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Abstract—Built on compressed sensing theories, sub-Nyquist
spectrum sensing (SNSS) has emerged as a promising solution to
the wideband spectrum sensing problem. However, most of the
existing SNSS methods do not distinguish if primary users (PUs)
are present or absent in the concerned spectrum band and di-
rectly pursue support recovery of the PUs. This may lead to a
high false alarm rate and a waste of computational cost. To ad-
dress the issue, we propose a predecision algorithm, referred to as
the pairwise channel energy ratio (PCER) detector, to determine
the presence or absence of PUs prior to signal support recovery.
The proposed detector is based on the popular modulated wide-
band converter (MWC) framework for SNSS, which has several
advantages over other SNSS approaches. The PCER test statistic
is constructed from compressed samples obtained by the MWC.
The decision threshold and the detection probability are derived
in closed form following the Neyman–Pearson criterion. Numeri-
cal results are presented to verify the theoretical calculation. The
proposed PCER detection method is shown to be able to detect the
existence of PUs in a wide range of signal-to-noise ratio, while being
robust to noise uncertainty and does not need the prior knowledge
of the PU signals. Additionally, our results show that the use of the
PCER detector leads to a significant improvement of the correct
support recovery rate of the PU signals.

Index Terms—Cognitive radio (CR), compressed sampling, cor-
rect support recovery (CSR), modulated wideband converter
(MWC), noise uncertainty, sub-Nyquist spectrum sensing (SNSS),
wideband spectrum sensing.

I. INTRODUCTION

THE exponential growth of ubiquitous wireless devices
and services during past decades has imposed increasing
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stress on the limited spectrum resources. The current spectrum
policy, primarily based on allocating a fixed-frequency band to
individual wireless services, has been shown to be highly ineffi-
cient, causing congestion in some bands while underutilization
in others [1]–[3]. The cognitive radio (CR) [4]–[6], which al-
lows secondary users (SUs) to opportunistically access unused
radio spectrum, called white space, has been widely considered
as a promising solution to the above problem. A key func-
tion in the CR is spectrum sensing that involves monitoring
the spectrum usage and detecting the presence/absence of pri-
mary users (PUs) [7]–[9]. Recently, wideband spectrum sensing
has received significant interest [10]–[13], where SUs perform
spectrum sensing in a wide range of frequency band to search
for more access opportunities. However, the implementation of
wideband spectrum sensing at the SU has some difficulties, e.g.,
the need for a complex front end, high sampling rate, and fast
digital signal processing [14]. Meanwhile, compressed sensing
has been established as a new field that offers powerful tools for
recovering sparse signals from a few nonadaptive linear mea-
surements, significantly reducing the sampling rate compared
with the conventional Nyquist sampling framework [15]–[18].
This has motivated the interest of using compressed sensing
techniques to solve the wideband spectrum sensing problem.

Sub-Nyquist spectrum sensing (SNSS) based on compressed
sampling has been considered in a multitude of studies. In [19],
a wideband spectrum sensing approach based on Nyquist sam-
pling is introduced by using sparsity recovery techniques orig-
inated from compressed sensing. The authors of [20] proposed
an autonomous compressed spectrum sensing algorithm based
on a measurement procedure and the validation approach. Qin
et al. [21] combine compressive spectrum sensing with geolo-
cation database to find spectrum holes in the CR. For com-
pressed sampling of wideband signals, an analog-to-information
converter (AIC) that employs a wideband pseudorandom de-
modulator and a low-rate sampler was introduced in [22]–[25].
Based on the AIC, several SNSS methods consisting of two
stages were proposed in [26]–[29]. In the first stage, the orig-
inal wideband signal or its power spectrum is reconstructed
from compressed samples; in the second stage, wideband spec-
trum sensing is performed to determine the locations of the
occupied frequency bands. However, it has been found that the
AIC framework can be affected by some input signal model
mismatch problems [10], [30]. Multicoset sampling is another
compressed sampling framework [10], [31]–[33], which uses
multiple analog-to-digital converter (ADCs) in a time inter-
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leaving fashion. However, maintaining accurate time shifts and
channel synchronization between sampling channels are diffi-
cult to implement, and the possible front ends are far below the
wideband regime.

A practical compressed sampling framework based on a mod-
ulated wideband converter (MWC) is proposed to cope with the
input model mismatch problem [30], [34]. The MWC frame-
work describes the input signals as a sparse union of shift-
invariant subspaces and processes the input signal in multiple
channels simultaneously. In each channel, the input signal is
multiplied by a periodic ±1 sequence, filtered by a low-pass
filter (LPF), and then sampled by a low-rate ADC. By means of
frame construction and solving a multiple measurement vector
problem, the signal support can be estimated directly without
a full signal recovery. It has been shown that the MWC-based
SNSS has the advantages of being able to adaptive to differ-
ent types of signals, fast signal support recovery (SR), and low
computational load [35].

Most of the existing SNSS methods are developed under the
assumption that the PU signals are present in the concerned
frequency band. However, there are cases where the frequency
band may be completely vacant and only background noise
exists, e.g., in satellite and millimeter wave communications
[2], [3], [36]. In such cases, a direct application of the afore-
mentioned SNSS methods is inappropriate, due to the absence
of a sparse signal, and would lead to several problems: 1) high
false alarm rate—SNSS methods are likely to provide incorrect
spectrum sensing results, causing a high false alarm probability
and making the vacant spectrum bands to be underutilized; and
2) a waste of computational cost and energy.

In this paper, we propose a predecision algorithm, referred to
as the pairwise channel energy ratio (PCER) detector, which is
integrated with the MWC framework for SNSS. The PCER al-
gorithm is to determine the presence/absence of PU signals prior
to signal SR. Only if the PU signals are detected in the concerned
frequency band, the function of signal SR will be activated to
estimate the location of the occupied bands; otherwise, signal
SR is bypassed. It is necessary to point out that the proposed
predecision algorithm can also be extended to other compressed
sampling framework besides the MWC. We model this predeci-
sion problem as a binary hypothesis testing and construct a test
statistic with compressed samples to detect the PU signals. By
exploiting the statistical properties of the test statistic, we derive
the decision threshold and the probability of detection in closed
form, following the Neyman–Pearson (NP) criterion.

