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a b s t r a c t

We consider a dictionary learning problem aimed at designing a dictionary such that the signals admit a
sparse or an approximate sparse representation over the learnt dictionary. The problem finds a variety of
applications including image denoising, feature extraction, etc. In this paper, we propose a new hier-
archical Bayesian model for dictionary learning, in which a Gaussian-inverse Gamma hierarchical prior is
used to promote the sparsity of the representation. Suitable non-informative priors are also placed on the
dictionary and the noise variance such that they can be reliably estimated from the data. Based on the
hierarchical model, a variational Bayesian method and a Gibbs sampling method are developed for
Bayesian inference. The proposed methods have the advantage that they do not require the knowledge of
the noise variance a priori. Numerical results show that the proposed methods are able to learn the
dictionary with an accuracy better than existing methods, particularly for the case where there is a
limited number of training signals.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Sparse representation has been of significant interest over the
past few years. It has found a variety of applications in practice as
many natural signals admit a sparse or approximately sparse re-
presentation in a certain basis [1–3]. In many applications such as
image denoising and interpolation, signals often have a sparse re-
presentation over a pre-specified non-adaptive dictionary, e.g. dis-
crete cosine/wavelet transform (DCT/DWT) bases. Nevertheless,
recent research [4,5] has shown that the recovery, denoising and
classification performance can be considerably improved by utiliz-
ing an adaptive dictionary that is learnt from training signals [5,6].
This has inspired studies on dictionary learning aimed to design
overcompelete dictionaries that can better represent the signals. A
number of algorithms, such as the K-singular value decomposition
(K-SVD) [4], the method of optimal directions (MOD) [7], dictionary
learning with the majorization method [8], and the simultaneous
codeword optimization (SimCO) [9], were developed for over-
complete dictionary learning and sparse representation. Most al-
gorithms formulate the dictionary learning as an optimization
Science Foundation of China
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problemwhich is solved via a two-stage iterative process, namely, a
sparse coding stage and a dictionary update stage. The main dif-
ference among these algorithms lies in the dictionary update stage.
Specifically, the MOD method [7] updates the dictionary via solving
a least square problem which admits a closed-form solution for
dictionary update. The K-SVD algorithm [4], instead, updates the
atoms of the dictionary in a sequential manner and while updating
each atom, the atom is updated along with the nonzero entries in
the corresponding row vector of the sparse matrix. The idea of se-
quential atom update was later extended to provide sequential
update of multiple atoms each time [9], and recently generalized to
parallel atom-updating in order to further accelerate the con-
vergence of the iterative process [10]. These methods [4,7–10], al-
though offering state-of-the-art performance, have several limita-
tions. Specifically, they may require the knowledge of the sparsity
level or the noise/residual variance for sparse coding (e.g. [4]), or
this knowledge is needed for meticulously selecting some regular-
ization parameters to properly control the tradeoff between the
sparsity level and the data fitting error (e.g. [8,10]). In practice,
however, the prior information about the noise variance and spar-
sity level is usually unavailable and an inaccurate estimation may
result in substantial performance degradation. To mitigate these
limitations, a nonparametric Bayesian dictionary learning method
called beta-Bernoulli process factor analysis (BPFA) was recently
developed in [11]. The proposed method can estimate the usage
frequency of each atom, based on which the required number of
atoms can be automatically inferred. Moreover, BPFA is also able to
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automatically infer the noise variance from the test image. These
merits are deemed an important advantage over other dictionary
learning methods. For [11], the posterior distributions cannot be
derived analytically, and a Gibbs sampler was used for Bayesian
inference. We also note that a class of online dictionary learning
algorithms were developed in [12–16]. Unlike the above batch-
based algorithms [4,7,9,10] which use the whole set of training data
for dictionary learning, online algorithms continuously update the
dictionary using only one or a few (or a small amount of) training
data, which enables them to handle very large data sets.

In this paper, we propose a new hierarchical Bayesian model for
dictionary learning, in which a Gaussian-inverse Gamma hier-
archical prior [17,18] is used to promote the sparsity of the re-
presentation. Suitable non-informative priors are also placed on
the dictionary and the noise variance such that they can be reliably
inferred from the data. Based on the hierarchical model, a varia-
tional Bayesian method [19–21] and a Gibbs sampling method [22]
are developed for Bayesian inference. For both inference methods,
there are two different ways to update the dictionary: we can ei-
ther update the whole set of atoms in one iteration, or update the
atoms in a sequential manner. When updating the dictionary as a
whole, the proposed variational Bayesian method has a dictionary
update formula similar to the MOD method. For the Gibbs sampler,
a sequential update seems to be able to expedite the convergence
rate and helps achieve additional performance gain. Simulation
results show that the proposed Gibbs sampling algorithm has
notable advantages over other state-of-the-art dictionary learning
methods in a number of interesting scenarios.

Note that the Gaussian-inverse Gamma hierarchical prior used
in our paper is quite different from the beta-Bernoulli (also re-
ferred to as the spike-and-slab) prior employed in [11]. These two
priors have their respective merits and both are widely used to
promote the sparsity of solutions. In particular, the use of the
Gaussian-inverse Gamma prior for sparse Bayesian learning has
achieved great success in the framework of compressed sensing,
e.g. [23–26]. It is therefore interesting to examine the problem of
dictionary learning with such a prior and see if an additional
performance improvement can be achieved. Note that the spar-
sity-promoting prior model (i.e. the hierarchical Gaussian-inverse
Gamma prior) employed in this paper was also used in the sparse
PCA framework (e.g. [27]). Nevertheless, to our best knowledge,
our paper presents a first attempt to use the hierarchical Gaussian-
inverse Gamma prior model to solve the dictionary learning pro-
blem. Although dictionary learning is closely related to sparse PCA
[27], they still are two different problems with very distinct ob-
jectives: dictionary learning tries to learn an overcomplete dic-
tionary to sparsely represent the observed data, whereas the
sparse PCA aims to find a few sparse principle components of the
underlying data matrix. Also, although sharing some degree of
similarity, the prior model used in our paper is not exactly the
same as the prior model in [27]. As a consequence, the derivations,
update rules, and choice of model parameters in our work are
different from those in [27]. Our work also provides an interesting
comparison between two different inference methods, namely, the
variational Bayes and the Gibbs sampling, for dictionary learning.

