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Abstract—We consider the problem of low-rank decomposition
of incomplete tensors. Since many real-world data lie on an in-
trinsically low-dimensional subspace, tensor low-rank decomposi-
tion with missing entries has applications in many data analysis
problems such as recommender systems and image inpainting. In
this paper, we focus on Tucker decomposition which represents
an N th-order tensor in terms of N factor matrices and a core
tensor via multilinear operations. To exploit the underlying multi-
linear low-rank structure in high-dimensional datasets, we propose
a group-based log-sum penalty functional to place structural spar-
sity over the core tensor, which leads to a compact representation
with smallest core tensor. The proposed method is developed by it-
eratively minimizing a surrogate function that majorizes the origi-
nal objective function. This iterative optimization leads to an itera-
tively reweighted least squares algorithm. In addition, to reduce the
computational complexity, an over-relaxed monotone fast iterative
shrinkage-thresholding technique is adapted and embedded in the
iterative reweighted process. The proposed method is able to deter-
mine the model complexity (i.e., multilinear rank) in an automatic
way. Simulation results show that the proposed algorithm offers
competitive performance compared with other existing algorithms.

Index Terms—Tucker decomposition, low rank tensor decompo-
sition, tensor completion, iterative reweighted method.

I. INTRODUCTION

MULTI-DIMENSIONAL data arise in a variety of ap-
plications, such as recommender systems [1]–[3], mul-

tirelational networks [4], [5], and brain-computer imaging [6],
[7]. Tensors (i.e., multiway arrays) provide an effective rep-
resentation of such data. Tensor decomposition based on low
rank approximation is a powerful technique to extract useful
information from multiway data as many real-world multiway
data are lying on a low dimensional subspace. Compared with
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matrix factorization, tensor decomposition can capture the in-
trinsic multi-dimensional structure of the multiway data, which
has led to a substantial performance improvement for harmonic
retrieval [8], [9], regression/classification [10]–[12], and data
completion [3], [13], etc. Tucker decomposition [14] and CAN-
DECOMP/PARAFAC (CP) decomposition [15] are two widely
used low-rank tensor decompositions. Specifically, CP decom-
poses a tensor as a sum of rank-one tensors, whereas Tucker is
a more general decomposition which involves multilinear oper-
ations between a number of factor matrices and a core tensor.
CP decomposition can be viewed as a special case of Tucker
decomposition with a super-diagonal core tensor. It is generally
believed that Tucker decomposition has a better generalization
ability than CP decomposition for different types of data [16]. In
many applications, only partial observations of the tensor may
be available. It is therefore important to develop efficient tensor
decomposition methods for incomplete, sparsely observed data
where a significant fraction of entries is missing.

Low-rank decomposition of incomplete tensors has attracted
a lot of attention over the past few years and a number of
algorithms [17]–[29] were proposed via either optimization
techniques or probabilistic model learning. For both CP and
Tucker decompositions, the most challenging task is to deter-
mine the model complexity (i.e., the rank of the tensor) in the
presence of missing entries and noise. It has been shown that
determining the CP rank, i.e., the minimum number of rank-
one terms in CP decomposition, is an NP-hard problem even
for a completely observed tensor [30]. Unfortunately, many ex-
isting methods require that the rank of the decomposition is
specified a priori. To address this issue, a Bayesian method
was proposed in [13] for CP decomposition, where a shrinkage
prior called as the multiplicative gamma process (MGP) was
employed to adaptively learn a concise representation of the
tensor. In [26], a sparsity-inducing Gaussian inverse-Gamma
prior was placed over multiple latent factors to achieve auto-
matic rank determination. Besides the above Bayesian methods,
an optimization-based CP decomposition method was proposed
in [18], [19], where the Frobenius-norm of the factor matrices
is used as the rank regularization to determine an appropriate
number of component tensors.

In addition to the CP rank, another notion of tensor rank
is multilinear rank [31], which is defined as the tuple of the
ranks of the mode-n unfoldings of the tensor. Multilinear
rank is closely related to the Tucker decomposition since the
multilinear rank is equivalent to the dimension of the smallest
achievable core tensor in Tucker decomposition [32]. To search
for a low multilinear rank representation, a tensor nuclear
norm, defined as a (weighted) summation of nuclear norms
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of mode-n unfoldings, was introduced to approximate the
multilinear rank. Tensor completion and decomposition can
then be accomplished by minimizing the tensor nuclear norm.
Specifically, an alternating direction method of multipliers
(ADMM) was developed in [17], [23] to minimize the tensor
nuclear norm with missing data, and encouraging results were
reported on visual data. The success of [17] has inspired a
number of subsequent works [21], [22], [24], [25], [33], [34] for
tensor completion and decomposition based on tensor nuclear
norm minimization. Nevertheless, the tensor nuclear norm,
albeit effective, is not necessarily the tightest convex envelope
of the multilinear rank [21]. Also, the nuclear norm-based
methods are sensitive to outliers and the performance is also
affected by an increasing number of missing data [35].

In this paper, to automatically achieve a concise Tucker repre-
sentation, we introduce a notion referred to as the order-(N − 1)
sub-tensor and propose a group log-sum penalty functional to
encourage structural sparsity of the core tensor. Specifically, in
the log-sum penalty function, elements in every sub-tensor of
the core tensor along each mode are grouped together. Minimiz-
ing the group log-sum penalty function thus leads to a structured
sparse core tensor with only a few nonzero order-(N − 1) sub-
tensors along each mode. By removing the zero order-(N − 1)
sub-tensors, the core tensor shrinks and a compact Tucker de-
composition can be obtained. Note that the log-sum function
which behaves like the �0-norm is more sparsity-encouraging
than the nuclear norm that is �1-norm applied to the singu-
lar values of a matrix. Thus we expect the group log-sum
minimization is more effective than the tensor nuclear norm-
minimization in finding a concise representation of the tensor,
particularly when a significant number of entries of the ten-
sor are missing. By resorting to a majorization-minimization
approach, we develop an iterative reweighted method via itera-
tively decreasing a surrogate function that majorizes the original
log-sum penalty function. The proposed method can determine
the model complexity (i.e., multilinear rank) in an automatic
way. Also, the over-relaxed monotone fast iterative shrinkage-
thresholding technique [36] is adapted and embedded in the
iterative reweighted process, which achieves a substantial re-
duction in computational complexity.

The remainder of this paper is organized as follows. Section II
provides notations and basics on tensors. The problem of Tucker
decomposition with incomplete entries is formulated as an
unconstrained optimization problem in Section III. An iterative
reweighted method is developed in Section IV for Tucker
decomposition of incomplete tensors. In Section V, the
over-relaxed monotone fast iterative shrinkage-thresholding
technique is adapted and integrated with the proposed iterative
reweighted method, which results in a significant computa-
tional complexity reduction. Simulation results are provided in
Section VI, followed by concluding remarks in Section VII.

