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Abstract—The problem of low-rank matrix completion is con-
sidered in this paper. To exploit the underlying low-rank struc-
ture of the data matrix, we propose a hierarchical Gaussian prior
model, where columns of the low-rank matrix are assumed to follow
a Gaussian distribution with zero mean and a common precision
matrix, and a Wishart distribution is specified as a hyperprior over
the precision matrix. We show that such a hierarchical Gaussian
prior has the potential to encourage a low-rank solution. Based on
the proposed hierarchical prior model, we develop a variational
Bayesian matrix completion method, which embeds the general-
ized approximate massage passing technique to circumvent cum-
bersome matrix inverse operations. Simulation results show that
our proposed method demonstrates superiority over some state-of-
the-art matrix completion methods.

Index Terms—Matrix completion, low-rank Bayesian learning,
generalized approximate massage passing.

I. INTRODUCTION

THE problem of recovering a partially observed matrix,
which is referred to as matrix completion, arises in a va-

riety of applications, including recommender systems [1]–[3],
genotype prediction [4], [5], image classification [6], [7], net-
work traffic prediction [8], and image imputation [9]. Low-rank
matrix completion, which is empowered by the fact that many
real-world data lie in an intrinsically low dimensional subspace,
has attracted much attention over the past few years. Mathe-
matically, a canonical form of the low-rank matrix completion
problem can be presented as

min
X

rank(X)

s.t. Y = Ω ∗ X (1)
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where X ∈ RM×N is an unknown low-rank matrix, Ω ∈
{0, 1}M×N is a binary matrix that indicates which entries of X
are observed, ∗ denotes the Hadamard product, and Y ∈ RM×N

is the observed matrix. It has been shown that the low-rank ma-
trix X can be exactly recovered from (1) under some mild con-
ditions [10]. Nevertheless, minimizing the rank of a matrix is
an NP-hard problem and no known polynomial-time algorithms
exist. To overcome this difficulty, alternative low-rank promot-
ing functionals were proposed. Among them, the most popular
alternative is the nuclear norm which is defined as the sum of the
singular values of a matrix. Replacing the rank function with the
nuclear norm yields the following convex optimization problem

min
X

‖X‖∗
s.t. Y = Ω ∗ X (2)

It was proved that the nuclear norm is the tightest convex enve-
lope of the matrix rank, and the theoretical recovery guarantee
for (2) under both noiseless and noisy cases was provided in
[10]–[13]. To solve (2), a number of computationally efficient
methods were developed. A well-known method is the singular
value thresholding method which was proposed in [14]. An-
other efficient method was proposed in [15], in which an aug-
mented Lagrange multiplier technique was employed. Apart
from convex relaxation, non-convex surrogate functions, such
as the log-determinant function, were also introduced to re-
place the rank function [16]–[19]. Non-convex methods usually
claim better recovery performance, since non-convex surrogate
functions behaves more like the rank function than the nuclear
norm. It is noted that for both convex methods and non-convex
methods, one needs to meticulously select some regularization
parameters to properly control the tradeoff between the matrix
rank and the data fitting error when noise is involved. However,
due to the lack of the knowledge of the noise variance and the
rank, it is usually difficult to determine appropriate regulariza-
tion parameters.