The rest of the paper is organized as follows. In Section 2, we
introduce a hierarchical prior model for dictionary learning. Based
on this hierarchical model, a variational Bayesian method and a
Gibbs sampler are developed in Sections 3 and 4 for Bayesian in-
ference. Simulation results are provided in Section 5, followed by
concluding remarks in Section 6.

2. Hierarchical model

Suppose we have L training signals { } =yl l
L

1, where ∈ yl
M . Dic-

tionary learning aims at finding a common sparsifying dictionary
∈ ×D M N such that these L training signals admit a sparse re-
presentation over the overcomplete dictionary D, i.e.

= + ∀ ( )y Dx w l, 1l l l

where xl and wl denote the sparse vector and the residual/noise
vector, respectively. Define ≜ [ … ]Y y yL1 , ≜ [ … ]X x xL1 , and

≜ [ … ]W w wL1 . The model (1) can be re-expressed as

= + ( )Y DX W . 2

Also, we write ≜ [ … ]D d dN1 , where each column of the dictionary,
dn, is called an atom.

In the following, we develop a Bayesian framework for learning
the overcomplete dictionary and sparse vectors. To promote sparse
representations, we assign a two-layer hierarchical Gaussian-in-
verse Gamma prior to X . The Gaussian-inverse Gamma prior is
one of the most popular sparsity-promoting priors which has been
widely used in compressed sensing [23,24,28]. Specifically, in the
first layer, X is assigned a Gaussian prior distribution

∏ ∏ ∏ ∏α α( | ) = ( ) = ( | )
( )= = = =

−Xp p x x 0, ,
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1

where xnl denotes the (n, l)th entry of X , and α α≜ { }nl are non-
negative sparsity-controlling hyperparameters. The notation

α( | )−x 0,nl nl
1 denotes Gaussian distribution with zero mean and

variance α −
nl

1. The second layer specifies Gamma distributions as
hyperpriors over the hyperparameters α{ }nl , i.e.
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where ∫Γ( ) =
∞ − −a t e dta t

0
1 is the Gamma function. Here the nota-

tion α( )a bGamma ; ,nl denotes the Gamma distribution of αnl with
parameters a and b. To illustrate the sparsity-promoting property
of the Gaussian-inverse Gamma prior, we integrate out the hy-
perparameter αnl and obtain the marginal distribution of xnl,
which was shown to be a student-t distribution, i.e.

∫ α α α
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When b is very small, say = −b 10 6, the student-t distribution can
be reduced to
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We can easily see that (6) is a sparsity-promoting prior. Fig. 1 plots
the student-t distributions with different choices of a and b. We
see that the distribution has a sharp peak around zero when b is
sufficiently small. Also, a larger a results in a sharper peak, which
implies that a larger a leads to a more sparsity-encouraging prior.
In our paper, the parameters a and b are chosen to be a¼0.5 and

= −b 10 6.
In addition, in order to prevent the entries in the dictionary

from becoming infinitely large, we assume that the atoms of the
dictionary { }dn are mutually independent, and upon each atomwe
place a Gaussian prior, i.e.

∏ ∏ β( ) = ( ) = ( | )
( )= =

D d d 0 Ip p , ,
7n

N

n
n

N

n
1 1

where β is a parameter whose choice will be discussed later. The
noise { }wl are assumed independent multivariate Gaussian noise
with zero mean and covariance matrix γ( )I1/ , where the noise
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Fig. 1. Student-t distribution with different parameter settings.
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variance γ1/ is assumed unknown a priori. To estimate the noise
variance, we place a Gamma hyperprior over γ, i.e.

γ γ Γ γ( ) = ( ) = ( ) ( )γ− − −p c d c d eGamma ; , , 8c c d1 1

where we set c¼0.5 and = −d 10 6 to better suppress the data fit-
ting error since a large c encourages a large value of γ, i.e. a small
noise variance. The proposed hierarchical model provides a gen-
eral framework for learning the overcomplete dictionary, the
sparse codes, as well as the noise variance. In the following, we
develop a variational Bayesian method and a Gibbs sampling
method for Bayesian inference.
3. Variational inference

3.1. Review of the variational Bayesian methodology

Before proceeding, we firstly provide a brief review of the
variational Bayesian methodology. In a probabilistic model, let y
and θ denote the observed data and the hidden variables, re-
spectively. It is straightforward to show that the marginal prob-
ability of the observed data can be decomposed into two terms
[22]:

( ) = ( ) + ( ∥ ) ( )yp L q q pln KL , 9

where

∫ θ θ
θ

θ( ) = ( ) ( )
( ) ( )
y

L q q
p

q
dln

,
10

and

∫ θ θ
θ

θ( ∥ ) = − ( ) ( | )
( ) ( )

y
q p q

p
q

dKL ln ,
11

where θ( )q is any probability density function, ( ∥ )q pKL is the
Kullback–Leibler divergence [29] between θ( | )yp and θ( )q . Since

( ∥ ) ≥q pKL 0, it follows that L(q) is a rigorous lower bound for
( )ypln . Moreover, notice that the left-hand side of (9) is in-

dependent of θ( )q . Therefore maximizing L(q) is equivalent to
minimizing ( ∥ )q pKL , and thus the posterior distribution θ( | )yp can
be approximated by θ( )q through maximizing L(q).

The significance of the above transformation is that it circum-
vents the difficulty of computing the posterior probability θ( | )yp ,
when it is computationally intractable. For a suitable choice for the
distribution θ( )q , the quantity L(q) may be more amiable to com-
pute. Specifically, we could assume some specific parameterized
functional form for θ( )q and then maximize L(q) with respect to
the parameters of the distribution. A particular form of θ( )q that
has been widely used with great success is the factorized form
over the component variables θ{ }i in θ [19], i.e. θ θ( ) = ∏ ( )q qi i i . We
therefore can compute the posterior distribution approximation
by finding θ( )q of the factorized form that maximizes the lower
bound L(q). The maximization can be conducted in an alternating
fashion for each latent variable, which leads to [19]

∫
θ

θ
( ) =

( )

θ

θ

〈 ( )〉

〈 ( )〉

≠

≠
q

e

e d
,

12
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k i
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where 〈·〉 ≠k i denotes the expectation with respect to the distribu-
tions θ( )qk k for all ≠k i. By taking the logarithm on both sides of
(12), it can be equivalently written as

θθ( ) = 〈 ( )〉 + ( )≠yq pln ln , constant. 13i i k i

3.2. Proposed variational Bayesian method

We now proceed to perform variational Bayesian inference for
the proposed hierarchical model. Let θ α γ≜ { }X D, , , denote all
hidden variables. Our objective is to find the posterior distribution

θ( | )yp . Since θ( | )yp is usually computationally intractable, we, fol-
lowing the idea of [19], approximate θ( | )yp by α γ( )X Dq , , , which
has a factorized form over the hidden variables α γ{ }X D, , , , i.e.