II. NOTATIONS AND BASICS ON TENSORS

We first provide a brief review on tensor decompositions. A
tensor is the generalization of a matrix to higher dimensions, also
known as ways or modes. Vectors and matrices can be viewed as

Fig. 1. The Tucker decomposition of a three-order tensor.

special cases of tensors with one and two modes, respectively.
Throughout this paper, we use symbols ⊗, ◦ and ∗ to denote the
Kronecker, outer and Hadamard product, respectively.

Let X ∈ RI1 ×I2 ×···×IN denote an N th order tensor with its
(i1 , . . . , iN )th entry denoted by Xi1 ···iN

. Here the order N of a
tensor is the number of dimensions. Fibers are the higher-order
analogue of matrix rows and columns. The mode-n fibers of
X are In -dimensional vectors obtained by fixing every index
but in (see references e.g. [16], [32], [37]). Slices are two-
dimensional sections of a tensor, defined by fixing all but two
indices. Unfolding or matricization is an operation that turns
a tensor into a matrix. Specifically, the mode-n unfolding of a
tensor X , denoted as X(n) , arranges the mode-n fibers to be
the columns of the resulting matrix [32]. For notational con-
venience, we also use the notation unfoldn (X ) to denote the
unfolding operation along the n-th mode. The n-mode product
of X with a matrix A ∈ RJ×In is denoted by X×nA and is of
size I1 · · · × In−1 × J × In+1 × · · · × IN , with each mode-n
fiber multiplied by the matrix A [32], i.e.,

Y = X×nA ⇔ Y (n) = AX(n) . (1)

The CP decomposition decomposes a tensor into a sum of
rank-one component tensors [32], i.e.,

X =
R∑

r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N )
r , (2)

where a
(n)
r ∈ RIn and R is referred to as the rank of the tensor.

Elementwise, we have

Xi1 i2 ···iN
=

R∑

r=1

λr a
(1)
i1 r a

(2)
i2 r · · · a

(N )
iN r . (3)

The Tucker decomposition can be considered as a high order
principle component analysis. It decomposes a tensor into a
core tensor multiplied by a factor matrix along each mode.
The Tucker decomposition of an N -th order tensor X can be
written as [32]

X = G×1A
(1)×2A

(2) · · · ×N A(N )

=
R 1∑

r 1 =1

R 2∑

r 2 =2

· · ·
R N∑

rN =1

Gr 1 r 2 ···rN
a(1)

r 1
◦ a(2)

r 2
◦ · · · ◦ a(N )

rN
, (4)

where G ∈ RR1 ×R2 ×···×RN is the core tensor, and
A(n) � [a(n)

1 . . . a
(n)
Rn

] ∈ RIn ×Rn denotes the factor ma-
trix along the n-th mode (see Fig. 1).

The inner product of two tensors with the same size is defined
as [32]

〈X ,Y〉 =
I1∑

i1 =1

I2∑

i2 =1

· · ·
IN∑

iN =1

xi1 i2 ...iN
yi1 i2 ...iN

. (5)
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The Frobenius norm of a tensor X is square root of the inner
product with itself, i.e.,

‖ X ‖F = 〈X ,X 〉
1
2 . (6)

Also, for notational convenience, the sequential Kronecker
product of a set of matrices in a reversed order is defined and
denoted by

⊗

n

A(n)= A(N ) ⊗ A(N −1) ⊗ · · · ⊗ A(1) ,

⊗

n 
=k

A(n)= A(N ) ⊗ · · · ⊗ A(k+1) ⊗ A(k−1) ⊗ · · · ⊗ A(1) .

An N th order tensor X multiplied by factor matrices {A(k)}N

k=1
along each mode is denoted by

X
N∏

n=1

× nA(n) = X × 1A
(1) × 2A

(2) · · · ×N A(N ) ,

while the tensor X multiplied by the factor matrices along every
mode except the k-th mode is denoted as

X
∏

n 
=k

× nA(n) = X × 1A
(1) · · · × k−1A

(k−1)

× k+1A
(k+1) · · · ×N A(N ) .

With these notations, vectorization and unfolding of a tensor
which admits a Tucker decomposition (4) can be expressed as
[16]

vec(X ) =
(⊗

n

A(n)
)
vec(G), (7)

X(n) = A(n)G(n)

( ⊗

k 
=n

A(k)
)T

. (8)

III. PROBLEM FORMULATION

Let Y ∈ RI1 ×I2 ×···×IN be an incomplete N th order ten-
sor, with its entry Yi1 i2 ...iN

observed if Oi1 i2 ...iN
= 1, where

O ∈ {0, 1}I1 ×I2 ×···×IN is a binary tensor of the same size as Y
and indicates which entries of Y are missing or observed. Given
the observed data, our objective is to find a Tucker decompo-
sition which has a minimum model complexity and meanwhile
fits the observed data, or to be more precise, seek a Tucker rep-
resentation such that the data can be represented by a smallest
core tensor. Since the dimension of the smallest achievable core
tensor is unknown a priori, we need to develop a method that can
achieve automatic model determination. To this objective, we
first introduce a new notion called as order-(N − 1) sub-tensor.

Definition: Order-(N − 1) sub-tensor is defined as a new
tensor obtained by fixing only one index of the original tensor.
Let Z ∈ RI1 ×I2 ×···×IN be an N th order tensor. The ith (1 ≤ i ≤
In ) sub-tensor along the nth mode of Z , denoted as Z(n,i) , is an
(N − 1)th order tensor of size I1 × I2 × · · · In−1 × In+1 · · · ×
IN , and its (j1 , . . . , jn−1 , jn+1 , . . . , jN )th entry is given by
Zj1 ,...,jn −1 ,i,jn + 1 ,...,jN

. For tensors with three modes, i.e., N =
3, order-(N − 1) sub-tensors reduce to slices, although order-
(N − 1) sub-tensors are generally different from slices.

Clearly, Z consists of In order-(N − 1) sub-tensors along
its nth mode. If some order-(N − 1) sub-tensors along the nth
mode become zero, then the dimension of Z along the nth mode
is reduced accordingly. Suppose the data tensor Y has a Tucker
decomposition

Y = X
N∏

n=1

× nA(n) . (9)

Unfolding Y along the nth mode, we have

Y (n) = A(n)X(n)

( ⊗

k 
=n

A(k)
)T

=
In∑

i=1

a
(n)
i x

(n)
i,·

( ⊗

k 
=n

A(k)
)T

, (10)

where a
(n)
i is the ith column of A(n) and x

(n)
i,· denotes the ith

row of X(n) . Clearly, x
(n)
i,· is the vectorization of the ith sub-

tensor along the nth mode of X . If x
(n)
i,· is a zero vector, i.e.,

the corresponding order-(N − 1) sub-tensor is a zero tensor,
both a

(n)
i and x

(n)
i,· have no contribution to Y and can thus be

removed. Inspired by this insight, sparsity can be enforced over
each sub-tensor (along each mode) of the core tensor such that
the observed data can be represented by a structural sparsest
core tensor with only a few nonzero sub-tensors over all modes.
By removing those zero sub-tensors along each mode (the as-
sociated columns of the factor matrices are disabled and can be
removed as well), the core tensor shrinks to a smaller one and
a compact Tucker decomposition can be obtained. The problem
can be formulated as

min
X ,{A(n ) }

N∑

n=1

‖ zn ‖0

s.t.