Another important class of low-rank matrix completion meth-
ods are Bayesian methods [20]–[24], which model the problem
in a Bayesian framework and have the ability to achieve au-
tomatic balance between the matrix rank and the fitting error.
Specifically, in [20], the low-rank matrix is expressed as a prod-
uct of two factor matrices, i.e., X = ABT , and the matrix
completion problem is translated to searching for these two
factor matrices A and B. To encourage a low-rank solution,
sparsity-promoting priors [25] are placed on the columns of two
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factor matrices, which aims to promote structured-sparse factor
matrices with only a few non-zero columns, and in turn leads
to a low-rank matrix X . Nevertheless, this Bayesian method
updates the factor matrices in a row-by-row fashion and needs
to perform a number of matrix inverse operations at each iter-
ation. To address this issue, a bilinear generalized approximate
message passing (GAMP) method was developed to learn the
two factor matrices A and B [22], [23], without involving any
matrix inverse operations. This method, however, cannot auto-
matically determine the matrix rank and needs to try out all
possible values of the rank. Note that this factorization-based
matrix completion approach was also studied in a determinis-
tic framework, and a number of algorithms which resort to the
alternating minimization technique have been developed, e.g.,
[26]–[28]. As indicated earlier, these optimization-based meth-
ods require to select some appropriate regularization parameter
to strike a good balance between the matrix rank and the data fit-
ting error. Recently, a new Bayesian prior model was proposed
in [24], in which columns of the low-rank matrix X follow a
zero mean Gaussian distribution with an unknown deterministic
covariance matrix that can be estimated via Type II maximum
likelihood. It was shown that maximizing the marginal likeli-
hood function yields a low-rank covariance matrix, which im-
plies that the prior model has the ability to promote a low-rank
solution. A major drawback of this method is that it requires to
perform an inverse of an MN ×MN matrix at each iteration,
and thus has a cubic complexity in terms of the problem size.
This high computational cost prohibits its application to many
practical problems.

In this paper, we develop a new Bayesian method for low-rank
matrix completion. To exploit the underlying low-rank structure
of the data matrix, a low-rank promoting hierarchical Gaussian
prior model is proposed. Specifically, columns of the low-rank
matrix X are assumed to be mutually independent and follow a
common Gaussian distribution with zero mean and a precision
matrix. The precision matrix is treated as a random parameter,
with a Wishart distribution specified as a hyperprior over it. We
show that such a hierarchical Gaussian prior model has the po-
tential to encourage a low-rank solution. The GAMP technique
is employed and embedded in the variational Bayesian (VB)
inference, which results in an efficient VB-GAMP algorithm
for matrix completion. Note that due to the non-factorizable
form of the prior distribution, the GAMP technique cannot be
directly used. To address this issue, we construct a carefully de-
vised surrogate problem whose posterior distribution is exactly
the one required for VB inference. Meanwhile, the surrogate
problem has factorizable prior and noise distributions such that
the GAMP can be directly applied to obtain an approximate
posterior distribution. Such a trick helps achieve a substantial
computational complexity reduction, and makes it possible to
successfully apply the proposed method to solve large-scale
matrix completion problems.

The rest of the paper is organized as follows. In Section II,
we introduce a hierarchical Gaussian prior model for low-
rank matrix completion. Based on this hierarchical model, a
variational Bayesian method is developed in Section III. In
Section IV, a GAMP-VB method is proposed to reduce the

Fig. 1. Proposed low-rank promoting hierarchical Gaussian prior model, in
which double circles denote the observable variable, single circles denote the
hidden variable, and the boxes denote pre-specified hyperparameters.

computational complexity of the proposed algorithm. Simula-
tion results are provided in Section V, followed by concluding
remarks in Section VI.

II. BAYESIAN MODELING

In the presence of noise, the canonical form of the matrix
completion problem can be formulated as

min
X

rank(X)

s.t. Y = Ω ∗ (X + E) (3)

where E denotes the additive noise, and Ω ∈ {0, 1}M×N is a
binary matrix that indicates which entries are observed. Without
loss of generality, we assume M ≤ N . As indicated earlier,
minimizing the rank of a matrix is an NP-hard problem. In this
paper, we consider modeling the matrix completion problem
within a Bayesian framework.

We assume entries of E are independent and identically dis-
tributed (i.i.d.) random variables following a Gaussian distribu-
tion with zero mean and variance γ−1 . To learn γ, a Gamma
hyperprior is placed over γ, i.e.,

p(γ) = Gamma(γ|a, b) = Γ(a)−1baγa−1e−bγ (4)

where Γ(a) =
∫∞

0 ta−1e−tdt is the Gamma function. The
parameters a and b are set to small values, e.g., 10−10 ,
which makes the Gamma distribution a non-informative
prior.

