY ; fθ)det{J }

= f−1arg max
f θ

p(gY ; fθ) = f−1 θ̂ML(gY ). (61)

In (61), the first equality is based on the definition of the ML es-
timate. The second one follows from (60). The third one follows
because det{J } is independent of θ and f−1 exists. �

B. Proof of Proposition 2

Proof: Define H1 � (RT ⊗ R)−
1
2 H, and iN � vec{IN }.

According to the fact that vec{R−1} = (RT ⊗ R)−
1
2 iN , and

the matrix inversion lemma [49],

(
Q − qqH

)†
= Q† +

Q†qqH Q†

1 − qH Q†q
(62)

where the semi-positive definite matrix Q and the vector q
satisfy qH Q†q < 1, the CRB matrix given in (35) may be
rewritten as

K · HI†HH = H(HH ΣH)†HH

= (RT ⊗ R)
1
2

(
1
v1

P1 +
v2P1 iN iHN P1

v2
1 − v1v2 iHN P1 iN

)

(RT ⊗ R)
1
2

(63)

where P1 � H1(HH
1 H1)†HH

1 = H1H
†
1 is the projection ma-

trix of H1 .
To be specific, it is easy to verify that Hυ = ∂vec{R}

∂θT
υ

∈
CN 2 ×N 2

corresponding to the unknown parameter set θυ is non-
singular, and thus the corresponding H1 is nonsingular. Based
on this, P1 = IN . According to (63), we have (38).

For the Kronecker structured CM, note that

H1 = (RT ⊗ R)−
1
2

[
∂vec{R}

∂θT
p

,
∂vec{R}

∂θT
s

]

. (64)

Due to (64), the ith column (i = 1, · · · , N 2
p ) of H1 can be

expressed by

(RT ⊗ R)−
1
2
∂vec{R}
∂[θp ]i

= vec

{(

R− 1
2

p
∂Rp

∂[θp ]i
R− 1

2
p

)

⊗ INs

}

.

(65)
Also, iN can be rewritten as

iN = vec{INp
⊗ INs

}. (66)

Note that ∂vec{Rp }
∂θT

p
is nonsingular, because ∂vec{Rp }

∂θT
p

corre-

sponds to the unknown parameters of the Hermitian matrix
Rp . Therefore, (RT

p ⊗ Rp)−
1
2

∂vec{Rp }
∂θT

p
is also nonsingular. As

a result, iNp
can be a linear combination of the columns of

(RT
p ⊗ Rp)−

1
2

∂vec{Rp }
∂θT

p
, which means INp

can be expressed

as a linear combination of the matrices R− 1
2

p
∂Rp

∂ [θp ]i
R− 1

2
p , i =

1, · · · , N 2
p . Based on (65) and the fact that aA1 ⊗ B + bA2 ⊗

B = (aA1 + bA2) ⊗ B, iN can be expressed linearly by the
columns of H1 , and thus we have

P1 iN = iN . (67)

According to (63) and (67), we have (37). �
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C. Proof of Proposition 3

Proof: We first validate the CFAR property of the KMLE-
ASMF detector. That means the detection statistic is indepen-
dent of Rp and Rs .

Define A � R− 1
2 A, A1 � A(AH A)−

1
2 =INp

⊗ (aH R−1
s

a)−
1
2 R− 1

2
s a and

M̂ � R− 1
2 R̂KMLER− 1

2 = M̂p ⊗ M̂s (68)

where M̂p = R− 1
2

p R̂pR
− 1

2
p , and M̂s = R− 1

2
s R̂sR

− 1
2

s .
The detection statistics in (14) can be expressed as

T (y, R̂KMLE,A, v) = T (w, M̂,A1 , v) (69)

where w|τ = (R)−
1
2 y ∼ CN (0, τIN ) under hypothesis H0 .

Note that the textures τ and τk are independent of the corre-
sponding speckles.

We further define an N × N unitary matrix

U � Up ⊗ Us , (70)

such that the first columns of the unitary matrices Up and

Us are (αH R−1
p α)−

1
2 R− 1

2
p α and (aH R−1

s a)−
1
2 R− 1

2
s a respec-

tively. Eq. (69) may be rewritten as

T (y, R̂KMLE,A, v) = T (q, M̃,A2 , v) (71)

where A2 � UH A1 = UH
p ⊗ e1 , e1 ∈ RNs ×1 , q � UH w

with q|τ ∼ CN (0, τIN ), and

M̃ � UH M̂U = (UH
p M̂pUp) ⊗ (UH

s M̂sUs) (72)

Thus, according to the invariance property of KMLE, M̃ is
KMLE of the identity matrix IN . Thus, M̃ is independent of R.

Further, with the fact that UH
p ⊗ e1 = (INp

⊗ e1)UH
p , it is

easy to obtain that

T (q, M̃,A2 , v) = T (q, M̃,Q, v) (73)

where

Q = INp
⊗ e1 . (74)

Now, all the components of the detection statistic of KMLE-
ASMF are independent of Rp and Rs . Therefore, the CFAR
property with respect to the Kronecker structured CM R can be
guaranteed for the KMLE-ASMF detector.