∥∥∥∥∥O ∗
(

Y − X
N∏

n=1

× nA(n)

)∥∥∥∥∥

2

F

≤ ε, (11)

where ε is an error tolerance parameter related to noise statistics,
and zn is an In -dimensional vector with its ith entry given by

zn,i � ‖ X (n,i) ‖F
. (12)

It should be noted that since there is usually no knowledge about
the size of smallest core tensor, the dimensions of the core ten-
sor are predefined to be the same as the original tensor, i.e.,
X ∈ RI1 ×I2 ×···×IN . The term ‖ zn‖0 specifies the number of
nonzero sub-tensors along the nth mode of tensor X . Since the
number of nonzero sub-tensors along the nth mode is equiva-
lent to the dimension of mode-n of the core tensor, the above
optimization yields a smallest (in terms of sum of dimensions
of all modes) core tensor. The optimization (11), however, is an
NP-hard problem. Thus, alternative sparsity-promoting func-
tions which are more computationally efficient in finding the
structural sparse core tensor are desirable. In this paper, we con-
sider the use of the log-sum sparsity-encouraging functional.
Log-sum penalty function has been extensively used for sparse
signal recovery and was shown to be more sparsity-encouraging
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than the �1-norm [38]–[41]. Replacing the �0-norm in (11) with
the log-sum functional leads to

min
X ,{A(n ) }

N∑

n=1

In∑

i=1

log
(∥∥X (n,i)

∥∥2
F

+ ε
)

s.t.

∥∥∥∥∥O ∗
(

Y − X
N∏

n=1

× nA(n)

)∥∥∥∥∥

2

F

≤ ε, (13)

where ε is a small positive parameter to ensure the logarith-
mic function is well-defined. Note that in our formulation, co-
efficients are grouped according to sub-tensors and different
sub-tensors may have overlapping entries. This is similar to
the overlapping group LASSO method [42] with entries shared
among multiple groups, while different from the conventional
group-LASSO method [43] in which entries are grouped into a
number of non-overlapping subsets. To make the problem more
tractable, we convert the constrained optimization (13) into the
following unconstrained optimization problem by resorting to
the Tikhonov regularization method

min
X ,{A(n ) }

L
(
X ,

{
A(n )

})
=

N∑

n =1

In∑

i=1

log
(∥∥X (n ,i)

∥∥2
F

+ ε
)

+ λ1

∥∥∥∥∥O ∗
(

Y − X
N∏

n =1

× n A(n )

)∥∥∥∥∥

2

F

+ λ2

N∑

n =1

∥∥∥A(n )
∥∥∥

2

F
,

(14)

where λ1 is a parameter controlling the tradeoff between the
sparsity of the core tensor and the fitting error, the last term
is a Frobenius norm imposed on the factor matrices {A(n)} in
order to avoid a trivial solution {X → 0, {A(n)} → ∞}, and
λ2 is the associated regularization parameter. The choices of
λ1 and λ2 will be discussed later in our paper. Note that, due
to the nonconvexity of the objective function, the optimization
problems (13) and (14) may not be strictly equivalent even if
the last term is excluded.

The above optimization (14) can be viewed as searching for a
low multilinear rank representation of the observed data. Multi-
linear rank, also referred to as n-rank, of an N -order tensor X is
defined as the tuple of the ranks of the mode-n unfoldings, i.e.,

n-rank �
{
rank(X (1) ), rank

(
X (2)

)
, . . . , rank

(
X (N )

)}
. (15)

It can be shown that n-rank is equivalent to the dimensions of the
smallest achievable core tensor in Tucker decomposition [32].
Therefore the optimization (14) can also be used for recovery
of incomplete low n-rank tensors. Existing methods (e.g., [23],
[33]) for low n-rank completion employ a tensor nuclear-norm,
defined as a (weighted) summation of nuclear-norms of mode-n
unfoldings, to approximate the n-rank and achieve a low n-rank
representation. Our formulation, instead, uses the logarithm of
Frobenius-norms of order-(N − 1) sub-tensors to promote a
low n-rank representation.

IV. PROPOSED ITERATIVE REWEIGHTED METHOD

We resort to a bounded optimization approach, also known
as the majorization-minimization (MM) approach [44], to solve

the optimization (14). The idea of the MM approach is to
iteratively minimize a simple surrogate function majorizing the
given objective function. It can be shown that through itera-
tively minimizing the surrogate function, the iterative process
yields a non-increasing objective function value and eventually
converges to a stationary point of the original objective
function.

To obtain an appropriate surrogate function for (14), we first
find a suitable surrogate function for the log-sum function. The
following inequality is commonly used to derive a surrogate
function for the log-sum term [38], [40]

log
(∥∥X (n,i)

∥∥2
F

+ ε
)
≤

∥∥X (n,i)
∥∥2

F
+ ε

∥∥∥X [t]
(n,i)

∥∥∥
2

F
+ ε

+ log
(∥∥∥X [t]

(n,i)

∥∥∥
2

F
+ ε

)
− 1. (16)

The above inequality holds valid for any X [t] and the equality
is attained when X = X [t] . To facilitate our subsequent pre-
sentation, we use the supscript ( · )[t] to denote an estimate of
( · ) obtained from the tth iteration of the iterative process. From
(16), we know that f(X |X [t]) defined in (17) is a surrogate
function majorizing the log-sum functional, i.e.,

N∑

n=1

In∑

i=1

log
(∥∥X (n,i)

∥∥2
F

+ ε
)
≤ f(X |X [t]),

in which

f(X |X [t]) � 〈X ,D[t] ∗ X 〉

+
N∑

n=1

In∑

i=1

log
(∥∥∥X [t]

(n,i)

∥∥∥
2

F
+ ε

)
−

N∑

n=1

In , (17)

where D[t] is a tensor of the same size of X , with its
(i1 , i2 , . . . , iN )th element given by

D[t]
i1 i2 ...iN

=
N∑

n=1

(∥∥∥X [t]
(n,in )

∥∥∥
2

F
+ ε

)−1

. (18)

Thus we can readily verify that an appropriate surrogate function
majorizing the objective function (14) is given as