Theoretical derivation and numerical simulation show that
our PCER detector is robust to noise uncertainty [37]. Fur-
thermore, it does not require any prior knowledge of the PU
signal. Some spectrum sensing techniques have been proposed
to overcome noise uncertainty [6], [38]–[40]. The algorithms
proposed in [6] and [38] employ the covariance matrix of the
signal samples, and eigenvalue decomposition is required. The
cyclostationarity-based spectrum sensing in [39] needs to know
the cyclic frequency of the signal as a prior knowledge; other-
wise, exhaustive search has to be carried out. In recent work of
Sun et al. [40], particle filtering technology is used to design
a spectrum sensing technique to overcome noise uncertainty.

Fig. 1. Conventional MWC-based SNSS.

However, the above-mentioned spectrum sensing algorithms are
designed in the conventional Nyquist sampling framework and
are not suitable for the MWC-based SNSS framework in this pa-
per. With the PECR predecision algorithm, the presence/absence
of PU signals is determined before signal SR, which avoids un-
necessary computational overhead and high false alarm prob-
ability caused by incorrect SR. As a result, the functions of
compressed sampling, signal detection, and signal recovery are
integrated, making the SNSS more useful for wideband spec-
trum sensing.

The rest of this paper is organized as follows. Section II briefly
reviews the MWC-based SNSS framework and introduces the
predecision problem concerned in this paper. In Section III, the
PCER algorithm is summarized, and closed-form expressions of
the decision threshold and probability of detection are derived.
Section IV provides numerical results and discussions on the
performance of the proposed algorithm. The whole work is
concluded in Section V.

Notation: E[·] and D[·] represent the mathematical expec-
tation and variance operator, respectively, Cov[·, ·] denotes the
covariance between two random variables, and �[·], �[·] repre-
sent taking the real part and imaginary part, respectively.

II. MWC-BASED SNSS AND THE PROBLEM

To motivate the proposed algorithm and facilitate its presen-
tation, we first briefly review the MWC-based SNSS framework
and then introduce the predecision problem concerned in this
paper.

A. MWC-Based SNSS

Fig. 1 shows the conventional MWC-based SNSS [35], which
consists of the MWC sampling module and the SR module. The
former converts the input analog signal x (t) into compressed
samples, and the latter estimates the support of the PU signals.
At the SU, the received signal x(t), which is bandlimited in
the range of [−fNYQ/2, fNYQ/2], is fed to K channels of the
MWC module simultaneously. The signal in the ith channel is
multiplied by a Tp -periodic sequence pi (t), which contains M
chips alternating between levels ±1. Specifically

pi (t) = θim

m
Tp

M
≤ t ≤ (m + 1)

Tp

M
, 0 ≤ m ≤ M − 1 (1)

where θim ∈ {−1,+1} and pi (t + Tp) = pi (t). Afterward, the
mixed signal of each channel is filtered by an LPF h (t) with
pass band [−fs/2, fs/2], where fs is the sampling rate of the
subsequent low-rate ADCs. Thus, the output of the LPF is
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expressed as

yi (t) =
∫ ∞

−∞
x (τ) pi (τ) h (t − τ) dτ (2)

where i = 1, 2, . . . ,K. Discretizing yi(t) with a sampling in-
terval Ts = 1/fs yields

yi(n) = yi(t)|t=nTs
, n = 0, 1, 2 . . . . (3)

The discrete-time Fourier transform (DTFT) of yi(n) is given
by [30]

Yi

(
ej2πf Ts

)
=
∑

n

yi(n)e−j2πf nTs

=
L0∑

l=−L0

cilX (f − lfp), f ∈ F (4)

where cil = 1
Tp

∫ Tp

0 pi(t)e
−j 2π

T p
lt
dt are the Fourier series co-

efficients of pi(t), fp = 1/Tp , X (f) is the Fourier trans-
form of x (t), and L0 = �(fNYQ + fs) / (2fp)� − 1 is chosen
as the smallest integer such that the summation in (4) con-
tains all the nonzero subbands of X(f), which are aliased into
F = [−fs/2, fs/2]. Equation (4) is key to the SR of the input
signal, since it relates x (t) to the DTFT of observations yi (n),
which are obtained from sub-Nyquist sampling.

Define Y (f) = [Y1 (f) , . . . , Yi (f) , . . . , YK (f)]T , with Yi

(f) = Yi

(
ej2πf Ts

)
and Z (f) = [Z1 (f) , . . . , Zl (f) , . . ., ZL

(f)]T , with Zl (f) = X (f + (l − L0 − 1) fp), where L =
2L0 + 1. Consequently, (4) can be rewritten in a more com-
pact form as

Y (f) = AZ (f) (5)

where f ∈ F , and A ∈ CK×L with elements Ail = ci,−l+L0+1,
1 ≤ i ≤ K and 1 ≤ l ≤ L. It is necessary to point out that if
x(t), in the absence of noise, is a sparse multiband signal, i.e.,
there are a few nonzeros bands in the frequency domain, Z (f)
has the same sparsity support as x(t). This is because each
element of Z (f) corresponds to one subband of X(f) that is
shifted into [−fs/2, fs/2]. Without loss of generality, we set
fp = fs in this paper, and L equals M under this setting [34].

To implement SR with compressed measurements yi(n), con-
sider the autocorrelation matrix of Y (f)

Q =
∫ +fs /2

−fs /2
Y (f)YH (f) df =

∞∑
n=−∞

y (n)yT (n) (6)

where y (n) = [y1 (n) , . . . , yi (n) , . . . , yK (n)]T is the com-
pressed samples output from all the channels of the MWC at
time instance nTs . Decompose the autocorrelation matrix as
Q = VVH , where V is the Hermitian square root of Q. It is
shown that the following MMV sparse recovery problem [33]

V = AU (7)

has a unique sparsest solution Ū with the fewest nonzero rows.
If x(t) is a sparse multiband signal, the support of vector Z (f)
can be obtained as S = supp

(
Ū
)
. As a result, the number and

location of occupied bands by PUs can be estimated.

Fig. 2. Proposed MWC-based SNSS framework.