The second part of Proposition 3 is trivial. CFAR with respect
to the Kronecker structured CM of KNSCM-ASMF cannot be
guaranteed, because KNSCM is not an invariant estimator under

group Gκ . Note that Yk =
√

τkR
1
2
s ZkR

T
2
p where vec{Zk} =

(τkRp ⊗ Rs)−
1
2 yk ∼ CN (0, IN ) conditioned on τk . It is read-

ily verified that both R− 1
2

s YkYH
k R− 1

2
s = τkZkRT

p ZH
k and

R− 1
2

p YT
k Y∗

kR
− 1

2
p = τkZT

k RT
s Z∗

k are related to Rp and Rs . �

D. Proof of Theorem 1

Proof: Let us express the SCRL in (42) compactly as

ρ(R̂) � w

u
, (75)

with w � |tH R̂−1t|2 , and u � (tH R−1t)(tH R̂−1RR̂−1t).
For large K, the Taylor expansion of ρ(R̂) up to the second-
order with respect to R̂ at R̂ = R is given by

ρ(R̂) ≈ 1 + ρ̇T δθ +
1
2
δθT ρ̈δθ, (76)

where δθ = θ̂ − θ, θ̂ and θ are respectively the r-dimensional
unknown real parameters in R̂ and R same as defined in (32)
and

ρ̇ � ∂ρ

∂θ̂

∣
∣
∣
∣R̂=R , ρ̈ � ∂2ρ

∂θ̂∂θ̂
T

∣
∣
∣
∣
R̂=R

(77)

are the first and second derivatives of the SCRL ρ evaluated at
R̂ = R, respectively.

Then, we can calculate the entries of the first and second
derivatives of u and w. Following the differentiation rule of a
matrix inverse dM−1 = −M−1dMM−1 , we have that

∂w

∂[θ̂]i
= −2tH R̂−1ttH R̂−1ṘiR̂−1t, (78)

∂u

∂[θ̂]i
= −2tH R−1ttH R̂−1ṘiR̂−1RR̂−1t, (79)

∂2w

∂[θ̂]i∂[θ̂]j
= 2tH R̂−1ṘiR̂−1ttH R̂−1Ṙj R̂−1t

+ 2tH R̂−1ttH R̂−1ṘiR̂−1Ṙj R̂−1t

+ 2tH R̂−1ttH R̂−1Ṙj R̂−1ṘiR̂−1t

− 2tH R̂−1ttH R̂−1R̈ij R̂−1t, (80)

∂2u

∂[θ̂]i∂[θ̂]j
= tH R−1t

·
{

2tH R̂−1Ṙj R̂−1ṘiR̂−1RR̂−1t

+ 2tH R̂−1ṘiR̂−1Ṙj R̂−1RR̂−1t

+ 2tH R̂−1ṘiR̂−1RR̂−1Ṙj R̂−1t

− 2tH R̂−1R̈ij R̂−1RR̂−1t
}

, (81)

where Ṙi � ∂ R̂
∂ [θ̂]i

, and R̈ij � ∂ 2 R̂
∂ [θ̂]i ∂ [θ̂]j

.

By the quotient rule,

ρ̇i =
uẇi − wu̇i

u2 , (82)

ρ̈ij =
u2ẅij − uwüij −uu̇iẇj + uẇiu̇j − 2uu̇j ẇi + 2wu̇j u̇i

u3 ,

(83)

where ρ̇i � ∂ρ(R̂)
∂ [θ̂]i

and ρ̈ij � ∂ 2 ρ(R̂)
∂ [θ̂]i ∂ [θ̂]j

denote the first and sec-

ond derivative of the SCRL ρ, respectively, and the other pa-
rameters in (83) are similarly defined.

According to (78) and (79), for the first-order derivatives
evaluated at R̂ = R, it holds that

u̇i

∣
∣
R̂=R = ẇi

∣
∣
R̂=R = −2tH R−1ttH R−1ṘiR−1t, (84)



4574 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 17, SEPTEMBER 1, 2017

and u = w = |tH R−1t|2 . With (82) and (84), we have

ρ̇ = 0, (85)

and the (i, j)th entry of the second derivative (77) can be rewrit-
ten as

ρ̈ij |R̂=R =
uẅij − wüij

u2 |R̂=R

=
2tH R−1ṘiR−1ttH R−1ṘjR−1t

|tH R−1t|2

− 2tH R−1ṘiR−1ṘjR−1t
|tH R−1t| . (86)

Making use of the facts that tr{AB} = tr{BA} and
tr{ABCD} = vecT {BT } (CT ⊗ A

)
vec{D}, (86) can be

rewritten as

ρ̈ij |R̂=R = 2vecT {ṘT
i }
(
(Υ − R−1)T ⊗ Υ

)
vec{Ṙj}, (87)

where Υ � R−1 ttH R−1

tH R−1 t . Using the definition of H given by (32)
in (87), we have that

ρ̈ = 2HH
[
(Υ − R−1)T ⊗ Υ

]
H. (88)

Also, since vec{R} = Hθ (we assume that R is a linear
function of θ and thus H is a constant matrix), the MSE defined
in (36) can be expressed as the E = HE{δθδθT }HH , so the
average SCRL can be expressed as