To promote a low-rank solution of X , we propose a two-layer
hierarchical Gaussian prior model (see Fig. 1). Specifically, in
the first layer, the columns of X are assumed mutually indepen-
dent and follow a common Gaussian distribution:

p(X|Σ) =
N∏

n=1

p(xn |Σ) =
N∏

n=1

N (xn |0,Σ−1) (5)

where xn denotes the nth column of X , and Σ ∈ RM×M

is the precision matrix. The second layer specifies a Wishart
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distribution as a hyperprior over the precision matrix Σ:

p(Σ) ∝ |Σ| ν −M −1
2 exp

(

−1
2

tr(W−1Σ)
)

(6)

where ν and W ∈ RM×M denote the degrees of freedom and
the scale matrix of the Wishart distribution, respectively. Note
that the constraint ν > M − 1 for the standard Wishart distribu-
tion can be relaxed to ν > 0 if an improper prior is allowed, e.g.,
[29]. In Bayesian inference, improper prior distributes can often
be used provided that the corresponding posterior distribution
can be correctly normalized [30].

The Gaussian-inverse Wishart prior has the potential to en-
courage a low-rank solution. To illustrate this property, we in-
tegrate out the precision matrix Σ and obtain the marginal dis-
tribution of X as (details of the derivation can be found in
Appendix A)

p(X) =
∫ N∏

n=1

p(xn |Σ)p(Σ)dΣ

∝ |W−1 + XXT |− ν + N
2 (7)

From (7), we have

log p(X) ∝ − log |XXT + W−1 | (8)

If we choose W = ε−1I , and let ε be a small positive value, the
log-marginal distribution becomes

log p(X) ∝ − log |XXT + εI|

= −
M∑

m=1

log(λm + ε) (9)

where λm denotes themth eigenvalue of XXT . Clearly, in this
case, the prior p(X) encourages a low-rank solution X . This is
because maximizing the prior distribution p(X) is equivalent to
minimizing

∑M
m=1 log(λm + ε) with respect to {λm}. It is well

known that the log-sum function
∑M

m=1 log(λm + ε) is an ef-
fective sparsity-promoting functional which encourages a sparse
solution of {λm} [31]–[33]. As a result, the resulting matrix X
has a low-rank structure. We note that the prior (9) placed on the
latent matrix is quite similar to the volume-minimization cost
function in [34]. This fact reveals that our prior model is closely
related to the volume-minimization criterion, a criterion widely
used for matrix factorization due its unique identifiability under
some mild conditions. The volume-minimization criterion aims
to minimize the volume of the convex hull spanned by the col-
umn vectors of the matrix. It has the potential to encourage a
low-rank solution because the volume of the convex hull reduces
to zero when the columns of the matrix lie in a low-dimensional
subspace.

In addition to W = ε−1I , the parameter W can otherwise
be devised in order to exploit additional prior knowledge about
X . For example, in some applications such as image inpaint-
ing, there is a spatial correlation among neighboring coeffi-
cients of xn . To capture the smoothness between neighboring

coefficients, W can be set as [35]

W = F T F (10)

where F ∈ RM×M is a second-order difference operator with
its (i, j)th entry given by

fi,j =

⎧
⎨

⎩

−2, i = j
1, |i− j| = 1
0, else

(11)

Another choice of W to promote a smooth solution is the Lapla-
cian matrix [36], i.e.,

W = D − A + ε̂I (12)

where A is the adjacency matrix of a graph with its entries
given by

aij = exp
(

−|i− j|2
θ2

)

(13)

D, referred to as the degree matrix, is a diagonal matrix with
dii =

∑
j aij , and ε̂ is a small positive value to ensure W to be

full rank.
It can be shown that W defined in (10) and (12) promotes

a low-rank structure as well as smoothness of X . To illustrate
this, we first introduce the following lemma.