Q
(
X ,

{
A(n)}|X [t]) = λ1

∥∥∥∥∥O ∗
(

Y − X
N∏

n=1

× nA(n)

)∥∥∥∥∥

2

F

+ 〈X ,D[t] ∗ X 〉 + λ2

N∑

n=1

∥∥∥A(n)
∥∥∥

2

F
+ c, (19)

where c is a constant. That is,

L
(
X , {A(n)}

)
≤ Q

(
X , {A(n)}|X [t]) (20)

with the equality attained when X = X [t] .
Solving (14) now reduces to minimizing the surrogate func-

tion (19) iteratively. Minimization of the surrogate function,
however, is still difficult since it involves a joint search over the

core tensor X and the associated factor matrices {A(n)}N

n=1 .
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Nevertheless, we will show that through iteratively decreasing
(not necessarily minimizing) the surrogate function, the iterative
process also results in a non-increasing objective function value
and eventually converges to a stationary point of L(X , {A(n)}).
Decreasing the surrogate function is much easier since we only
need to alternatively minimize the surrogate function (19) with
respect to each variable while keeping other variables fixed.
Such an alternating minimization strategy was also used in other
tensor decomposition works (e.g. [7], [45], [46]). Details of this
alternating procedure are provided below.

First, we minimize the surrogate function (19) with respect to
the core tensor X , given the factor matrices {A(n)} fixed. The
problem reduces to

min
X

λ1

∥∥∥∥∥O ∗
(

Y − X
N∏

n=1

× nA(n)

)∥∥∥∥∥

2

F

+ 〈X ,D[t] ∗ X 〉.

(21)
Let x � vec(X ). The above optimization can be expressed as

min
x

λ1

∥∥∥Σ
(
y −

( ⊗

n

A(n)
)
x
)∥∥∥

2

2
+ xT D[t]x, (22)

where Σ � diag(vec(O)) and D[t] � diag(vec(D[t])). For no-
tational simplicity, define

H �
(⊗

n

A(n)
)
. (23)

The optimal solution to (22) can be easily obtained as

x =
(
HT ΣH + λ−1

1 D[t]
)−1

HT Σy. (24)

Next, we discuss minimizing the surrogate function (19) with
respect to the factor matrix A(n) , given that the core tensor X
and the rest of factor matrices {A(k)}k 
=n fixed. Ignoring terms

independent of A(n) and unfolding the tensor along the nth
mode, we arrive at

min
A(n )

λ1

∥∥∥∥∥∥
O(n) ∗

⎛

⎝Y (n) − A(n)X(n)

( ⊗

k 
=n

A(k)
)T

⎞

⎠

∥∥∥∥∥∥

2

F

+ λ2

∥∥∥A(n)
∥∥∥

2

F
. (25)

Clearly, the optimization can be decomposed into a set of in-
dependent tasks, with each task optimizing each row of A(n) .
Specifically, let y

(n)
i,· denote the ith row of Y (n) , a

(n)
i,· denote

the ith row of A(n) , and Σn
i � diag(o(n)

i,· ), with o
(n)
i,· being the

ith row of O(n) . The optimization of each row of A(n) can be
written as

min
a

(n )
i , ·

λ1

∥∥∥∥∥∥
Σn

i

⎛

⎝y
(n)
i,· − a

(n)
i,· X(n)

( ⊗

k 
=n

A(k)
)T

⎞

⎠

∥∥∥∥∥∥

2

2

+λ2

∥∥∥a
(n)
i,·

∥∥∥
2

2
, (26)

whose optimal solution can be readily given as

a
(n)
i,· = λ1y

(n)
i,· Σn

i Φ
(
λ1ΦT Σn

i Φ + λ2I
)−1

, (27)

in which

Φ �
( ⊗

k 
=n

A(k)
)
XT

(n) .

Note that Φ can be more efficiently calculated from
unfoldn (X

∏
k 
=n A(k)).

Thus far we have shown how to minimize the surrogate func-
tion (19) with respect to each variable while keeping other
variables fixed. Given a current estimate of the core tensor

and the associated factor matrices {X [t], {(A(n))
[t]}

N

n=1}, this
alternating procedure is guaranteed to find a new estimate

{X [t+1], {(A(n))
[t+1]}

N

n=1} such that

Q(X [t+1], {(A(n))
[t+1]}|X [t]) ≤ Q(X [t], {(A(n))

[t]}|X [t]).
(28)

In the following, we further show that the new esti-

mate {X [t+1], {(A(n))
[t+1]}

N

n=1} results in a non-increasing
objective function value

L
(
X [t+1],

{
(A(n))

[t+1]
})

= L
(
X [t+1],

{
(A(n))

[t+1]
})

−Q
(
X [t+1],

{
(A(n))

[t+1]
}
|X [t]

)

+Q
(
X [t+1],

{
(A(n))

[t+1]
}
|X [t]

)

≤ L
(
X [t],

{
(A(n))

[t]
})

− Q
(
X [t],

{
(A(n))

[t]
}
|X [t]

)

+Q
(
X [t+1],

{
(A(n))

[t+1]
}
|X [t]

)

≤ L
(
X [t],

{
(A(n))

[t]
})

− Q
(
X [t],

{
(A(n))

[t]
}
|X [t]

)

+Q
(
X [t],

{
(A(n))

[t]
}
|X [t]

)

= L
(
X [t],

{
(A(n))

[t]
})

, (29)

where the first inequality follows from the fact that
Q(X , {A(n)}|X [t]) − L(X , {A(n)}) attains its minimum
when X = X [t] , and the second inequality comes from
(28). We see that through iteratively decreasing (not nec-
essarily minimizing) the surrogate function, the objective
function L(X , {A(n}) is guaranteed to be non-increasing at
each iteration.

For clarity, we summarize our algorithm as follows.
Remark: We discuss the computational complexity of the

proposed method. The main computational task of our proposed
algorithm at each iteration involves calculating a new estimate

of X [t] and {(A(n))
[t]}. Specifically, the update of the core ten-

sor X involves computing an inverse of a (
∏

n In ) × (
∏

n In )
matrix (cf. (24)), which has a computational complexity of
order O(

∏
n I3

n ) and scaling polynomially with the data size.
The computational complexity associated with the update of
the ith row of A(n) is of order O(I3

n + (
∑

k 
=n Ik )
∏

k Ik ) (cf.
(27)), where the term O((

∑
k 
=n Ik )

∏
k Ik ) comes from the
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1. Given initial estimates {(A(n )
[0]}, X [0] and a

pre-selected regularization parameter λ1 and λ2 .
2. At iteration t = 0, 1, . . .: Based on the estimate X [t] ,

construct the surrogate function as depicted in (19).