However, if the frequency band is vacant and x(t) contains
only white noise, the support of Ū solved from (7) is totally ir-
relevant (note that the support of Z (f) does not even exist in this
case). This implies that the SR in the conventional MWC-based
SNSS will lead to incorrect spectrum sensing results, causing a
high false alarm rate and unnecessary computational expenses.
Clearly, there is no need to perform SR if the frequency band is
empty.

B. Problem

To address the above issue, we propose to insert a predeci-
sion module, referred to as the PCER in this paper, between the
MWC module and the SR module, as sketched in Fig. 2, where
H0 denotes the hypothesis that there is only white noise in
the input signal and H1 represents that there exist PU signals.
If the detection result of the PCER module is H0, indicating that
the whole frequency band is available and the SR is unnecessary
and the SR module is bypassed. On the other hand, if the PCER
module decides hypothesis H1, SR is conducted subsequently,
and the location of the occupied bands is estimated. By adding
the PCER module, the proposed framework integrates the func-
tions of data acquisition, detection, and estimation, making the
MWC-based SNSS more useful for wideband spectrum sensing.

As shown in Fig. 2, the PCER module has to solve the follow-
ing binary hypothesis detection problem based on compressed
samples:

yi(n) =

{
wi (n) , H0

si (n) + wi (n) , H1
(8)

where i = 1, 2, . . . ,K, wi(n) is the noise sample output from
the ith channel of the MWC produced by a zero-mean Gaussian
white noise w(t) at the input with power spectrum density σ2

w ,
and si(n) is the signal sample produced by s(t) at the input
which is sparse and composed of one or more PU signals.

The detection performance is evaluated by the probability of
detection Pd and the probability of false alarm Pf , which are
defined as

Pd = Pr{decision = H1|H1} (9a)

Pf = Pr{decision = H1|H0} (9b)

where Pd is the probability of detecting the PU sparse signal
in the concerned frequency band when it is present, and Pf

is the probability that the detector incorrectly decides that the
considered frequency band is occupied, whereas there is only
white noise.
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Fig. 3. PCER Module.

III. PROPOSED PCER DETECTOR AND

PERFORMANCE ANALYSIS

In this section, we first present the proposed PCER predeci-
sion algorithm. Afterward, we study the statistical characteris-
tics of the PCER detector under both hypothesis H0 and H1.
Finally, closed-form expressions of the decision threshold and
the detection probability of the PCER detector are derived under
the NP criterion.

A. PCER Detector

For the binary hypothesis detection problem (8), we con-
struct a test statistic with the compressed measurements y(n)
and compare it with a decision threshold to provide a decision.
The problem can be solved by the energy detector (ED), which
is a widely used technique because of simplicity and low com-
putational cost, on a channel-by-channel fashion. Nevertheless,
the decision threshold of the ED depends on the background
noise power, which makes its performance sensitive to any un-
certainty of the noise power. There are some work investigating
the ED under noise uncertainty [41]–[43], which requires esti-
mating the noise power. Inaccurate estimation of the noise power
will also affect the performance of the ED, which makes such
methods not suitable for the MWC-based SNSS framework. In
the following, we propose a novel test statistic, which does not
require the prior knowledge of the noise power and is shown to
be robust to the noise uncertainty while has a similar complexity
as the ED. Formally, as shown in Fig. 3, the proposed PCER
predecision algorithm is summarized as follows.

Step 1: The N -point energy T td
i of the output of the ith channel

of the MWC module is computed as

T td
i =

N −1∑
n=0

|yi (n)|2 (10)

where i = 1, 2, . . . ,K denotes the channel index, and the su-
perscript td represents the time domain.

Step 2: Considering the impact of noise uncertainty on the
performance of ED, branch test statistics rj,h are constructed as
PCERs

rj,h = T td
j /T td

h (11)

where j = 2, 3, . . . , K and h = 1, 2, . . . , j − 1. Note that the
test statistics employ the compressed samples from all the K
channels of the MWC.

Step 3: Since energy ratio is employed as test statistic, it
is reasonable to compare rj,h with a lower threshold γL

j,h and
an upper threshold γU

j,h (to be determined) to achieve better

performance. As a result, a decision matrix D is constructed
with elements given by

D(j, h) =

{
0, if γL

j,h < rj,h < γU
j,h

1, otherwise
(12)

where j = 2, 3, . . . ,K, h = 1, 2, . . . , j − 1, and D(j, h) is the
element of D in the jth row and the ith column. For other values
of j and h, D(j, h) is regarded as irrelevant and set to 0. Note
that there are (K2 − K)/2 relevant elements in the decision
matrix D.

Step 4: Given the branch decision results (i.e., the relevant
elements of D), there are several popular fusion rules, e.g.,
the “OR,” “AND,” and “K-out-of-N” rule [44]–[46], which
can be used to obtain the final decision result. For simplicity,
we use the “OR” rule in this paper, and the other rules can
be easily accommodated. Therefore, the final decision result is
obtained as⎧⎨

⎩
∑K

j=2

∑j−1
h=1 D(j, h) = 0, decide H0

∑K
j=2

∑j−1
h=1 D(j, h) ≥ 1, decide H1.

(13)

For a single pair of valid j and h, we referred to Pj,h
f and

Pj,h
d as the branch probability of false alarm and the branch

probability of detection, respectively, which are defined as

Pj,h
f = Pr

{
rj,h ≤ γL

j,h ||rj,h ≥ γU
j,h |H0

}
(14a)

Pj,h
d = Pr

{
rj,h ≤ γL

j,h ||rj,h ≥ γU
j,h |H1

}
(14b)

where || denotes the logic “or” operator.
Note that (13) uses all branch ratios in (11) to determine

the final decision, which is called all-branch fusion rule in the
following. It is clear to see that these ratios are statistically cor-
related with each other, since some of the ratios share the same
nominator and denominator, which can cause some deviation
if we directly applying the “OR” fusion equation that requires
independent fusion branches [46].

However, we found that, via numerical simulation, there is
relatively small correlation among the branch ratios rj,j−1, j =
2, 3, . . . ,K, for which the “OR” fusion equation can be applied
with only slight mismatch between theoretical and simulation
results. Also, we define r1,0 as T td

1 /T td
K , which also has small

correlation with the above branch ratios. The corresponding γL
1,0,

γU
1,0, and D(1, 0) are also defined in the same way as before.