α αγ γ( ) = ( ) ( ) ( ) ( ) ( )α γX D X Dq q q q q, , , . 14x d

It is noted that such a factorized form leads to a compact estimate
of θ( | )yp with the correct mean [22]. We then maximize L(q) de-
fined in (10) with respect to ( )Xqx , α( )αq , ( )Dqd , and γ( )γq , i.e.

( )
( )α γ{ ( ) ( ) ( ) ( )}α γ

L qmax .
15X Dq q q q, , ,x d

As mentioned in the previous subsection, the maximization of L(q)
can be conducted in an alternating fashion for each latent variable,
which leads to (details of the derivation can be found in [19])
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X D
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d

x
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where 〈〉 (·)… (·)q qK1
denotes the expectation with respect to (w.r.t.) the

distributions { (·)} =qk k
K

1. In summary, the posterior distribution ap-
proximations are computed in an alternating fashion for each
hidden variable, with the distribution of other variables fixed.
Details of this Bayesian inference scheme are provided next.

(1) Update of ( )Xqx : The calculation of ( )Xqx can be decomposed
into a set of independent tasks, with each task computing the
posterior distribution approximation for each column of X , i.e.

( )xqx l . We have

αγ( ) ∝ 〈 [ ( | ) ( | )]〉 ( )α γ( ) ( ) ( )α γ
x y D x xq p pln ln , , , 16Dx l l l l l q q qd

where α α≜ { } =l nl n
N

1 are the sparsity-controlling hyperparameters
associated with xl, γ( | )y D xp , ,l l and α( | )xp l l are, respectively, given
by
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Substituting (17) into (16) and after some simplifications, it can be
readily verified that ( )xqx l follows a Gaussian distribution

μ Σ( ) = ( | ) ( )x xq , 18x l l l
x

l
x

with its mean μl
x and covariance matrix Σl

x given, respectively, as

( )
μ γ
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x T
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1

where γ〈 〉 denotes the expectation w.r.t. γ( )γq , 〈 〉D and 〈 〉D DT denote

the expectation w.r.t. ( )Dqd , and α αΛ〈 〉 ≜ (〈 〉 … 〈 〉)diag , ,l l Nl1 , in which
α〈 〉nl represents the expectation w.r.t. α( )αq . All these expectations
are given by (30)–(35).

(2) Update of ( )Dqd : The approximate posterior ( )Dqd can be
obtained as

∑
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γ β γ

γ β γ

( ) ∝ 〈 [ ( | ) ( )]〉

∝ − ∥ − ∥ −

= 〈 − {( − )( − ) } − { }〉

∝ 〈 { ( + ) − }〉

= { (〈 〉〈 〉 + ) − 〈 〉 〈 〉 }

γ γ( ) ( )

−

=

−

−

− 20

D Y X D D

Y DX d d

Y DX Y DX DD

D XX I D YX D

D XX I D Y X D

q p pln ln , ,

tr tr

tr 2

tr 2 ,

Xd qx q

F
n

N

n
T

n

T T

T T T T

T T T T

2 1

1

1

1

1

where for simplicity, we have dropped the subscripts of the 〈·〉
operator. Define

γ β

γ
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The posterior ( )Dqd can be further expressed as
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where ·bm and ·dm represents the mth row of B and D, respectively.
It can be easily seen from (21) that the posterior distribution ( )Dqd
has independent rows and each row follows a Gaussian distribu-
tion with its mean and covariance matrix given by ·b Am and A,
respectively, i.e.
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·D d b A Aq p , .
22d
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(3) Update of α( )αq : The variational optimization of α( )αq yields
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Thus α( )αq has a form of a product of Gamma distributions
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in which the parameters ã and b̃nl are, respectively, given as
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(4) Update of γ( )γq : The variational optimization of γ( )γq yields
∏
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Therefore γ( )γq follows a Gamma distribution

γ γ( ) = ( | ˜ ˜) ( )γq c dGamma , 27

with the parameters c̃ and d̃ given, respectively, by
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In summary, the variational Bayesian inference involves up-
dates of the approximate posterior distributions for hidden vari-
ables X , D, α, and γ. Some of the expectations and moments used
during the update are summarized as

μ Σ〈 〉 = ( [ ]) + [ ] ( )x n n n, , 30nl l
x

l
x2 2

∑ Σ〈 〉 = 〈 〉〈 〉 +
( )=

XX X X ,
31
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1

〈 〉 = ( )D BA, 32

〈 〉 = 〈 〉 〈 〉 + 〈 〉 ( )D D D D AM , 33T T

α〈 〉 = ˜ ˜ ( )a b/ , 34nl nl

γ〈 〉 = ˜ ˜ ( )c d/ . 35

where in (30), μ [ ]nl
x denotes the nth entry of μl

x, Σ [ ]n n,l
x re-

presents the nth diagonal element of Σl
x, and (32) follows from

(22). The estimate of the dictionary D can be chosen as the ex-
pectation of its posterior distribution, i.e. 〈 〉D . For clarity, we
summarize our algorithm as Algorithm 1.