E{ρ(R̂)} ≈ 1 + tr
{[

(Υ − R−1)T ⊗ Υ
]E} . (89)

Then define a unitary matrix U such that UH R− 1
2 t =

(tH R−1t)
1
2 e1 , and

Δ �
(
IN − e1eT

1
)T ⊗ (e1eT

1
)
. (90)

Note that R−1 = R− 1
2 UUH R− 1

2 , and that Υ can be
rewritten as

Υ = R− 1
2 U

(
e1eT

1
)
UH R− 1

2 . (91)

Thus, we have

tr
{[

(Υ − R−1)T ⊗ Υ
]E} = −tr

{
ΔĒ} (92)

where

Ē =
(
(R− 1

2 U)T ⊗ UH R− 1
2

)
E
(
(R− 1

2 U)T ⊗ UH R− 1
2

)H

.

(93)
The theorem follows by substituting (92) into (89). �

E. Proof of Corollary 1

Proof: This proof is followed by substituting the CRB ma-
trix, given in (37), into Theorem 1. According to (44), we
just need to calculate the average SCRL when R = IN . No-
tice that tr{Δvec{IN }vecH {IN }} = 0, the average SCRL can
be rewritten as

E{ρ(R̂KMLE)} ≈ 1 − c1 tr{ΔP̃κ}
K

. (94)

Note that P̃κ is a projection matrix of the column subspace of
the matrix H̃κ , where H̃κ = Hκ |R=IN

. First, we make a linear

transformation on the columns of H̃κ , i.e., G = H̃κJ, where J
is a nonsingular matrix such that

G =
[
Ep11 , · · · ,EpNp Np

,Es11 , · · · ,EsNs Ns

]

∈ R(N 2
p +N 2

s )×N 2
, (95)

where Epij = vec{eieT
j ⊗ INs

} ∈ RN 2 ×1 and Eskl =vec{INp

⊗ ekeT
l } ∈ RN 2 ×1 , i, j = 1, · · · , Np , k, l = 1, · · · , Ns . By

this transformation, we convert the unknown real-valued pa-
rameter θκ ∈ R(N 2

p +N 2
s )×1 into the N 2

p complex-valued entries
[Rp ]ij and N 2

s complex entries [Rs ]ij of the Hermitian matrices
Rp and Rs [51], [55]. Note that such column transformation
will not change the projection matrix, so it holds that

P̃κ = H̃κ(H̃H
κ H̃κ)†H̃H

κ = G(GH G)†GH . (96)

Due to (95), we have

GH G =

[
NsIN 2

p
ip iTs

is iTp NpIN 2
s

]

(97)

where ip
Δ= vec{INp

} and is
Δ= vec{INs

}.
It can be verified that the generalized inverse of GH G is

(GH G)†

=

⎡

⎢
⎣

1
Ns

IN 2
p
− Np + 2Ns

Ns (Ns + Np )2 ip iTp − ip iTs
(Np +Ns )2

− is iTp
(Np +Ns )2

1
Np

IN 2
s
− Ns +2Np

Np (Np +Ns )2 is iTs

⎤

⎥
⎦.

(98)

According to (95), the entries of G are “0”s or “1”s, so the
entries of P̃κ can be obtained by the sum of the corresponding
entries of (GH G)† given by (98). Note that the nth entry of
vec{R} has the form of [vec{R}]n = [Rp ]ij [Rs ]kl , with n =
(i − 1)Ns + (j − 1)NNs + k + (l − 1)N . According to (95)
and (98), the diagonal entries of P̃κ are given by

[
P̃κ

]

nn
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Np + Ns − 1
N

i = j, k = l

1
Np

i = j, k �= l

1
Ns

i �= j, k = l

0 i �= j, k �= l

. (99)

According to (94) and (99), Corollary 1 follows. �

F. Derivation of (55)

Proof: Following the differentiation rules of the ma-
trix inversion dM−1 = −M−1dMM−1 and dyH M−1y =



WANG et al.: POLARIMETRIC DETECTION IN COMPOUND GAUSSIAN CLUTTER WITH KRONECKER STRUCTURED COVARIANCE MATRIX 4575

vecH {−M−1yyH M−1}dvec(M), we have

∂qH M̃−1Q(QH M̃−1Q)−1QH M̃−1q
∂vec(M̃∗)

= vec{−M̃−1Q(QH M̃−1Q)−1QH M̃−1qqH M̃−1

− M̃−1qqH M̃−1Q(QH M̃−1Q)−1QH M̃−1

+ M̃−1Q(QH M̃−1Q)−1QH M̃−1q

· qH M̃−1Q(QH M̃−1Q)−1QH M̃−1}. (100)

Therefore, using (100), we have

∂qH M̃−1Q(QH M̃−1Q)−1QH M̃−1q
∂vec(M̃∗)

|M̃=I

= vec{−QqqH − qqH QH + QqqH QH } (101)

and

∂qH M̃−1q
∂vec(M̃∗)

|M̃=I = vec{−qqH }. (102)

Then in light of (82), (101) and (102), we have (55). �
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