Lemma 1: For a positive-definite matrix W ∈ RM×M , the
following equality holds valid

log |XXT + W−1 | = log |W−1 | + log |I + XT WX|
(14)

for any X ∈ RM×N .
Proof: See Appendix B. �
From Lemma 1, we have

log p(X) ∝ − log |XXT + W−1 |
∝ − log |I + XT WX|

= −
N∑

n=1

log(λ̃n + 1) (15)

where λ̃n is the nth eigenvalue associated with XT WX . We
see that maximizing the prior distribution is equivalent to min-
imizing

∑N
n=1 log(λ̃n + 1) with respect to {λ̃n}. As discussed

earlier, this log-sum functional is a sparsity-promoting func-
tional which encourages a sparse solution {λ̃n}. As a result,
the matrix XT WX has a low rank. Since W is full rank, this
implies that X has a low-rank structure. On the other hand,
notice that tr(XT WX) is the first-order approximation of
log |I + XT WX|. Therefore minimizing log |I + XT WX|
will reduce the value of tr(XT WX). Clearly, for W de-
fined in (10) and (12), a smoother solution results in a
smaller value of tr(XT WX) [35], [36]. Therefore when W
is chosen to be (10) or (12), the resulting prior distribution
p(X) has the potential to encourage a low-rank and smooth
solution.

Remarks: Our proposed hierarchical Gaussian prior model
can be considered as a generalization of the prior model in [24].
Notice that in [24], the precision matrix in the prior model is
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assumed to be a deterministic parameter, whereas it is treated as a
random variable and assigned a Wishart prior distribution in our
model. This generalization offers more flexibility in modeling
the underlying latent matrix. As discussed earlier, the parameter
W can be devised to capture additional prior knowledge about
the latent matrix, and such a careful choice of W can help
substantially improve the recovery performance, as corroborated
by our experimental results.

III. VARIATIONAL BAYESIAN INFERENCE

A. Review of The Variational Bayesian Methodology

Before proceeding, we firstly provide a brief review of the
variational Bayesian (VB) methodology (additional details can
be found in [38]). In a probabilistic model, let y and θ denote
the observed data and the hidden variables, respectively. The
marginal probability of the observed data can be decomposed
into two terms [30]

ln p(y) = L(q) + KL(q||p), (16)

where

L(q) =
∫
q(θ) ln

p(y,θ)
q(θ)

dθ (17)

and

KL(q||p) = −
∫
q(θ) ln

p(θ|y)
q(θ)

dθ, (18)

where q(θ) is an arbitrary probability density function, KL(q||p)
is the Kullback-Leibler divergence [37] between p(θ|y) and
q(θ). Since KL(q||p) ≥ 0, L(q) is a lower bound for ln p(y).
Moreover, notice that the left hand side of (16) is a con-
stant and thus independent of q(θ). Therefore maximizing
L(q) is equivalent to minimizing KL(q||p), and thus the poste-
rior distribution p(θ|y) can be approximated by q(θ) through
maximizing L(q).

The above decomposition (16) helps circumvent the diffi-
culty of computing the posterior probability p(θ|y), when it
is computationally intractable. Specifically, we could assume
some specific parameterized functional form for q(θ) and then
maximize L(q) with respect to the parameters of the distribu-
tion [38]. A particular form of q(θ) that has been widely used
with great success is the factorized form over the component
variables {θi} in θ [38], i.e., q(θ) =

∏
i qi(θi). We therefore

can compute the posterior distribution approximation by find-
ing q(θ) of the factorized form that maximizes the lower bound
L(q), which leads to [38]

qi(θi) =
e〈ln p(y,θ)〉k �= i

∫
e〈ln p(y,θ)〉k �= i dθi

, (19)

where 〈·〉k �=i denotes the expectation with respect to the distri-
butions qk (θk ) for all k �= i. By taking the logarithm on both
sides of (19), it can be equivalently written as

ln qi(θi) = 〈ln p(y,θ)〉k �=i + constant. (20)

B. Proposed Algorithm

We now proceed to perform variational Bayesian inference
for the proposed hierarchical model. Let θ � {X,Σ, γ} de-
note all hidden variables. Our objective is to find the posterior
distribution p(θ|y). Since p(θ|y) is usually computationally in-
tractable, we, following the idea of [38], approximate p(θ|y) as
q(X,Σ, γ) which has a factorized form over the hidden vari-
ables {X,Σ, γ}, i.e.,

q(X,Σ, γ) = qx(X)qΣ(Σ)qγ (γ). (21)