Therefore, similar to (13), we have⎧⎨
⎩
∑K

j=1 D(j, j − 1) = 0, decide H0

∑K
j=1 D(j, j − 1) ≥ 1, decide H1

(15)

and the overall probability of false alarm and detection are
given by

Pf = 1 −
K∏

j=1

(1 − Pj,j−1
f ) (16a)

Pd = 1 −
K∏

j=1

(1 − Pj,j−1
d ). (16b)
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We should point out that the decision rule (15) only uses
partial branch ratios defined in (11), which is called partial-
branch fusion rule in the following, while the decision rule (13)
uses all branch ratios that could achieve better performance at
higher complexity. Thus, by providing both detectors, a tradeoff
between performance and complexity is possible.

To find the overall Pf and Pd in (16), we should first study
the statistical property of rj,h under both hypotheses, which
is examined in the following subsections, and then use (14) to
find the branch probability Pj,h

f and Pj,h
d . It is important to

point out that the above algorithm is not limited to the MWC-
based sampling framework and can easily be extended to other
compressed sampling frameworks.

B. False Alarm Probability Analysis

Under H0, the received signal x(t) contains only white noise.
Following the NP criterion, we set a target branch probability
of false alarm Pj,h

f and then find the branch threshold γL
j,h

and γU
j,h , j = 1, 2, . . . ,K, h = j − 1, which is given by the

following theorem.
Theorem 1: For a given target branch probability of false

alarm Pj,h
f , the corresponding branch threshold of the detector

(11) is given by (17a) and (17b) at the bottom of this page,
where Φ−1(x) is the inverse function of the Gaussian cumula-

tive distribution function (CDF) Φ(x) = 1√
2π

∫ x

−∞ e−
η 2

2 dη, N is
the number of compressed measurements used to compute the
channel energy and

ρj,h
H0

Δ=
(
ρ2

0 + ρ2
1 + ρ2

2 + ρ2
3

)
/2 (18)

where

ρ0 =
L0∑

l=−L0

[�(cjl)�(chl) −�(chl)�(cjl)] (19a)

ρ1 =
L0∑

l=−L0

[�(cjl)�(chl) −�(cjl)�(chl)] (19b)

ρ2 =
L0∑

l=−L0

[�(cjl)�(chl) + �(chl)�(cjl)] (19b)

ρ3 =
L0∑

l=−L0

[�(cjl)�(chl) + �(chl)�(cjl)]. (19c)

Proof: To prove Theorem 1, we start from (14a), which re-
quires the statistical property of rj,h defined in (11). Note that

the branch test statistic rj,h is the ratio of the signal energy from
two different channels of the MWC module. We first need to
determine the statistical property of the numerator and denomi-
nator, i.e., the channel energy T td

j and T td
h , respectively.

Considering the Parseval theorem that the energy in the time
domain can be equivalently computed in the frequency domain,
we use the channel energy T fd

j and T fd
h instead of T td

j and T td
h ,

respectively, where the superscript fd represents the frequency
domain. It is more convenient to carry out the analysis and com-
putation in the frequency domain. Specifically, by the Parseval
theorem,

T fd
i =

1
N

N −1∑
k=0

|Yi (k)|2 =
N −1∑
n=0

|yi (n)|2 = T td
i (20)

where Yi(k), i = 1, 2, . . . ,K, k = 0, 1, . . . , N − 1, are the dis-
crete Fourier transform (DFT) of yi(n). Since the DFT of yi(n)
is obtained by uniformly sampling the DTFT of yi(n), which is
given by (4), Yi(k) under H0 is

Yi (k) =
L0∑

l=−L0

cilX (k − lN) =
L0∑

l=−L0

cilW (k − lN) (21)

where W (k − lN) is the DFT of the additive Gaussian white
noise w(t) at the input of the SU.

Lemma 1 in Appendix A indicates that T fd
i is a sum of N

independent random variables |Yi(k)|2, k = 0, 1, 2, . . . , N − 1,
with identical mean and variance under H0. Thus, for large N
and following the central limit theorem, T fd

i is approximately a
Gaussian variable with mean and variance given by

E
[
T fd

i |H0
]

=
1
N

N −1∑
k=0

E
[|Yi (k)|2] = Nσ2

w (22a)

D
[
T fd

i |H0
]

=
1

N 2

N −1∑
k=0

D
[|Yi (k)|2] = Nσ4

w . (22b)

The covariance of two different channel energies is

Cov
[
T fd

j , T fd
h

]
= Cov

[
1
N

N −1∑
k=0

|Yj (k)|2, 1
N

N −1∑
k=0

|Yh (k)|2
]

=
1

N 2

[
N −1∑
k=0

(
Cov

[
|Yj (k)|2, |Yh (k)|2

])]

=
Nσ4

w

2

(
ρ2

0 + ρ2
1 + ρ2

2 + ρ2
3

)
(23)

γL
j,h =

N − ρj,h
H0

[
Φ−1

(
Pj,h

f ,L

)]2
− Φ−1

(
Pj,h

f ,L

)√((
ρj,h
H0

)2
− 1

)([
Φ−1

(
Pj,h

f ,L

)]2
)

+ 2N
(
ρj,h
H0

− 1
)

N −
[
Φ−1

(
Pj,h

f ,L

)]2 (17a)

γU
j,h =

N − ρj,h
H0

[
Φ−1

(
1 − Pj,h

f ,U

)]2
+ Φ−1

(
1 − Pj,h

f ,U

)√((
ρj,h
H0

)2
− 1

)([
Φ−1

(
1 − Pj,h

f ,U

)]2
)

+ 2N
(
ρj,h
H0

− 1
)

N −
[
Φ−1

(
1 − Pj,h

f ,U

)]2 (17b)
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where ρ0, ρ1, ρ2, and ρ3 are defined in Theorem 1. The last
equality of (23) follows from (39) of Lemma 1. Therefore, the
correlation coefficient ρj,h

H0
between T fd

j and T fd
h can be calcu-

lated as

ρj,h
H0

=
Cov

[
T fd

j , T fd
h

]
√

D
[
T fd

j |H0
]
D
[
T fd

h |H0
] =

(
ρ2

0 + ρ2
1 + ρ2

2 + ρ2
3

)
2

.

(24)
According to the derivation above, it shows that rj,h under

H0 is the ratio of two statistically correlated Gaussian variables
whose statistics are given by (22)–(24). Furthermore, to find the
CDF of rj,h , we employ the following property.