Algorithm 1. Sparse Bayesian dictionary learning – a variational
Bayesian algorithm.
ut: Y , β and N

tput: D, X , α and γ

Initialize 〈 〉D with random matrix, 〈 〉A with identity matrix,

α〈 〉 with positive matrix and γ with positive scalar.

while the convergence criterion (60) is not reached do

for l¼1 to L do

Calculate ( )xqx l using (18) with ( )Dqd , α( )αq and γ( )γq

fixed.

end for

Update ( )Dqd using (22) with ( )Xqx , α( )αq , and γ( )γq fixed.
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Update α( )αq using (24) with ( )Xqx , ( )Dqd and γ( )γq fixed.
Update γ( )γq using (27) with ( )Xqx , ( )Dqd and α( )αq fixed.
end while

set the mean of ( )Dqd , ( )Xqx , α( )αq and γ( )γq as the estimate

of D, X , α and γ, respectively.
Remark 1. We discuss the choice of the parameter β which de-
fines the variance of the dictionary atoms. We might like to set β
equal to m1/ such that the norm of each atom has unit variance.
Our experiment results, however, suggest that a very large value of
β, e.g. 108, leads to better performance. In fact, choosing an in-
finitely large β implies placing strictly non-informative priors over
the atoms { }dn , in which case the update of the dictionary is
simplified as

〈 〉 = = 〈 〉〈 〉 ( )−D BA Y X XX . 36T T 1

This update formula is similar to the formula used for dictionary
update in the MOD method, except that the point estimates X and
XXT are now replaced by the posterior mean 〈 〉X and 〈 〉XXT ,
respectively.

In the above algorithm, atoms are updated in a parallel way. By
assuming posterior independence among atoms { }dn , our method
can also be readily adapted to provide sequential update of the
atoms, i.e. it updates one atom at a time while fixing the rest
atoms in the dictionary. The mean field approximation, in this
case, can be expressed as

∏θ α αγ γ( | ) ≈ ( ) = ( ) ( ) ( ) ( )
( )α γ

=

y x D x dp q q q q q, , , .
37x

n

N

d n
1

n

The posterior distribution ( )dqd nn
can then be computed by max-

imizing L(q) while keeping the distributions of other hidden
variables fixed, which leads to
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where in ( )a , we define

≜ − ( )− −Y Y D X , 39n n

in which −D n is generated by D with the nth column of D replaced
by a zero vector, and ·xn denotes the nth row of X , ( )b comes from
the fact that − =−

·Y d x Wn
n n and thus we have

γ γ
π

γ( | ) = − ∥ − ∥
( )

−
·

−
·

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Y d x Y d xp , ,

2
exp

1
2

.
40

n
n n

ML
n

n n F
2 2

From (38), it can be seen that dn follows a Gaussian distribution

μ Σ( ) = ( | ) ( )d dq , , 41d n n n
d

n
d

n

with the mean and the covariance matrix given, respectively, by

μ

γ β

Σ

Σ

= 〈 〉〈 〉

= (〈 〉〈 〉 + ) ( )

−
·

· ·
− −

Y x

x x I

,

, 42

n
d

n
d n

n
T

n
d

n n
T 1 1

where 〈 〉· ·x xn n
T is the nth diagonal element of 〈 〉XXT , and
〈 〉 = − 〈 〉〈 〉− −Y Y D Xn n . Our proposed algorithm therefore can be
readily extended to a columnwise update procedure by replacing
the update of ( )Dqd with the sequential update of ( ) ∀dq n,d nn

. The

results of the sequential update of ( ) ∀dq n,d nn
are not presented in

our paper.
4. Gibbs sampler

Gibbs sampling is an alternative to the variational Bayes
method for Bayesian inference. In particular, different from the
variational Bayes which provides a locally optimal, exact analytical
solution to an approximation of the posterior, Monte Carlo tech-
niques such as Gibbs sampling provide a numerical approximation
to the exact posterior of hidden variables using a set of samples. It
has been observed that the Gibbs sampler may provide better
performance than the variational Bayesian inference in some cases
[30].

Let θ α γ≜ { }X D, , , denote all hidden variables in our hier-
archical model. We aim to find the posterior distribution of θ given
the observed data Y :

θ α αγ γ( | ) ∝ ( | ) ( ) ( | ) ( ) ( ) ( )Y Y D X D Xp p p p p p, , . 43

To provide an approximation to the posterior distribution of the
hidden variables, the Gibbs sampler generates an instance from
the distribution of each hidden variable in turn, conditional on the
current values of the other hidden variables. It can be shown (see,
for example, [31]) that the sequence of samples constitutes a
Markov chain, and the stationary distribution of that Markov chain
is just the sought-after joint distribution. Specifically, the se-
quential sampling procedure of the Gibbs sampler is given as
follows:

� Sampling X according to its conditional marginal distribution
α γ( | )( ) ( ) ( )X Y Dp , , ,t t t .

� Sampling D according to its conditional marginal distribution
α γ( | )( + ) ( ) ( )D Y Xp , , ,t t t1 .

� Sampling α according to its conditional marginal distribution
α γ( | )( + ) ( + ) ( )Y D Xp , , ,t t t1 1 .

� Sampling γ according to its conditional marginal distribution
αγ( | )( + ) ( + ) ( + )Y D Xp , , ,t t t1 1 1 .

Note that the above sampling scheme is also referred to as a
blocked Gibbs sampler [22] because it groups two or more
variables together and samples from their joint distribution con-
ditioned on all other variables, rather than sampling from each
one individually. Details of this sampling scheme are provided
next. For simplicity, the notation ( | − )zp is used in the following to
denote the distribution of variable z conditioned on all other
variables:

(1) Sampling X : Samples of X can be obtained by in-
dependently sampling each column of X , i.e. xl. The conditional
marginal distribution of xl is given as

α αγ γ( | − ) ∝ ( | ) ( | ) ∝ ( | ) ( | ) ( )x Y X D x y D x xp p p p p, , , , . 44l l l l l l l

Recalling (17), it can be easily verified that ( | − )xp l follows a
Gaussian distribution

μ Σ( | − ) = ( ) ( )xp , 45l l
x

l
x

with its mean μl
x and covariance matrix Σl

x given by

μ γΣ= ( )D y , 46l
x

l
x T

l

γΣ Λ= ( + ) ( )−D D , 47l
x T

l
1
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where α αΛ ≜ ( … )diag , ,l l Nl1 .
(2) Sampling D: There are two different ways to sample the

dictionary: we can sample the whole set of atoms simultaneously,
or sample the atoms in a successive way. We note that successive
sampling way is essentially a Gauss–Seidel algorithm. Thus we can
expect that sampling the atoms of the dictionary in a sequential
manner converges fast than sampling the whole atoms simulta-
neously. Here, in order to expedite the convergence of the Gibbs
sampler, we sample the atoms of the dictionary in a sequential
manner. The conditional distribution of dn can be written as