Search for a new estimate of {(A(n))
[t+1]}

and X [t+1] via (24) and (27), respectively.
3. Go to Step 2 if ‖ X [t+1] − X [t]‖F > η, where η is a

prescribed tolerance value; otherwise stop.

computation of Φ and scales linearly with the data size, and the
term O(I3

n ) is related to the inverse of an In × In matrix. Since
all rows of A(n) share a same Φ, the computational complexity
of updating A(n) is of order O(I4

n + (
∑

k 
=n Ik )
∏

k Ik ). We
see that the overall computational complexity at each iteration
is dominated by O(

∏
n I3

n ), which scales polynomially with the
data size of the tensor Y , and makes the algorithm unsuitable
for many real-world applications involving large dimensions.
To address this issue, we resort to a computationally efficient
algorithm, namely, an over-relaxed monotone fast iterative
shrinkage-thresholding algorithm (MFISTA) [36], to solve the
optimization (22). A directly calculation of (24) is no longer
needed and a significant reduction in computational complexity
can be achieved.

V. A COMPUTATIONALLY EFFICIENT ITERATIVE REWEIGHTED

ALGORITHM

It is well known that first order methods [36], [47] based on
function values and gradient evaluations are often practically
most feasible options to solve many large-scale optimization
problems. One famous first order method is the fast iterative
shrinkage-thresholding algorithm (FISTA) [47]. It has a con-
vergence rate of O(1/k2) for the minimization of the sum of
a smooth and a possibly nonsmooth convex function, where k
denotes the iteration counter. Later on in [36], an over-relaxed
monotone FISTA (MFISTA) was proposed to overcome some
limitations inherent in the FISTA. Specifically, the over-relaxed
MFISTA guarantees the monotone decreasing in the function
values, which has been shown to be helpful in many practical
applications. In addition, the over-relaxed MFISTA admits a
variable stepsize in a broader range than FISTA while keeping
the same convergence rate. In the following, we first provide a
brief review of the over-relaxed MFISTA, and then discuss how
to extend the technique to solve our problem.

A. Review of Over-Relaxed MFISTA

Consider the general convex optimization problem [36]:

min
x

F (x) = f(x) + g(x),

where f is a smooth convex function with the Lipschitz con-
tinuous gradient L(f), and g is a convex but possibly non-
smooth function. The over-relaxed MFISTA scheme is sum-
marized as follows (details can be found in [36]). Given
x[0] = w[1], η[1] = 1, δ ∈ (0, 2) and β ∈ (0, (2 − δ)/L(f)], the

sequence {x[t]} is given by

z[t] = proxβg

(
w[t] − β∇f

(
w[t])), (30)

x[t] = arg min
{
F (z)|z ∈

{
z[t],x[t−1]}}

, (31)

η[t+1] =
1 +

√
1 + 4

(
η[t]

)2

2
, (32)

w[t+1] = x[t] +
η[t]

η[t+1]

(
z[t] − x[t])

+
η[t] − 1
η[t+1]

(
x[t] − x[t−1])

+
η[t]

η[t+1] (1 − δ)
(
w[t] − z[t]), (33)

where ∇f(x) denotes the gradient of f(x), and the proximal
operator is defined as [36]

proxβg (x) : z = arg min
z

{
g (z) +

1
2β

‖ z − x ‖2
2

}
. (34)

It was proved in [36] that the sequence {x[t]} is guaranteed
to monotonically decrease the objective function F (x) and the
convergence rate is O(1/k2). Since (22) is convex, the over-
relaxed MFISTA can be employed to efficiently solve (22).

B. Solving (22) via the Over-Relaxed MFISTA

Consider the optimization (22). Let f(x) and g(x) respec-
tively represent the data fitting and regularization terms, i.e.,

f (x)= λ1‖Σ (y − Hx)‖2
F ,

g (x)= xT Dx.

Recalling that H is defined in (23). To apply the over-relaxed
MFISTA, we need to compute ∇f(x), proxβg (x), and deter-
mine the value of β. The gradient of f(x) can be easily computed
as

∇f(x) = 2λ1H
T ΣHx − 2λ1H

T Σy, (35)

which can also be expressed in a tensor form as

∇f (X ) = 2λ1

(
O ∗

(
X

N∏

n=1

× nA(n) − Y
))

×
N∏

n=1

× n (A(n))
T
. (36)

Such a tensor representation enables a more efficient computa-
tion of ∇f(x). The proximal operation proxβg (x) defined in
(34) can be readily obtained as

z = arg min
z

{
g (z) +

1
2β

‖z − x‖2
2

}

= (2βD + I)−1x. (37)

Note that since D is a diagonal matrix, the inverse of 2βD + I is
easy to calculate. We now discuss the choice of β in the MFISTA.
As mentioned earlier, β has to be smaller than (2 − δ)/L(f);
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otherwise convergence of the scheme cannot be guaranteed.
Recalling that the Lipschitz continuous gradient L(f) is defined
as any constant which satisfies the following inequality [48]

‖ ∇f(x) −∇f (y) ‖≤ L(f) ‖ x − y ‖, for every x,y,

where ‖ · ‖ denotes the standard Euclidean norm. Hence it is
easy to verify that

L(f) = 2λ1λmax
(
HT ΣH

)
(38)

is a Lipschitz constant of ∇f(x), where λmax(X) denotes the
largest eigenvalue of the matrix X . Note that HT ΣH is of
dimension (

∏
n In ) × (

∏
n In ). Calculation of L(f), therefore,

requires tremendous computational efforts. To circumvent this
issue, we seek an upper bound of L(f) that is easier to compute.
Such an upper bound can be obtained by noticing that Σ is a
diagonal matrix with its diagonal element equal to zero or one

L(f) = 2λ1λmax
(
HT ΣH

)

(a)
≤ 2λ1λmax

(
HT H

)

(b)
= 2λ1

N∏

n=1

λmax

(
A(n)T A(n)

)
� L̃, (39)

Algorithm 1: Iterative Re-weighted Algorithm For
Incomplete Tensor Decomposition.

Input: Y , O, δ, λ1 and λ2 .

Output: X , {A(n)}N

n=1 , Y and multilinear rank.
1: Initialize X , {A(n)}, D;
2: while not converge do
3: Calculate L̃ using (39) and select β

from (0, (2 − δ)/L̃];
4: Set x[0] = vec(X );
5: for t = 1 to tmax do
6: Calculate the gradient of f(tensor(x[t])) using

(36) and the proximal operation proxβg (x) using
(37);

7: Update x[t] using (30), (31), (32), (33);
8: end for
9: Set X = tensor(x[tm a x ]);

10: for n = 1 to N do
11: for i = 1 to In do
12: Update a

(n)
i,· using (27);

13: end for
14: end for
15: Remove the zero order-(N − 1) sub-tensors of X

and corresponding columns of {A(n)} (an
optional procedure);

16: end while
17: Reconstruct Y using estimated X and {A(n)};
18: Estimate multilinear rank by count the nonzero order-

(N − 1) sub-tensors of estimated X along each mode.

where (a) follows from the fact that HT H − HT ΣH is posi-
tive semi-definite, and (b) comes from the Kronecker product’s

properties

HT H =
(⊗

n

A(n)
)T (⊗

n

A(n)
)

=
⊗

n

(
A(n)T A(n)

)

and

eig

(
⊗

n

(
A(n)T A(n)

))
=

⊗

n

eig
(
A(n)T A(n)

)
,

in which eig(X) is a vector consisting of the eigenvalues of
matrix X . Since (2 − δ)/L̃ ≤ (2 − δ)/L(f), β can be chosen
from (0, (2 − δ)/L̃], without affecting the convergence rate of
the over-relaxed MFISTA. The calculation of L̃ is much eas-
ier than L(f) as the dimension of the matrix involved in the
eigenvalue decomposition has been significantly reduced.