As mentioned in the previous subsection, the maximization of
L(q) can be conducted in an alternating fashion for each latent
variable, which leads to (details of the derivation can be found
in [38])

ln qx(X) = 〈ln p(Σ, γ)〉qΣ (Σ)qγ (γ ) + constant,

ln qΣ(Σ) = 〈ln p(X, γ)〉qx (X)qγ (γ ) + constant,

ln qγ (γ) = 〈ln p(X,Σ, )〉qx (X)qΣ (Σ) + constant,

where 〈〉q1 (·)...qK (·) denotes the expectation with respect to
(w.r.t.) the distributions {qk (·)}Kk=1 . Details of this Bayesian
inference scheme are provided next.

1) Update of qx(X): The calculation of qx(X) can be decom-
posed into a set of independent tasks, with each task computing
the posterior distribution approximation for each column of X ,
i.e., qx(xn ). We have

ln qx(xn ) = 〈ln[p(yn |xn )p(xn |Σ)]〉qΣ (Σ)qγ (γ ) + const

= 〈−γ(yn− xn)T On(yn− xn)− xT
nΣxn 〉+ const

= −xT
n (〈γ〉On + 〈Σ〉)xn + 2〈γ〉xT

n Onyn+ const
(22)

where yn denotes the nth column of Y and On � diag(on ),
with on being the nth column of Ω. From (22), it can be seen
that xn follows a Gaussian distribution

qx(xn ) = N (xn |μn ,Qn ) (23)

with μn and Qn given as

μn = 〈γ〉QnOnyn (24)

Qn = (〈γ〉On + 〈Σ〉)−1 (25)

We see that to calculate qx(xn ), we need to perform an inverse
operation of anM ×M matrix which involves a computational
complexity of O(M 3).



2808 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 11, JUNE 1, 2018

2) Update of qΣ(Σ): The approximate posterior qΣ(Σ) can
be obtained as

ln qΣ(Σ)

=

〈

ln

[
N∏

n=1

p(xn |Σ)p(Σ)

]〉

qx (X)

+ const

=

〈
N

2
ln |Σ| − 1

2
tr(XT ΣX) +

ν −M − 1
2

ln |Σ|

− 1
2

tr(W−1Σ)

〉

+ const

=
ν +N−M− 1

2
ln |Σ| − 1

2
tr((W−1 + 〈XXT 〉)Σ)+ const

(26)

From (26), it can be seen that Σ follows a Wishart distribution,
i.e.,

qΣ(Σ) = Wishart(Σ; Ŵ , ν̂) (27)

where

Ŵ = (W−1 + 〈XXT 〉)−1 (28)

ν̂ = ν +N (29)

3) Update of qγ (γ): The variational optimization of qγ (γ)
yields

ln qγ (γ) = 〈ln p(Y |X, γ)p(γ)〉qx (X) + const

=

〈

ln
∏

(m,n)∈S

p(ymn |xmn , γ)p(γ)

〉

+ const

=

〈
L

2
ln γ − γ

2

∑

(m,n)∈S

(ymn − xmn )2

+ (c− 1) ln γ − dγ

〉

+ const

=
(
L

2
+ c− 1

)

ln γ

−
⎛

⎝1
2

∑

(m,n)∈S

〈(ymn − xmn)2〉 + d

⎞

⎠γ + const (30)

where xmn and ymn denote the (m,n)th entry of X and Y , re-
spectively, S � {(m,n)|Ωmn = 1} is an index set consisting of
indices of those observed entries, and L � |S| is the cardinality
of the set S, in which Ωmn denotes the (m,n)th entry of Ω.

It is easy to verify that qγ (γ) follows a Gamma distribution

qγ (γ) = Gamma(γ|c̃, d̃) (31)

with the parameters c̃ and d̃ given respectively by

c̃ =
L

2
+ c,

d̃ =
1
2

∑

(m,n)∈S

〈(ymn − xmn )2〉 + d (32)

Algorithm 1: VB Algorithm for Matrix Completion.
Input: Y , Ω, ν and W .
Output: qx(X), qΣ(Σ), qγ (γ).