γ γ( | − ) ∝ ( ) ( | ) ∝ ( ) ( | ) ( )−
·d d Y D X d Y d xp p p p p, , , , , 48n n n

n
n n

where −Y n is defined in (39). Recalling (40), we can show that the
conditional distribution of dn follows a Gaussian distribution

μ Σ( | − ) = ( ) ( )dp , , 49n n
d

n
d

with its mean and covariance matrix given by

μ γΣ= ( )−
·Y x , 50n

d
n
d n

n
T

γ βΣ = ( + ) ( )· ·
− −x x I . 51n

d
n n

T 1 1

(3) Sampling α: The log-conditional distribution of αnl can be
computed as

α α α α( | − ) ∝ ( ) ( | ) ∝ − − +
( )

⎛
⎝
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⎞
⎠
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⎟⎟p p a b p x a b

x
ln ln ; ,

1
2

ln
2

.
52

nl nl nl nl nl
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2

It is easy to verify that αnl still follows a Gamma distribution

α( | − ) = (^ ^ ) ( )p a bGamma , 53nl nl

with the parameters â and b̂nl given as

^ = + ( )a a
1
2

, 54

^ = + ( )b b x
1
2

. 55nl nl
2

(4) Sampling γ: The log-conditional distribution of γ is given by

∏

( )

γ γ γ γ γ

γ γ

( | − ) ∝ ( | ) ( ) ∝ ( | ) ( )
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from which we can arrive at

γ( | − ) = (^ ^) ( )p c dGamma , , 57

where

^ = + ( )c a
ML
2

, 58

^ = + ∥ − ∥ ( )Y DXd d
1
2

. 59F
2

So far we have derived the conditional marginal distributions for
hidden variables α γ{ }D X, , , . Gibbs sampler successively generates the
samples of these variables according to their conditional distributions.
After a burn-in period [32], the generated samples can be viewed as
samples drawn from the posterior distribution α γ( | )X D Yp , , , . With
those samples, all the variables can be estimated by averaging the last
few samples of the Gibbs sampler. For clarity, we now summarize the
Gibbs sampling algorithm as Algorithm 2.

Algorithm 2. Sparse Bayesian dictionary learning – a Gibbs
sampling algorithm
ut: Y , β, N and −Tburn in

tput: D, X , α and γ

Initialize D with random matrix, α with positive matrix
and β with positive scalar.

for t¼1 to tmax do

for l¼1 to L do

Sample xl using (45).
end for

for n¼1 to N do

Sample dn using (49).
end for

Sample α using (53).

Sample γ using (57)

if > −t Tburn in then
add ( )X t to the X samples set, ( )D t to the D samples set,

α( )t to the α samples set, γ ( )t to the γ samples set.

end if
end for

Set X , D, α and γ to the average of the samples in the X , D,

α and γ samples set, respectively.
5. Simulation results

We now carry out experiments to illustrate the performance of
our proposed sparse Bayesian dictionary learning (SBDL) methods,
which are, respectively, referred to as SBDL-VB and SBDL-Gibbs.
Throughout our experiments, the parameters for our proposed
method are set equal to a¼0.5, = −b 10 6, c¼0.5 and = −d 10 6. The
parameter β is set to β = 108 for the SBDL-VB. Note that the SBDL-
Gibbs is insensitive to the choice β and here we simply choose
β¼1. In the presence of noise, our proposed methods may yield an
approximately sparse solution X which contains many small
nonzero values. To obtain an exact sparse X , the orthogonal
matching pursuit (OMP) method can be used to perform the
sparse coding after the dictionary is estimated via our proposed
methods. The termination condition of OMP is set such that the
residual is smaller than σC M , where s is the noise standard de-
viation, M denotes the dimension of the training signal yl, and C is
a factor. We set C to 1 for synthetic data and 1.15 for image de-
noising applications, as suggested by [5]. We compare our pro-
posed methods with several existing state-of-the-art dictionary
learning methods, namely, the K-SVD algorithm [4], the atom
parallel-updating (APrU-DL) method [10], and the beta-Bernoulli
process factor analysis (BPFA) method [11]. Both synthetic data
and real data are used to test the performance of respective al-
gorithms. For the SBDL-VB, we continue the iterative process until
the difference between the estimated dictionaries of successive
iterations is negligible, i.e.

∥ − ∥
∥ ∥

<
( )

( + ) ( )
−D D

Y
10 .

60

t t
F

F

1
3

For the SBDL-Gibbs, the number of iterations is set to 300, i.e.
=t 300,max and the estimate of the dictionary is simply chosen to

be the last sample of the Gibbs sampler. Our experimental results
shows that the number of =t 300max iterations is sufficient for the
Gibbs sampler to achieve a decent result. For a fair comparison, the
competing algorithms including K-SVD, APrU-DL, and BPFA are
executed with sufficient numbers of iterations to achieve their
best performance.



Table 1
Recovery success rates.

L SNR Algorithm K¼3 K¼4 K¼5 Var. K

1000 10 K-SVD 80.52 36.36 2.52 0.80
BPFA 76.76 57.12 22.56 43.32
APrU-DL1 85.64 64.40 33.44 53.68
APrU-DL2 48.20 17.48 4.68 12.52
SBDL-VB 86.00 63.84 16.28 47.48
SBDL-Gibbs 91.52 62.48 6.32 41.80

20 K-SVD 93.20 93.44 92.08 84.68
BPFA 87.96 92.00 94.08 93.58
APrU-DL1 94.04 93.32 87.76 93.48
APrU-DL2 72.48 40.32 14.15 33.04
SBDL-VB 97.28 95.96 92.32 94.48
SBDL-Gibbs 99.64 99.16 97.52 99.12

30 K-SVD 94.24 94.32 93.92 86.64
BPFA 87.04 91.20 94.56 92.60
APrU-DL1 94.24 94.92 88.16 93.96
APrU-DL2 73.40 43.16 17.16 34.36
SBDL-VB 96.60 96.16 92.32 95.48
SBDL-Gibbs 99.60 99.16 98.64 99.00