Property 1 (see [47]): The ratio R of two statistically corre-
lated Gaussian random variable Z1 and Z2 obeys the distribution
with the following CDF:

FR (r) = Pr(R < r) = Φ

(
rμ2 − μ1√

σ2
1 − 2rρσ1σ2 + r2σ2

2

)
(25)

where Φ(x) is defined in Theorem 1, μ1, μ2, σ2
1, and σ2

2 are
the mean and variance of Z1 and Z2, respectively, and ρ is the
correlation coefficient of Z1 and Z2.

To apply Property 1 to the branch test statics defined in (11),
we first split the branch Pj,h

f into two parts as lower part Pj,h
f ,L

and upper part Pj,h
f ,U according to (14), which satisfy

Pj,h
f ,L = Pr

(
rj,h ≤ γL

j,h |H0
)

(26a)

Pj,h
f ,U = Pr

(
rj,h ≥ γU

j,h |H0
)
. (26b)

Applying Property 1 to above equations yields

Pj,h
f ,L = Φ

⎛
⎝

√
NγL

j,h −√
N√

1 − 2γL
j,hρj,h

H0
+ (γL

j,h)2

⎞
⎠ (27a)

Pj,h
f ,U = 1 − Φ

⎛
⎝

√
NγU

j,h −√
N√

1 − 2γU
j,hρj,h

H0
+ (γU

j,h)2

⎞
⎠ . (27b)

As a result, the branch threshold (17a) and (17b) can be
obtained by inverting (27a) and (27b), respectively. �

From the derivation above and the expressions of the branch
threshold in (17), it is clear that the branch threshold γL

j,h and
γU

j,h of the proposed predecision algorithm depends on the num-
ber of compressed measurements N , the correlation coefficient
ρj,h
H0

of different channel energies, and the branch target false

alarm probability Pj,h
f and the way to split the target Pj,h

f . The

correlation coefficient ρj,h
H0

in (24) only depends on the mea-
surement matrix A of the MWC. It is important to notice that
the branch threshold γL

j,h and γU
j,h are not related to σ2

w , i.e.,
the power of the background Gaussian white noise, and no prior
knowledge of the PU signal is needed. This is reason why our
PCER detector (11) is robust to noise uncertainty.

For the special case that the target branch probability of false
alarm is set to be identical for different values of j and h, the
overall probability of false alarm Pf in (16a) reduces to

Pf = 1 − (1 − Pj,h
f )K . (28)

In turn, with the NP criterion along with a targeted overall Pf ,
the branch decision threshold can be found by inverting (28),
splitting Pj,h

f and inverting (27).

C. Detection Probability Analysis

Under hypothesis H1, the input signal x (t) is a sum of the
unknown deterministic PU signal s(t) and the Gaussian white
noise w(t). To apply (16b) to find the overall probability of
detection, we first study the branch probability of detection
Pj,h

d , which is given by Theorem 2 as follows.
Theorem 2: Under hypothesis H1, the branch probability of

detection Pj,h
d , j = 1, 2, . . . , K and h = j − 1, is expressed as

Pj,h
d = Pj,h

d,L + Pj,h
d,U (29)

where Pj,h
d,L and Pj,h

d,U are given by (30a) and (30b), respectively,
at the bottom of this page, where γL

j,h and γU
j,h have been given

in Theorem 1 and ρj,h
H1

is the correlation coefficient of T fd
j and

T fd
h under H1 which is given by

ρj,h
H1

=
Σ + Θ√

D
[
T fd

j |H1
]
D
[
T fd

h |H1
] (31)

where Σ and Θ are defined as

Σ Δ=
Nσ4

w

(
ρ2

0 + ρ2
1 + ρ2

2 + ρ2
3

)
2

(32a)

Θ Δ= 2σ2
w

(
ηr

j ηi
hρ0 + ηi

j η
r
hρ1 + ηr

j ηr
hρ2 + ηi

j η
i
hρ3
)

(32b)

where ρ0, ρ1, ρ2, and ρ3 are given in Theorem 1, ηr
j =

�[
∑L0

l=−L0
cjlS(k − lN)], ηi

j = �[
∑L0

l=−L0
cjlS(k − lN)],

ηr
h = �[

∑L0
l=−L0

chlS(k − lN)], and ηi
h = �[

∑L0
l=−L0

chlS
(k − lN)], k = 0, 1, . . . , N − 1.

Proof: To prove Theorem 2, we first proceed to find the
CDF of rj,h under H1. Similar to the proof of Theorem 1, we

Pj,h
d,L = Φ

⎛
⎜⎜⎝

γL
j,hE

[
T fd

h |H1
]− E

[
T fd

j |H1
]

√
D
[
T fd

j |H1
]− 2γL

j,hρj,h
H1

√
D
[
T fd

j |H1
]
D
[
T fd

h |H1
]
+ (γL

j,h)2D
[
T fd

h |H1
]

⎞
⎟⎟⎠ (30a)

Pj,h
d,U = 1 − Φ

⎛
⎜⎜⎝

γU
j,hE

[
T fd

h |H1
]− E

[
T fd

j |H1
]

√
D
[
T fd

j |H1
]− 2γU

j,hρj,h
H1

√
D
[
T fd

j |H1
]
D
[
T fd

h |H1
]
+ (γU

j,h)2D
[
T fd

h |H1
]

⎞
⎟⎟⎠ (30b)
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study the statistic property of the nominator and denominator
of the detector rj,h under H1. Under H1, the DFT of yi (n) in
the ith channel, i = 1, 2, . . . ,K, n = 0, 1, . . . , N − 1, can be
written as

Yi(k) =
L0∑

l=−L0

cilX (k − lN)

=
L0∑

l=−L0

cilS (k − lN) +
L0∑

l=−L0

cilW (k − lN) (33)

where S(k − lN) and W (k − lN) are sampled from the DTFT
of s(t) and w(t), respectively. Lemma 2 given in Appendix B
provides the statistics of |Yi (k)|2, and T fd

i is shown to follow
a Gaussian distribution approximately by applying the central
limit theorem when N is large. Consequently, the expectation
and variance of T fd

i can be derived from Lemma 2 as follows,
respectively:

E
[
T fd

i |H1
]

=
1
N

N −1∑
k=0

∣∣∣∣∣
L0∑

l=−L0

cilS (k − lN)

∣∣∣∣∣
2

+ Nσ2
w (34a)

D
[
T fd

i |H1
]

=
2σ2

w

N

N −1∑
k=0

∣∣∣∣∣
L0∑

l=−L0

cilS (k − lN)

∣∣∣∣∣
2

+ Nσ4
w .