Initialize 〈Σ〉 and 〈γ〉;
while not converge do

for n = 1 to N do
Update qx(xn ) via (23), with qΣ(Σ) and qγ (γ)
fixed;

end for
Update qΣ(Σ) via (27), with qx(X) and qγ (γ) fixed;
Update qγ (γ) via (31);

end while

where

〈(ymn − xmn )2〉 = y2
mn − 2ymn 〈xmn 〉 + 〈x2

mn 〉 (33)

Some of the expectations and moments used during the update
are summarized as

〈Σ〉 = Ŵ ν̂ (34)

〈XXT 〉 = 〈X〉〈X〉T +
N∑

n=1

Qn (35)

〈x2
mn 〉 = 〈xmn 〉2 +Qn (m,m) (36)

where Qn (m,m) denotes the mth diagonal entry of Qn .
For clarity, we summarize our algorithm in Algorithm 1.
It can be easily checked that the computational complexity of

our proposed method is dominated by the update of the poste-
rior distribution qx(X), which requires computing an M ×M
matrix inverse N times and therefore has a computational com-
plexity scaling as O(M 3N). This makes the application of our
proposed method to large data sets impractical. To address this
issue, in the following, we develop a computationally efficient
algorithm which obtains an approximation of qx(X) by resort-
ing to the generalized approximate message passing (GAMP)
technique [39].

IV. VB-GAMP

GAMP is a low-complexity Bayesian iterative technique
recently developed in [39], [40] for obtaining approximate
marginal posteriors. Note that the GAMP algorithm requires
that both the prior distribution and the noise distribution
have factorized forms [39]. Nevertheless, in our model, the
prior distribution p(xn |Σ) has a non-factorizable form, in
which case the GAMP technique cannot be directly applied.
To address this issue, we first construct a surrogate problem
which aims to recover x ∈ RM from linear measurements
b ∈ RM :

b = UT x + e (37)

where U ∈ CM×M is obtained by performing a singular value
decomposition of 〈Σ〉 = USUT , U is a unitary matrix and
S is a diagonal matrix with its diagonal elements equal to the
singular values of 〈Σ〉, and e denotes the additive Gaussian noise
with zero mean and covariance matrix S−1 . We assume that
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entries of x are mutually independent and follow the following
distribution:

p(xm ) =

{
N (κm , ξ−1) ifπm = 1

C, ifπm = 0
(38)

where πm , xm , and κm denote the mth entry of π, x, and κ,
respectively, C is a constant, π, κ ∈ RM×1 and ξ are known
parameters. It is noted that although p(xm ) = C is an improper
prior distribution, it can often be used provided the correspond-
ing posterior distribution can be correctly normalized [30]. Also,
when πm = 0, κm can be any arbitrary value since we only use
C to characterize the distribution of p(xm ). Considering the
surrogate problem (37), the posterior distribution of x can be
calculated as

p(x|b) ∝ p(b|x)p(x)

∝ p(b|x)
∏

m∈S
p(xm )

= N (UT x,S−1)
∏

m∈S
N (κm , ξ−1) (39)

where S � {m|πm = 1}.
Taking the logarithm of p(x|b), we have

ln p(x|b) ∝ −1
2
(b − UT x)T S(b − UT x)

− 1
2
ξ
∑

m∈S
(xm − κm )2

= −1
2
(b − UT x)T S(b − UT x)

− 1
2
ξ(x − κ)T Π(x − κ)

∝ −1
2
xT(USUT + ξΠ)xT + (bT SUT + ξκT Π)x

(40)

where Π is a diagonal matrix with its mth diagonal entry equal
to πm . Clearly, p(x|b) follows a Gaussian distribution with its
mean μ and covariance matrix Q given by

μ = Q(USb + ξΠκ) (41)

Q = (USUT + ξΠ)−1 = (〈Σ〉 + ξΠ)−1 (42)

Comparing (24)–(25) with (41)–(42), we can readily verify that
when b = 0, κ = yn , π = on (i.e., Π = On ), and ξ = 〈γ〉,
p(x|b) is exactly the desired posterior distribution qx(xn ).
Meanwhile, notice that for the surrogate problem (37), both
the prior distribution and the noise distribution are factorizable.
Hence the GAMP algorithm can be directly applied to (37) to
find an approximation of the posterior distribution p(x|b). By
setting b = 0, κ = yn , π = on , ξ = 〈γ〉, an approximate of
qx(xn ) in (23) can be efficiently obtained. We now proceed to
derive the GAMP algorithm for the surrogate problem (37).