2000 10 K-SVD 91.00 88.88 50.56 25.32
BPFA 91.16 92.28 86.44 90.84
APrU-DL1 97.00 94.88 86.24 95.44
APrU-DL2 84.84 68.36 42.28 64.04
SBDL-VB 92.92 81.80 55.68 77.16
SBDL-Gibbs 98.56 95.72 80.20 93.88

20 K-SVD 95.64 96.68 95.16 94.00
BPFA 89.68 91.76 94.72 93.04
APrU-DL1 95.40 96.48 95.80 96.56
APrU-DL2 85.32 82.44 64.48 79.84
SBDL-VB 97.64 96.56 92.12 95.04
SBDL-Gibbs 99.48 99.56 98.92 99.16

30 K-SVD 95.88 96.92 96.96 93.36
BPFA 87.24 91.80 95.92 93.94
APrU-DL1 94.28 95.00 96.80 95.64
APrU-DL2 86.32 82.40 66.08 80.52
SBDL-VB 96.88 96.96 92.96 94.96
SBDL-Gibbs 99.40 99.16 99.52 99.32
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5.1. Synthetic data

We generate a dictionary D of size 20�50, with each entry
independently drawn from a normal distribution. Columns of D
are then normalized to have unit norm. The training signals { } =yl l

L
1

are produced based on D, where each signal yl is a linear com-
bination of Kl randomly selected atoms and the weighting coeffi-
cients are i.i.d. normal random variables. Two different cases are
considered. First, all training samples are generated with the same
number of atoms, i.e. = ∀K K l,l , and K is assumed exactly known
to the K-SVD method. The other case is that Kl varies from 3 to
6 for different l according to a uniform distribution. In this case,
the K-SVD assumes that the sparsity level equals to 6 during the
sparse coding stage. The observation noise is assumed multivariate
Gaussian with zero mean and covariance matrix σ I2 . Note that the
APrU-DL (with FISTA) method requires to set two regularization
parameters λ and λs to control the tradeoff between the sparsity
and the data fitting error. The selection of these two parameters is
always a tricky issue and an inappropriate choice may lead to
considerable performance degradation. To show this, we use the
following two different choices: λ λ{ } = { }, 0.2, 0.15s and
λ λ{ } = { }, 0.4, 0.4s , in which the former set of values is carefully
selected by testing several pairs λ λ{ }, s and choosing the best one,
and the latter set of values slightly deviates from the former set of
values. We use APrU-DL1 to denote the APrU-DL method which
uses the former choice, and APrU-DL2 to denote the APrU-DL
method which uses the latter one.

The recovery success rate is used to evaluate the dictionary
learning performance. The success rate is computed as the ratio of
the number of successfully recovered atoms to the total number of
atoms. To calculate the success rate, the following steps are re-
peated N times: (1) For the ith atom di, calculate the distance
between this atom and each of the estimated atoms:

−
| ^ |

∥ ∥∥ ^ ∥ ( )

d d

d d
1 ,

61

i
T

j

i j

where d̂i denotes the jth estimated atom. (2) If the distance be-
tween this atom and one of the estimated atoms is less than a
specified value, say, 0.1, then this atom is considered successfully
recovered, and the associated estimated atom is excluded from the
subsequent matching. Table 1 shows the average recovery success
rates of respective algorithms, where we set L¼1000 and L¼2000,
respectively, and the signal-to-noise ratio (SNR) varies from 10 to
30 dB. Results are averaged over 50 independent trials. From Ta-
ble 1, we can see that:

� The proposed SBDL-Gibbs method achieves the highest re-
covery success rates in most cases. The proposed SBDL-VB
method, although not as well as the SBDL-Gibbs, still provides
quite competitive performance and presents a clear perfor-
mance advantage over the K-SVD and APrU-DL methods when
the number of training signals is limited, e.g. L¼1000. In par-
ticular, both the SBDL-Gibbs and the SBDL-VB outperform the
BPFA method by a big margin, despite all three methods were
developed in a Bayesian framework.

� In the low SNR regime, e.g. =SNR 10 dB, the K-SVD method
suffers from a significant performance loss when there is a
discrepancy between the presumed sparsity level and the
groundtruth (see the case where Kl varies but the presumed
sparsity level is fixed to 6).

� The APrU-DL method is sensitive to the choice of the regular-
ization parameters. It provides superior recovery performance
when the regularization parameters are properly selected.
Nevertheless, as we can see from Table 1, the APrU-DL method
incurs a considerable performance degradation when the
parameters deviate from their optimal choice, and there is no
general guideline suggesting how to choose appropriate values
for these regularization parameters.

To better illustrate the performance of those methods, we also
evaluate them with the following three metrics, namely, the
achievable sparsity level (ASL), the root mean square error (RMSE)
and the average run time. The ASL is defined as

= ( ^)
( )

X
L

ASL
nnz

, 62

where ( ^ )Xnnz denotes the number of the nonzero entries of X̂ . The
RMSE is defined as

=
∥ ˜ − ^ ^ ∥

∥ ˜ ∥ ( )
Y DX

Y
RMSE ,

63
F
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where Ỹ denotes noise-free training samples and D̂ denotes the
estimated dictionary. Table 3 shows the ASLs, RMSEs and average
run times of respective algorithms, where we set L¼1000 and
K¼4. Form Table 3, we see that the SBDL-Gibbs achieves best
denoising performance. For the ASLs, we see that since the true
sparsity level is known to the K-SVD method, it achieves the
sparest representations for cases =SNR 10 dB and 20 dB. We also
see that as the SNR increases, most methods are able to provide
sparser representations and the proposed SBDL-Gibbs method
even achieves a representation that is sparser than the ground-
truth for =SNR 30 dB. In addition, we note that our proposed
methods incur a higher computational complexity as compared



Table 2
PSNR.

r s Algorithm Boat Cameraman Couple

2 15 K-SVD 29.2802 31.4638 31.4068
BPFA 29.5446 31.1759 31.2875
APrU-DL 29.5718 31.7662 31.5304
SBDL-VB 29.3557 31.1741 31.0691
SBDL-Gibbs 29.5881 31.6978 31.4473