(34b)

The correlation coefficient between T fd
j and T fd

h , by definition,
is calculated as

ρj,h
H1

=
Cov

[
T fd

j , T fd
h

]
√

D
[
T fd

j |H1
]
D
[
T fd

h |H1
] (35)

where the covariance of T fd
j and T fd

h , according to (51), can be
computed as

Cov
[
T fd

j , T fd
h

]
= Cov

[
1
N

N −1∑
k=0

|Yj (k)|2, 1
N

N −1∑
k ′=0

|Yh (k′)|2
]

=
Nσ4

w

2

(
ρ2

0 + ρ2
1 + ρ2

2 + ρ2
3

)

+ 2σ2
w

(
ηr

j ηi
hρ0 + ηi

j η
r
hρ1 + ηr

j ηr
hρ2 + ηi

j η
i
hρ3
)
. (36)

Upon obtaining the statistics of T fd
i , and the correlation co-

efficient of T fd
j and T fd

h , Property 1 is again applied to compute
the CDF of rj,h under H1. Similarly, according to the definition
of Pj,h

d in (14b), we split Pj,h
d into two parts as Pj,h

d,L and Pj,h
d,U ,

which satisfy

Pj,h
d,L = Pr

(
rj,h ≤ γL

j,h |H1
)

(37a)

Pj,h
d,U = Pr

(
rj,h ≥ γU

j,h |H1
)
. (37b)

Consequently, with the CDF function of rj,h , Pj,h
d,L and Pj,h

d,U

can be obtained as (30a) and (30b), respectively. �
With the branch probability of detection Pj,h

d , j =
1, 2, . . . ,K, h = j − 1, we can compute the overall probability
of detection Pd by fusing them as (16b).

IV. PERFORMANCE SIMULATION AND DISCUSSION

In previous section, we have obtained the false alarm proba-
bility Pf , the decision threshold, and the detection probability
Pd . Here, we present numerical results to validate the correct-
ness of the theoretical analysis and illustrate the effectiveness
of the proposed PCER predecision algorithm.

A. Parameters Setting

In the following simulations, the system parameters are
set as follows. The equivalent Nyquist sampling rate fNYQ =
600˜MHz, and the number of sampling channels K = 20.
The period of pi(t), i = 1, 2, . . . ,K, is Tp = 75 ns, containing
M = 45 chips of ±1 levels in each period. The sampling rate
of a single channel is fs = fp = 1/Tp , and the cutoff frequency
of the LPF in each channel is fs/2. The PU signal consists of
three digital modulation signals (i.e., the number of occupied
bands is B = 6), the symbol rate of each signal is 1˜MBaud,
and the carrier frequency of each signal is l′fp , where l′ is ran-
domly drawn from the set {1, 2, . . . , L0} with equal probability.
The powers of the three signals are set to be identical, and the
signal-to-noise ratio (SNR) is defined as (P/σ2

w )dB, where P is
the total power of the PU signals and σ2

w is the power spectrum
density of the back ground noise w (t). To evaluate the robust-
ness of the proposed detection technique to the variation of the
noise level, the noise uncertainty denoted by ρ is also defined.
In the presence of noise uncertainty, the value of noise power of
each realization uniformly draws from the range of [σ2

w /ρ, σ2
w ρ],

where ρ ≥ 1. And ρ = 1 implies that the noise power is fixed
as a constant and there is no noise uncertainty. Following the
NP criterion, the probability of false alarm Pf is preset as 0.01.
Without loss of generality, the branch Pj,h

f is split into two equal

parts, which means Pj,h
f ,L = Pj,h

f ,U . All the simulation results are
averaged over 105 Monte Carlo experiments.

B. Simulation Results

Fig. 4 presents the detection probability Pd versus SNR of
different spectrum sensing methods in the presence/absence of
noise uncertainty. The probability of detection of ED is obtained
by combining the energy detection results of all the output chan-
nels of MWC with the “OR” fusion rule. It shows that the theo-
retical and simulation results of ED under the case of no noise
uncertainty match well with each other. Note that the theoretical
result of ED can be obtained by using the statistical distribution
of the energy T fd

i , which has been derived before. If introducing
the noise uncertainty, i.e., ρ > 1, which is commonly seen in
practical scenarios, ED suffers a significant performance loss in
the detection probability.

For our proposed PCER detector, two sets of curves are pro-
vided corresponding to the all-branch fusion rule (13) with sim-
ulated results and the partial-branch fusion rule (15) with both
theoretical and simulated results, respectively. It can be observed
that the all-branch fusion outperforms the partial-branch fusion,
since it uses more branch ratios to obtain the final decision
at higher complexity. A small gap between the theoretical and
simulation results of partial-branch fusion is caused by directly



XIONG et al.: PREDECISION FOR WIDEBAND SPECTRUM SENSING WITH SUB-NYQUIST SAMPLING 6915

Fig. 4. Probability of detection of different spectrum sensing methods
versus SNR.

applying the “OR” fusion rule and ignoring the small corre-
lation between the fusion branches. Overall, unlike ED, both
all-branch fusion rule and partial-branch fusion rule for PCER
detector are robust to noise uncertainty.

The recently introduced eigenvalue-based detector [38] has
been modified to fit in the wideband setup. The resulting detec-
tor is included in Fig. 4. Specifically, we first use compressed
samples to construct the autocorrelation matrix Q as defined
in (6) and then employ the ratio of the maximal eigenvalue to
the minimal eigenvalue of Q as the test statistic. The decision
threshold can be approximately computed using the result of
[48]. However, different from the conventional eigenvalue de-
tector, which is used in the Nyquist sampling framework, the
compressed samples from each channel of MWC are statisti-
cally correlated, and the prewhitening technique proposed in
[38] is not applicable here. The consequence is that the equiva-
lent number of signal sample has been reduced, which leads to
a performance loss.