Remarks: We see that the dominant operation in solving
(22) via the over-relaxed MFISTA is the evaluation of gra-
dient (36), which has a computational complexity of order
O((

∑
n In )

∏
n In ) that scales linearly with the data size of the

observed tensor. Thus a significant reduction in computational
complexity is achieved as compared with a direct calculation
of (24). In addition, our proposed iterative reweighted method
only needs to decrease (not necessarily minimize) the surrogate
function at each iteration. Therefore when applying the over-
relaxed MFISTA to solve (22), there is no need to wait until
convergence is achieved. Only a few iterations are enough since
the over-relaxed MFISTA guarantees a monotome decreasing
in the function values. This further reduces the computational
complexity of the proposed algorithm.

For clarity, we now summarize the proposed computationally
efficient iterative reweighted algorithm as follows.

VI. SIMULATION RESULTS

In this section, we conduct experiments to illustrate the per-
formance of our proposed iterative reweighted Tucker decom-
position method (referred to as IRTD). In our simulations, we
set δ = 0.1, β = (2 − δ)/L̃ and λ2 = 1. In fact, our proposed
algorithm is insensitive to the choices of these parameters. The
choice of λ1 is more critical than the others, and a suitable choice
of λ1 depends on the noise level and the data missing ratio. Em-
pirical results suggest that stable recovery performance can be
achieved when λ1 is set in the range [0.1, 2]. The factor matrices
and the core tensor are initialized by decomposing the observed
tensor (the missing elements are set to zero) with high order
singular value decomposition [49]. The over-relaxed MFISTA
performs one hundred iterations to update the core tensor, i.e.,
tmax = 100. In the iterative process, some sub-tensors of the
core tensor keep decreasing to a small value but will not be-
come exact zero, which is particularly the case for the noisy
case. Hence a threshold is needed to prune these negligible sub-
tensors. In our algorithm, this pruning operation is conducted
at each iteration, and a sub-tensor is removed if its Frobenius
norm is smaller than a scaled maximum Frobenius norm of all
sub-tensors along the same mode, i.e.,

∥∥X (n,i)
∥∥

F
≤ γ max

j

{∥∥X (n,j )
∥∥

F

}
, (40)
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where γ is set to 0.05 for the noisy case and 10−5 for the
noiseless case. For our proposed algorithm, we continue the
iterative process until the difference between the reconstructed
tensors of successive iterations is negligible, i.e.,

‖ Y [t+1] − Y [t]‖F < 10−5 . (41)

We compare our method with several existing state-of-the-
art tensor decomposition/completion methods, namely, a CP
decomposition-based tensor completion method (also referred
to as the low rank tensor imputation (LRTI)) which uses the
Frobenius-norm of the factor matrices as the rank regularization
[18], a tensor nuclear-norm based tensor completion method
[23] which is also referred to as the high accuracy low rank ten-
sor completion (HaLRTC) method, and a Tucker factorization
method based on pre-specified multilinear rank [22] which is
referred to as the WTucker method. Since all competing algo-
rithms exploit the intrinsic low-rank structure of the tensor, all
of them are able to address both data completion and denois-
ing problems being considered in our experiments. It should be
noted that the LRTI requires to set a regularization parameter λ

to control the tradeoff between the rank and the data fitting error,
the HaLRTC method is unable to provide an explicit multilin-
ear rank estimate, and the WTucker method requires an over-
estimated multilinear rank. All the parameters used for compet-
ing algorithms are tuned carefully to ensure the best performance
is achieved. Explicit values of the parameters of respective al-
gorithms are also provided in our paper. Codes of our proposed
algorithm along with other competing algorithms are available at
http://www.junfang-uestc.net/codes/TD.rar.

A. Synthetic and Chemometrics Data

In this subsection, we carry out experiments on synthetic and
chemometrics data. Two sets of synthetic data are generated and
both of them are third-order tensors of size 32× 32× 32. The
first tensor is generated according to the CP model which is a
summation of six equally-weighted rank-one tensors, with all of
the factor matrices drawn from a normal distribution. Thus the
true rank is 6 or (6, 6, 6) in a multilinear rank form. The other
tensor is generated based on the Tucker decomposition model,
with a random core tensor of size (3, 4, 5) multiplied by random
factor matrices along each mode. Clearly, the groundtruth for
the multilinear rank is (3, 4, 5). Two chemometrics data sets are
also considered in our simulations. One is the Amino Acid data
set [50] of size 5× 201× 61 and the other is the flow injection
data set [15] of size 12× 100× 89.

For each data set, we consider two cases with 50% or 80%
entries missing in our simulations, where the missing entries
are randomly selected. The observed entries are corrupted by
zero mean Gaussian noise and the signal-to-noise ratio (SNR)
is set to different levels. The tensor reconstruction perfor-
mance is evaluated by two metrics. The first is the total nor-
malized mean squared error (NMSE(T)) which is defined as
‖ Y − Ŷ‖F /‖ Y ‖F , where Y and Ŷ denote the true tensor
and the estimated one, respectively. The other metric is the gen-
eralization error (referred to as NMSE(G)) which is defined as
‖ O� ∗ (Y − Ŷ)‖F /‖ Y ‖F , where O� denotes the comple-
ment set of the observed set O. The parameter λ for the LRTI is

carefully selected as λ = 0.3 for the synthetic data set generated
by the Tucker model and λ = 0.2 for the other data sets. The
pre-defined multilinear rank for WTucker is set to be (12, 12,
12), (6, 8, 10), (5, 10, 10) and (10, 10, 10) for the CP, Tucker,
Amino Acid and flow injection dataset, respectively. For our
proposed method, we choose λ1 = 0.1 for all data sets. Results
are averaged over 100 independent runs. The rank or multilinear
rank is estimated as the most frequently occurring rank or mul-
tilinear rank value. The standard deviation of the estimated rank
is also reported as an indication of the stability of the inferred
rank. Results are shown in Tables I– IV.