25 K-SVD 26.9308 28.6211 28.6949
BPFA 27.0726 28.4483 28.5825
APrU-DL 26.8998 28.7069 28.5378
SBDL-VB 26.6959 28.1587 28.4240
SBDL-Gibbs 27.1570 28.8380 28.8431

50 K-SVD 22.9499 23.9898 24.3532
BPFA 23.4165 22.8861 24.5719
APrU-DL 22.7274 23.5888 24.1901
SBDL-VB 23.0861 23.3194 24.3299
SBDL-Gibbs 23.4651 24.1899 24.7870

4 15 K-SVD 29.2585 31.3553 31.3513
BPFA 29.4459 31.1063 31.1639
APrU-DL 29.4554 31.5541 31.4276
SBDL-VB 29.3217 31.0739 31.1359
SBDL-Gibbs 29.5376 31.4931 31.5443

25 K-SVD 26.6756 28.4350 28.5580
BPFA 26.8726 28.3599 28.3287
APrU-DL 26.7240 28.4447 28.4097
SBDL-VB 26.5977 28.0960 28.3715
SBDL-Gibbs 27.0077 28.5539 28.7889

50 K-SVD 22.7708 23.2908 24.2388
BPFA 23.1653 23.5942 24.2039
APrU-DL 22.6036 23.3086 24.1107
SBDL-VB 23.0404 23.3315 24.4163
SBDL-Gibbs 23.2525 23.8610 24.6326

Table 3
ASL, RMSE and average run time.

SNR (dB) Algorithm ASL RMSE Run time

10 K-SVD 4 0.3064 0.9778
BPFA 9.4243 0.3092 27.3396
APrU-DL1 9.2787 0.3086 19.1625
APrU-DL2 15.5645 0.3113 12.1774
SBDL-VB 9.1543 0.3090 91.6423
SBDL-Gibbs 9.3625 0.3086 154.9286

20 K-SVD 4 0.1344 0.9563
BPFA 5.1772 0.0862 29.3492
APrU-DL1 5.2479 0.0975 18.4018
APrU-DL2 5.7878 0.1158 11.6770
SBDL-VB 4.6019 0.0792 55.6192
SBDL-Gibbs 4.3463 0.0766 154.6508

30 K-SVD 4 0.1127 0.9757
BPFA 5.7770 0.0683 33.6997
APrU-DL1 4.3184 0.0772 18.4779
APrU-DL2 4.5205 0.0904 11.7725
SBDL-VB 4.0543 0.577 58.5767
SBDL-Gibbs 3.8007 0.0536 155.2510

Table 4
SSIM/ASL.

r s Algorithm Boat Cameraman Couple

2 15 K-SVD 0.8233/4.06 0.8959/2.50 0.8517/1.93
BPFA 0.8345/4.72 0.8911/4.12 0.8528/3.55
APrU-DL 0.8267/3.68 0.8975/2.30 0.8529/1.98
SBDL-VB 0.8300/4.89 0.8922/3.53 0.8457/2.77
SBDL-Gibbs 0.8377/4.01 0.8990/2.45 0.8579/2.18

25 K-SVD 0.7313/1.81 0.8332/1.16 0.7710/0.94
BPFA 0.7497/2.23 0.8295/1.90 0.7735/1.74
APrU-DL 0.7299/1.83 0.8312/1.21 0.7640/1.04
SBDL-VB 0.7357/2.44 0.8244/1.84 0.7641/1.30
SBDL-Gibbs 0.7533/1.80 0.8374/1.18 0.7813/1.01

50 K-SVD 0.5540/0.39 0.7110/0.30 0.5918/0.23
BPFA 0.5817/0.48 0.7067/0.42 0.6062/0.34
APrU-DL 0.5438/0.44 0.7010/0.36 0.5841/0.24
SBDL-VB 0.5649/0.50 0.6928/0.48 0.5906/0.28
SBDL-Gibbs 0.5845/0.40 0.7167/0.32 0.6170/0.23
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with other methods, which is a major drawback of our proposed
algorithms. This is because our proposed algorithms require con-
ducting a matrix inverse operation when updating X . The com-
putational complexity required for this matrix inversion is of order

( )N3 . To reduce the computational complexity of our methods,
the approximate message passing (AMP) or generalized approx-
imate message passing (GAMP) technique [33,34] may be em-
ployed to circumvent the matrix inverse operation. This is an
important topic worthy of our future investigation. We also note
that the lower computational complexity of the APrU-DL method
makes it possible to select proper regularization parameters by
trying different sets of parameters.
5.2. Application to image denoising

We now demonstrate the results by applying the above methods
to image denoising. Suppose images are corrupted by white Gaus-
sian noise with zero mean and variance s2. We partition a noise-
corrupted image into a number of overlapping patches (of size 8�8
pixels) obtained with one pixel shifting. Note that in our simulations,
not all patches are selected for training, but only those patches
whose top-left pixels are located at [ × × ]r i r j, for any

= … ⌊( − ) ⌋i j Q r, 0, , 8 / are selected, where Q denotes the dimension
of the ×Q Q image, and r is chosen to be = { }r 2, 4 , respectively. The
selected patches are then vectorized to generate the training signal
{ }yl . Also, in our experiments, we assume that the noise variance is
perfectly known a priori by the K-SVD method. For the APrU-DL
method, the regularization parameters λ and λs are carefully chosen
to be λ¼25 and λ = 30s . After the training by respective algorithms,
the trained dictionary is then used for denoising. The denoising
process involves a sparse coding of all patches (including those used
for training and those not) of size 8�8 pixels from the noisy image
which is performed using OMP. The final estimate of each pixel is
obtained by averaging the associated pixel from each of the denoised
overlapping patches in which this pixel is included.