Various cases of the number of compressed measurements N
for partial-branch fusion rule are considered in Fig. 5. The value
of N is chosen as 200, 400, 800, and 1600, respectively. It is
shown that the proposed PCER detector can achieve good per-
formance with only 200 compressed samples under relatively
low SNR, and the detection performance can be promisingly im-
proved by increasing the number of compressed samples. When
there exists noise uncertainty, the decision threshold computed
by (17) does not change for a given N such that the performance
under noise uncertainty is consistent with the case of no noise
uncertainty. The results in Fig. 5 further verify our theoretical
analysis under different of parameter setups.

The false alarm probability of the PCER detector for the
partial-branch fusion rule with various number of compressed
measurements N and different values of noise uncertainty ρ is
illustrated in Fig. 6. Curves are obtained using the theoretical
threshold derived by (17). In Fig. 6, the term “Trial index”
represents the number of the independent experiments, and in
each experiments, 105 Monte Carlo simulations are conducted.

Fig. 5. Probability of detection of PCER of partial-branch fusion rule versus
SNR with different N and ρ.

Fig. 6. False alarm probability of the PCER for the partial-branch fusion rule.
(a) ρ = 1. (b) ρ = 1.3.

It is shown that the false alarm probability of the proposed PCER
is slightly fluctuating around the preset target value (0.01) under
different values of N and ρ, implying the correctness of our
derivation.

Fig. 7 presents the receiver operating characteristic (ROC)
curves of the PCER detector. The probability of false alarm
Pf ranges from 10−3 to 10−1, and SNR = −14˜dB. It is ob-
served that when there exists noise uncertainty, the performance
of the PCER remains nearly unchanged compared with that
in the absence of noise uncertainty. From the results presented
in Figs. 4–7, it can be concluded that the proposed PCER de-
tection method, which does not require the knowledge of noise
power and the PU signals, provides good performance in a wide
range of SNR under different parameter setups.
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Fig. 7. ROC curves of the PCER.

Fig. 8. CSR rate with and without the PCER.

To show the necessity and significance of the proposed PCER
detector, we proceed to investigate the correct support recovery
(CSR) rate Pcsr with and without the PCER module, as shown in
the Fig. 8. The CSR rate is defined as the ratio of the number of
CSR, i.e., {S = S′}, to the total number of simulations. Here,
S and S′ represent the recovery support and the true support
of the input signal, respectively. Note that the recovery support
S should be a null set when there is only white noise in the
frequency band. With the PCER module, which is inserted be-
tween the compressed sampling module and the SR module, the
function of SR will be conducted only if the PCER module de-
tects the presence of the PU signals; otherwise, the SR module is
bypassed. Without the PCER module, the SR module is always
active and output a support set even there is only white noise
in the concerned frequency band. Both cases are experimented
with the maximum number of occupied band Bmax = [4, 6].
Once Bmax is given, the number of occupied band, which is an
even number (including zero), will be equiprobably selected in
the range of [0, Bmax] in a simulation.

As shown in Fig. 8, Pcsr with the PCER module outperforms
that without the PCER module, where the performance improve-
ment depends on the probability that there are no PU signals
in the given wideband. The performance improvement of the

proposed SNSS framework over the conventional MWC-based
SNSS relies on the accurate detection of PU signals by the
PCER module, avoiding the incorrect SR when there is only
white noise.

In the aspect of complexity, it needs KN multiplications,
K(N − 1) additions, and K(K − 1)/2 divisions for the all-
branch fusion rule and only K divisions for the partial-branch
fusion rule. However, support recovery requires correlation ma-
trix construction, matrix decomposition, and orthogonal match-
ing pursuit process. Correlation matrix construction needs NK2

multiplications and (N − 1)K2 additions. Matrix decompo-
sition and orthogonal matching pursuit have computational
complexity O(K3) and O(BLK2), respectively. Therefore, the
proposed PCER module can reduce the average computational
cost while improving the CSR rate.

V. CONCLUSION

Based on a MWC framework for SNSS, a predecision de-
tector referred to as the PCER is proposed to determine the
presence/absence of PU signals prior to signal SR. The PCER
detector utilizes the ratio of pairwise energy from different chan-
nels of the MWC as the test statistic, whose CDFs under both
H0 and H1 have been derived. The decision threshold and the
probability of detection under the NP criterion are provided in
closed form, which show that the decision threshold is unre-
lated to the noise power. The theoretical analysis is shown to
match well with simulation results under various simulation se-
tups. The proposed PCER detector is observed to offer good
detection performance without requiring any prior knowledge
of the PU signals in a wide range of SNR. Furthermore, un-
like the conventional ED, the PCER detector is robust to the
noise uncertainty. Our results indicate that the integration of the
PCER detector in the MWC framework can lead to a signifi-
cant improvement of the CSR rate of the PU signals with low
computational cost, making the MWC-based SNSS framework
more useful for wideband spectrum sensing.

APPENDIX A
LEMMA 1

Lemma 1: Under H0, the mean and variance of |Yi(k)|2 are

E
[|Yi(k)|2] = Nσ2

w (38a)

D
[|Yi(k)|2] = N 2σ4

w (38b)

respectively, where i = 1, 2, . . . ,K, k = 0, 1, . . . , N − 1. The
covariance of the power spectrum lines |Yj (u)|2 and |Yh(v)|2
for different values of (j, h) and (u, v) is

Cov
[
|Yj (u)|2, |Yh (v)|2

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, j = h, u �= v

N 2σ4
w

2

3∑
i ′=0

ρ2
i ′ , j �= h, u = v

0, j �= h, u �= v

(39)

where j, h = 1, 2, . . . ,K, u, v = 0, 1, . . . , N − 1, ρ0, ρ1, ρ2,
and ρ3 are defined in Theorem 1.
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Proof: Considering the linear property of DFT operation,
X(k − lN) under H0 is a complex Gaussian random variable
with zero mean and variance Nσ2

w . Yi (k), the weighted sum of
X (k − lN) according to (21), is a complex Gaussian random
variable with zero mean and variance

∑L0
l=−L0

|cil |2Nσ2
w . In

the MWC system, the power of the periodic ±1 sequences is
unit; therefore, the mean and variance of Yi (k) is computed as
E[Yi (k)] = 0 and D[Yi (k)] = Nσ2

w , and the mean and vari-
ance of �(Yi(k)) and �(Yi(k)), respectively, are given by

E
[�(Yi(k))

]
= E

[�(Yi(k))
]

= 0 (40a)

D
[�(Yi(k))

]
= D

[�(Yi(k))
]

= Nσ2
w /2. (40b)

Also note that the covariance of �(X(k)) and �(X(k)) is
zero [49], and the covariance of �(Yi(k)) and �(Yi(k)) can be
obtained by (41), shown at the bottom of this page.