1) We observe that the proposed method presents the best
recovery accuracy in most cases for the first three data
sets. Also, from the synthetic data sets, we see that the
proposed method can reliably estimate the true multilinear
rank of the tensor.

2) Compared with the CP-decomposition based method
LRTI, our proposed method presents a clear performance
advantage over the LRTI when synthetic data are gener-
ated according to the Tucker model. More surprisingly,
it also outperforms the LRTI when data are generated
according to the CP model.

3) Our proposed method surpasses the tensor nuclear-norm
based method HaLRTC by a big margin, particularly when
the missing ratio is high (80% elements missing). This
corroborates our claim that the proposed group log-sum
functional is more effective than the tensor nuclear-norm
in approximating the multilinear rank.

4) The WTucker method performs fairly well in the high
SNR regime, but it is more sensitive to noise than our pro-
posed method and suffers from considerable performance
degradation in the low SNR regime.

5) We also observe that our proposed method has similar
run times as the other three algorithms. As the number
of missing entries increases, our proposed method might
need a few more iterations to reach convergence, and thus
the average run time increases with the number of missing
entries.

B. Image Inpainting

The goal of image inpainting is to complete an image with
missing pixels. For a two-dimensional RGB picture, we can
treat it as a third-order tensor. Here we consider imputing an in-
complete RGB image (of size 256× 256× 3) via respective
algorithms. The benchmark Lena image is used, with 50%,
80% and 90% missing entries considered in our simulations.
The recovery accuracy is evaluated by the MSE metric which

is defined as MSE = 1
M ‖ O� ∗ (Y − Ŷ) ‖2

F , where Y and Ŷ
respectively denote the original normalized image and the es-
timated one, and M denotes the number of missing elements.
For LRTI, the parameter λ is carefully selected to 5, 3 and 3
for 50%, 80% and 90% missing entries, respectively. The pre-
defined rank for the WTucker is carefully set to (80, 80, 3), (40,
40, 3) and (15, 15, 3) for 50%, 80% and 90% missing entries,
respectively. For our proposed method, λ1 is set to 3, 0.5 and
0.3 for 50%, 80% and 90% missing entries, respectively. The
observed and recovered images are shown in Fig. 2 and MSEs of



YANG et al.: AN ITERATIVE REWEIGHTED METHOD FOR TUCKER DECOMPOSITION OF INCOMPLETE TENSORS 4825

TABLE I
SYNTHETIC DATA GENERATED ACCORDING TO THE CP MODEL

10 dB 20 dB 30 dB

50% 80% 50% 80% 50% 80%

LRTI NMSE(G) 0.0508 0.1361 0.0303 0.1083 0.0263 0.1049
NMSE(T) 0.0704 0.1490 0.0415 0.1178 0.0360 0.1138

Rank 6 6 6 6 6 6
Std(R) 0.1 0.3 0.1 0.2 0 0.2
runtime 1.3590 0.5944 1.3590 0.5755 1.3792 0.5854

HaLRTC NMSE(G) 0.2206 0.6598 0.0808 0.5675 0.0271 0.5499
NMSE(T) 0.3141 0.6748 0.1074 0.5693 0.0352 0.5501
runtime 3.4337 3.4321 3.4332 3.4237 3.4354 3.4356

WTucker NMSE(G) 0.1244 0.3537 0.0382 0.1062 0.0109 0.0309
NMSE(T) 0.1636 0.3688 0.0505 0.1110 0.0145 0.0323
runtime 188.7377 336.5523 202.6277 422.9503 163.3542 366.1216

IRTD NMSE(G) 0.0471 0.1004 0.0151 0.0341 0.0052 0.0175
NMSE(T) 0.0655 0.1105 0.0209 0.0374 0.0071 0.0190
n -Rank (6, 6, 6) (6, 6, 6) (6, 6, 6) (6, 6, 6) (6, 6, 6) (6, 6, 6)
Std(R) (0, 0, 0) (0.2, 0.1, 0.2) (0, 0, 0) (0, 0.2, 0.2) (0.2, 0.2, 0.1) (0.6, 0.5, 0.4)
runtime 6.0015 51.4581 3.8603 30.0968 3.6856 23.7581

TABLE II
SYNTHETIC DATA GENERATED ACCORDING TO THE TUCKER DECOMPOSITION MODEL)

10 dB 20 dB 30 dB

50% 80% 50% 80% 50% 80%

LRTI NMSE(G) 0.0645 0.1140 0.0246 0.0660 0.0162 0.0605
NMSE(T) 0.0893 0.1247 0.0338 0.0715 0.0220 0.0653

Rank 13 9 7 7 7 7
Std(R) 3.0 0.9 0.5 0.4 0.2 0.5
runtime 39.9267 13.5612 16.0882 9.6229 15.7899 9.3247

HaLRTC NMSE(G) 0.1572 0.4620 0.0542 0.2503 0.0176 0.1785
NMSE(T) 0.2733 0.4833 0.0891 0.2543 0.0285 0.1791
runtime 3.3098 3.3187 3.3113 3.3109 3.3128 3.3160

WTucker NMSE(G) 0.0771 0.1803 0.0227 0.0543 0.0061 0.0157
NMSE(T) 0.1052 0.1942 0.0311 0.0586 0.0083 0.0169
runtime 21.4768 27.3009 20.9629 31.2424 19.4503 28.9243

IRTD NMSE(G) 0.0363 0.0743 0.0115 0.0269 0.0044 0.0155
NMSE(T) 0.0507 0.0821 0.0160 0.0297 0.0061 0.0169
n -Rank (3, 4, 5) (3, 4, 5) (3, 4, 5) (3, 4, 5) (3, 4, 5) (3, 4, 5)
Std(R) (0, 0, 0.1) (0, 0, 0.1) (0, 0, 0) (0.2, 0.2, 0.1) (0.1, 0.1, 0.1) (0.3, 0.2, 0.2)
runtime 10.8999 37.2216 9.4080 31.8202 9.0746 31.3034

TABLE III
AMINO ACID DATA SET

10 dB 20 dB 30 dB

50% 80% 50% 80% 50% 80%

LRTI NMSE(G) 0.0512 0.0877 0.0505 0.0546 0.0432 0.0501
NMSE(T) 0.0713 0.0964 0.0702 0.0594 0.0602 0.0543

Rank 3 3 3 3 3 3
Std(R) 0.5 0 0.3 0 0.3 0
runtime 10.1082 7.1272 9.3665 6.2665 9.3229 6.0151

HaLRTC NMSE(G) 0.1145 0.2472 0.0406 0.1056 0.0171 0.0496
NMSE(T) 0.2513 0.2849 0.0816 0.1147 0.0282 0.0516
runtime 6.3819 6.3534 6.3932 6.3461 6.3775 6.3365