We consider three different images for image denoising,
namely, “boat” (256�256), “cameraman” (256�256), and “couple”
(512�512). Table 2 shows the peak signal to noise ratio (PSNR)
results obtained for different images by respective algorithms,
where the noise standard deviation is set to σ = { }15, 25, 50 , re-
spectively, and the dictionary to be inferred is assumed of size
64�256. The PSNR is defined as

= ×
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where Û and U denote the denoised image and the original noise-
free image, respectively. From Table 2, we see that the results of all
methods are very close to each other in general. The proposed
SBDL-Gibbs achieves a slightly higher PSNR than other methods in
most cases, particularly when fewer number of signals is used for
training. This result again demonstrates the superiority of the
proposed method. The denoising performance is also evaluated by
two other metrics, namely, a structural similarity (SSIM) index [35]
and the ASL. The results are shown in Table 4. From Table 4, we see
that all the algorithms provide similar achievable sparsity levels
and SSIM indexes. The proposed SBDL-Gibbs achieves a slightly
higher SSIM than other methods in most cases. In Figs. 2–6, we
plot the noise-corrupted images “cameraman” and “couple”, and
images denoised by respective algorithms. To show the details of



Fig. 2. Denoising results (s¼15 and r¼4) for the image “cameraman”. From left to right: the corrupted image, the denoised image by KSVD (PSNR¼31.3553 dB,
SSIM¼0.8938), BPFA (PSNR¼31.1063 dB, SSIM¼0.8906), APrU-DL (PSNR¼31.5541 dB, SSIM¼0.8952), SBDL-VB (PSNR¼31.0739 dB, SSIM¼0.8913), and SBDL-Gibbs
(PSNR¼31.4931 dB, SSIM¼0.8968).

Fig. 3. Denoising results (s¼25 and r¼2) for the image “cameraman”. From left to right: the corrupted image, the denoised image by KSVD (PSNR¼28.6211 dB,
SSIM¼0.8332), BPFA (PSNR¼28.4483 dB, SSIM¼0.8295), APrU-DL (PSNR¼28.7069 dB, SSIM¼0.8312), SBDL-VB (PSNR¼28.1587 dB, SSIM¼0.8244), and SBDL-Gibbs
(PSNR¼28.8380 dB, SSIM¼0.8374).
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the denoised images, a small area of the denoised image “couple” is
zoomed in Fig. 7. The area that is magnified is of size 100�100
and located at the top left corner of door in the image. Fig. 8 plots
the dictionaries estimated by respective methods from the image
“couple”, where s¼50 and r¼2. We see that the APrU-DL and
SBDL-VB methods provide noisy dictionaries as well as slightly



Fig. 4. Denoising results (s¼15 and r¼4) for the image “couple”. From left to right: the corrupted image, the denoised image by KSVD (PSNR¼31.3513 dB, SSIM¼0.8504),
BPFA (PSNR¼31.1639 dB, SSIM¼0.8481), APrU-DL (PSNR¼31.4276 dB, SSIM¼0.8511), SBDL-VB (PSNR¼31.1359 dB, SSIM¼0.8482), and SBDL-Gibbs (PSNR¼31.5443 dB,
SSIM¼0.8584).

Fig. 5. Denoising results (s¼25 and r¼2) for the image “couple”. From left to right: the corrupted image, the denoised image by KSVD (PSNR¼28.6949 dB,SSIM¼0.7710),
BPFA (PSNR¼28.5825 dB, SSIM¼0.7735), APrU-DL (PSNR¼28.5378 dB, SSIM¼0.7640), SBDL-VB (PSNR¼28.4240 dB, SSIM¼0.7641), and SBDL-Gibbs (PSNR¼28.8431 dB,
SSIM¼0.7813).
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dim denoised images compared with other methods.
We note that the proposed SBDL-Gibbs achieves better image

denoising performance than the BPFA method. The BPFA is a state-
of-the-art method which provides superior performance for image
denoising, as illustrated by many experiments. Nevertheless, in
[11], the BPFA uses all patches of a test image, based on which the



Fig. 6. Denoising results (s¼50 and r¼2) for the image “couple”. From left to right: the corrupted image, the denoised image by KSVD (PSNR¼24.3532 dB, SSIM¼0.5918),
BPFA (PSNR¼24.5719 dB, SSIM¼0.6062), APrU-DL (PSNR¼24.1901 dB, SSIM¼0.5841), SBDL-VB (PSNR¼24.3299 dB, SSIM¼0.5906), and SBDL-Gibbs (PSNR¼24.7870 dB,
SSIM¼0.6170).

Fig. 7. Zoomed in part of the denoised images “couple”. From left to right: zoom in of the image denoised by KSVD, BPFA, APrU-DL, SBDL-VB, SBDL-Gibbs. Top row: s¼15 and
r¼4. Middle row: s¼25 and r¼2. Bottom row: s¼50 and r¼2.
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clustering effects of adjacent patches are utilized to improve the
performance. In our experiments, we, following [4], only use a
subset of all patches, instead of all patches, for dictionary learning.
Specifically, one-half (corresponding to r¼2) and one-fourth
(corresponding to r¼4) of all patches are used. Since only a por-
tion of patches are used for training, the benefit brought by the
clustering effect may be limited, which possibly is the reason why
the BPFA method is not as good as our proposed method.



Fig. 8. Dictionaries estimated by respective methods (s¼50 and r¼2) from the image “couple”. From left to right: the dictionary trained by KSVD, BPFA, APrU-DL, SBDL-VB,
and SBDL-Gibbs.
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6. Conclusions

We developed a new Bayesian hierarchical model for learning
overcomplete dictionaries based on a set of training data. This new
framework extends the conventional sparse Bayesian learning
framework to deal with the dictionary learning problem. Specifi-
cally, a Gaussian-inverse Gamma hierarchical prior is used to
promote the sparsity of the representation. Suitable priors are also
placed on the dictionary and the noise variance such that they can
be inferred from the data. We developed a variational Bayesian
method and a Gibbs sampler for Bayesian inference. Unlike some
of previous methods, the proposed methods do not need to as-
sume knowledge of the noise variance a priori, and can infer the
noise variance automatically from the data. The performance of
the proposed methods is evaluated using synthetic data. Numer-
ical results show that the proposed methods are able to learn the
dictionary with an accuracy notably better than the existing
methods, particularly for the case where there is a limited number
of training signals. The proposed methods are also applied to
image denoising, where superior denoising results are achieved
even compared with other state-of-the-art algorithms. Our pro-
posed hierarchical model is also flexible to incorporate additional
prior information to enhance the dictionary learning performance.
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