Thus, |Yi(k)|2 =
[�(Yi(k))

]2 +
[�(Yi(k))

]2
is a sum of the

squares of two independent and identically distributed Gaussian
random variable, and we have

E
[|(Yi(k))|2] = 2

(√
Nσ2

w /2
)2

= Nσ2
w (42a)

D
[|(Yi(k))|2] = 4

(√
Nσ2

w /2
)4

= N 2σ4
w (42b)

which is consistent with (38).
To prove (39), we note that X(k − lN) in (21) is equiv-

alent to the DFT of the compressed samples obtained from
x(t)e2π lfs t , the frequency-shift version of the original x(t).
Therefore, different spectrum lines X(u − lN) and X(v − lN),
u �= v, shifted from the same frequency band are uncorre-
lated [49], and the spectrum lines X(u − lN) and X(v − l′N),
l �= l′, are also uncorrelated, since the samples used to compute
DFT are obtained from different narrow band white noise un-
der H0, which means Cov [Yj (u), Yh (v)] = 0, j = h, u �= v.

Meanwhile, |Yj (u)|2 and |Yh(v)|2 are continuous functions of
Yj (u) and Yh(v), respectively, implying

Cov
[
|Yj (u)|2, |Yh (v)|2

]
= 0 (43)

where j = h and u �= v.
To compute the covariance of |Yj (u)|2 and |Yh(v)|2 for

j �= h and u = v, we first determine the following four
items: Cov

[�(Yj (u)),�(Yh (v))
]
, Cov

[�(Yj (u)),�(Yh (v))
]
,

Cov
[�(Yj (u)),�(Yh (v))

]
, Cov

[�(Yj (u)),�(Yh (v))
]
, where

Cov
[�(Yj (u)),�(Yh (v))

]
is computed by (44), shown at the

bottom of the page. The other three items can be computed in
the same fashion.

Using the result of (40), the correlation coefficient of
�(Yp(k)) and �(Yq (k)) can be obtained as ρ2; thus, the cor-
relation coefficient of [�(Yp(k))]2 and [�(Yq (k))]2 is ρ2

2 [50].
Consequently

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]

= ρ2
2

√
D
[
[� (Yj (u))]2

]
D
[
[� (Yh (v))]2

]

=
N 2σ4

w

2
ρ2

2. (45)

Similarly, we have

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]
=

N 2σ4
w

2
ρ2

0 (46a)

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]
=

N 2σ4
w

2
ρ2

1 (46b)

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]
=

N 2σ4
w

2
ρ2

3. (46c)

Cov
[�(Yi(k)),�(Yi(k))

]
= E

[�(Yi(k))�(Yi(k))
]− E

[�(Yi(k))
]
E
[�(Yi(k))

]

= E

[(
L0∑

l=−L0

(� (cil)� (X (k − lN)) −� (cil)� (X (k − lN)))

)

×
(

L0∑
l=−L0

(� (cil)� (X (k − lN)) + � (cil)� (X (k − lN)))

)]

= 0. (41)

Cov
[�(Yj (u)),�(Yh (v))

]
= E

[�(Yj (u))�(Yh (v))
]− E

[�(Yj (u))
]
E
[�(Yh(v))

]

= E

[(
L0∑

l=−L0

(� (cjl)� (X (u − lN)) −� (cjl)� (X (u − lN)))

)

×
(

L0∑
l=−L0

(� (chl)� (X (v − lN)) −� (chl)� (X (v − lN)))

)]

=
L0∑

l=−L0

� (cjl)� (chl)
σ2

w

2
+

L0∑
l=−L0

� (cjl)� (chl)
σ2

w

2
=

Nσ2
w ρ2

2
. (44)
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With (45) and (46), the covariance of |Yj (u)|2 and |Yh(v)|2
is computed as

Cov
[
|Yj (u)|2, |Yh (v)|2

]
=

N 2σ4
w

(
ρ2

0 + ρ2
1 + ρ2

2 + ρ2
3

)
2

(47)
where j �= h and u = v.

For the case j �= h and u �= v, in the same process, it is easy
to obtain

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]
= 0 (48a)

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]
= 0 (48b)

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]
= 0 (48c)

Cov
[
[� (Yj (u))]2, [� (Yh (v))]2

]
= 0 (48d)

which leads to

Cov
[
|Yj (u)|2, |Yh (v)|2

]
= 0 (49)

where j �= h and u �= v. With (43), (47), and (49), we can derive
(39) in Lemma 1. �

APPENDIX B
LEMMA 2

Lemma 2: Under H1, the mean and variance of |Yi(k)|2 are

E
[|Yi(k)|2] =

∣∣∣∣∣
L0∑

l=−L0

cilS (k − lN)

∣∣∣∣∣
2

+ Nσ2
w (50a)

D
[|Yi(k)|2] = 2Nσ2

w

∣∣∣∣∣
L0∑

l=−L0

cilS (k − lN)

∣∣∣∣∣
2

+ N 2σ4
w (50b)

respectively, where i = 1, 2, . . . ,K, k = 0, 1, . . . , N − 1. The
covariance of spectrum lines |Yj (u)|2 and |Yh(v)|2 for different
values of (j, h) and (u, v) is

Cov
[
|Yj (u)|2, |Yh (v)|2

]
=

⎧⎪⎨
⎪⎩

0, j = h, u �= v

N(Σ + Θ), j �= h, u = v

0, j �= h, u �= v
(51)

where j, h = 1, 2, . . . , K, u, v = 0, 1, . . . , N − 1, and Σ and
Θ are defined by (32a) and (32b), respectively.

Proof: The proof of Lemma 2 is similar with that of Lemma 1
if we follow the assumption that s(t) under H1 is a deterministic
signal. �
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