WTucker NMSE(G) 0.0973 0.2427 0.0308 0.0774 0.0123 0.0275
NMSE(T) 0.1314 0.2580 0.0414 0.0822 0.0163 0.0289
runtime 50.0902 265.9540 33.8282 73.4443 35.8945 73.3536

IRTD NMSE(G) 0.0420 0.0835 0.0209 0.0328 0.0179 0.0231
NMSE(T) 0.0586 0.0920 0.0291 0.0361 0.0250 0.0254
n -Rank (3, 3, 3) (3, 3, 3) (3, 3, 3) (3, 3, 3) (3, 3, 3) (4, 3, 3)
Std(R) (0, 0, 0.1) (0, 0.7, 0.4) (0.5, 0, 0.1) (0.9, 0, 0.1) (0.3, 0, 0) (0.3, 0.1, 0.1)
runtime 7.9760 78.1650 9.2975 37.1556 8.5151 34.8738
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TABLE IV
FLOW INJECTION DATA SET

10 dB 20 dB 30 dB

50% 80% 50% 80% 50% 80%

LRTI NMSE(G) 0.0515 0.1018 0.0401 0.0848 0.0343 0.0862
NMSE(T) 0.0721 0.1127 0.0560 0.0938 0.0477 0.0953

Rank 8 6 7 6 7 6
Std(R) 1.1 0.6 0.7 0.3 0.1 0.5
runtime 101.7574 25.0878 114.9761 18.9976 133.0485 19.2344

HaLRTC NMSE(G) 0.1019 0.2239 0.0376 0.0890 0.0143 0.0377
NMSE(T) 0.2457 0.2648 0.0801 0.0996 0.0265 0.0403
runtime 7.4358 7.4215 7.4126 7.4033 7.4122 7.4139

WTucker NMSE(G) 0.0657 0.1506 0.0187 0.0427 0.0071 0.0134
NMSE(T) 0.0908 0.1641 0.0259 0.0467 0.0098 0.0147
runtime 49.0418 100.8046 47.3599 88.4482 49.6637 92.7558

IRTD NMSE(G) 0.0570 0.0783 0.0503 0.0645 0.0500 0.0625
NMSE(T) 0.0800 0.0869 0.0705 0.0714 0.0700 0.0692
n -Rank (4, 5, 3) (4, 6, 3) (4, 5, 3) (4, 5, 3) (4, 5, 3) (4, 5, 3)
Std(R) (0.1, 0.3, 0) (0, 0.6, 0.7) (0, 0.3, 0) (0.2, 0.4, 0.3) (0, 0.2, 0) (0.1, 0.5, 0.2)
runtime 21.8144 66.9538 19.5812 52.9545 18.5524 54.3140

Fig. 2. RGB image inpainting. From left to right: Observed image, images reconstructed by LRTI, HaLRTC, WTucker, and IRTD. Top row: 50% missing.
Middle row: 80% missing. Bottom row: 90% missing.

respective algorithms are shown in Table V. From Table V, we
see that the proposed method renders a reliable recovery even
with 90% missing entries, while the other two Tucker model-
based methods WTucker and HaLRTC incur a considerable per-
formance degradation when the missing ratio is high. It should
be noted that our proposed method and other competing meth-
ods being considered in our paper are not specifically designed
for inpainting. Those specialized inpainting methods (e.g., [21],
[51]) which utilize both global and local structures inherent in
image data may achieve better performance.

TABLE V
IMAGE INPAINTING

50% 80% 90%

LRTI MSE 0.0023 0.0046 0.0098
Rank 89 73 49

HaLRTC MSE 0.0019 0.0066 0.0134
WTucker MSE 0.0032 0.0188 0.0334
IRTD MSE 0.0015 0.0046 0.0082

Rank (84, 94, 3) (37, 40, 3) (23, 26, 3)
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Fig. 3. Video recovery. From left to right: The first image of the video sequence, images reconstructed by LRTI, HaLRTC, WTucker, and IRTD. Top row: 50%
missing. Middle row: 80% missing. Bottom row: 90% missing.

TABLE VI
VIDEO RECOVERY

50% 80% 90%

LRTI MSE 8.55E-04 0.0011 0.0013
Rank 152 148 49

HaLRTC MSE 0.0016 0.0053 0.0085
WTucker MSE 5.96E-04 0.0020 0.0036
IRTD MSE 2.16E-04 8.60E-04 0.0026

Rank (112, 62, 3, 32) (80, 30, 3, 26) (47, 35, 3, 20)

C. Video Recovery

In this subsection, we consider the problem of recovering a
video sequence with missing pixels. A video sequence consist-
ing of a number of consecutive color images can be viewed
as a fourth-order tensor. The ocean video sequence of size
112× 160× 3× 32 [17] is used in our experiments. Again,
50%, 80% and 90% missing ratios are considered and the re-
covery accuracy is evaluated by the MSE defined in the above
subsection. For LRTI, the parameter λ is set to 5, 3 and 3 for
50%, 80% and 90% missing ratios, respectively. The pre-defined
rank for the WTucker is set to (100, 100, 3, 32), (100, 100, 3,
32) and (80, 80, 3, 32) for 50%, 80% and 90% missing ratios,
respectively. For our proposed method, λ1 is set to 1, 0.2 and
0.2 for 50%, 80% and 90% missing ratios, respectively. The
MSEs of respective algorithms were reported in Table VI, along
with the ranks estimated by our proposed method and the LRTI.
We see that all methods yield quite decent recovery results and
the proposed method achieves the best performance for 50%
and 80% missing ratios. The first image of the video sequence
(with missing elements) and images recovered by respective
algorithms are shown in Fig. 3.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an iterative reweighted algorithm to
decompose an incomplete tensor into a concise Tucker decom-
position. To automatically determine the model complexity, we

introduced a new notion called order-(N − 1) sub-tensor and in-
troduced a group log-sum penalty on every order-(N − 1) sub-
tensors to achieve a structural sparse core tensor. By shrinking
the zero order-(N − 1) sub-tensors, the core tensor becomes
a smaller one and a compact Tucker decomposition can be
obtained. By resorting to the majorization-minimization ap-
proach, an iterative reweight algorithm was developed. Also,
the over-relaxed monotone fast iterative shrinkage-thresholding
technique is adapted and embedded in the iterative reweighted
process to reduce the computational complexity. The perfor-
mance of the proposed method is evaluated using synthetic data
and real data. Simulation results show that the proposed method
offers competitive performance compared with existing meth-
ods. Possible future directions along the line of the current work
include the following two aspects. One meaningful research di-
rection, we believe, is to develop an online algorithm that allows
to deal with massive tensors, for which batch methods may be
infeasible. Another direction is to study side information-aided
tensor decomposition. In some practical applications such as
recommender systems, we may have side information about the
mode entities in form of their features and/or their adjacency
network. This side information can be exploited to better ex-
tract the latent structure of the tensor.
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