A. Solving (37) via GAMP

GAMP was developed in a message passing-based frame-
work. It was shown in [39, 40] that the loopy belief propagation

on the underlying factor graph can be greatly simplified and
efficiently performed via using central-limit-theorem approxi-
mations. Following [39, 40], the GAMP algorithm tailored to
our problem can be described as follows.

Firstly, GAMP approximates the true marginal posterior dis-
tribution p(xm |b) by

p̂(xm |b, r̂m , τ rm ) =
p(xm )N (xm |r̂m , τ rm )
∫
x p(xm )N (xm |r̂m , τ rm )

(43)

where r̂m and τ rm are quantities iteratively updated during the it-
erative process of the GAMP algorithm. Here, we have dropped
their explicit dependence on the iteration number k for simplic-
ity. For the case πm = 1, substituting the prior distribution (38)
into (43), it can be easily verified that the approximate posterior
p̂(xm |b, r̂m , τ rm ) follows a Gaussian distribution with its mean
and variance given respectively as

μxm = φxm (ξκm + r̂m /τ
r
m ) (44)

φxm =
τ rm

1 + ξτrm
(45)

Similarly, for the case πm = 0, substituting the prior distribu-
tion (38) into (43), the approximate posterior p̂(xm |b, r̂m , τ rm )
follows a Gaussian distribution with its mean and variance given
respectively as

μxm = r̂m (46)

φxm = τ rm (47)

Another approximation is made to the noiseless output
zi � uT

i x, where uT
i denotes the ith row of UT . GAMP ap-

proximates the true marginal posterior p(zi |b) by

p̂(zi |b, p̂i , τ pi ) =
p(bi |zi)N (zi |p̂i , τ pi )
∫
z p(bi |zi)N (zi |p̂i , τ pi )

(48)

where p̂i and τpi are quantities iteratively updated during the
iterative process of the GAMP algorithm. Again, here we
dropped their explicit dependence on the iteration number k.
Under the additive white Gaussian noise assumption, we have
p(bi |zi) = N (bi |zi, s−1

i ), where si denotes the ith diagonal el-
ement of S. Thus p̂(zi |b, p̂i , τ pi ) also follows a Gaussian distri-
bution with its mean and variance given by

μzi =
τpi sibi + p̂i
1 + siτ

p
i

(49)

φzi =
τpi

1 + siτ
p
i

(50)

With the above approximations, we can now define the fol-
lowing two scalar functions: gin(·) and gout(·) that are used in
the GAMP algorithm. The input scalar function gin(·) is simply
defined as the posterior mean μxm , i.e.,

gin(r̂m , τ rm ) = μxm =

{
φxm (ξκm + r̂m /τ

r
m ) ifπm = 1

r̂m ifπm = 0
(51)
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Algorithm 2: GAMP Algorithm.
Input: κ, π, b, and ξ.
Output: {r̂m , τ rm}, {p̂i , τ pi }, and {μxm , φxm}.

Initialization: Set ψ̂i = 0,∀i ∈ {1, . . . ,M}; {μxm}Mm=1
are initialized as the mean variance of the prior
distribution, and {φxm}Mm=1 are set to small values, say
10−5 .

while not converge do
Step 1. ∀i ∈ {1, . . . ,M}:

ẑi =
∑

m

ui,mμ
x
m

τpi =
∑

m

u2
i,mφ

x
m

p̂i = ẑi − τpi ψ̂i
Step 2. ∀i ∈ {1, . . . ,M}:

ψ̂i = gout(p̂i , τ
p
i )

τsi = − ∂

∂p̂i
gout(p̂i , τ

p
i )

Step 3. ∀m ∈ {1, . . . ,M}:

τ rm =

(
∑

i

u2
i,m τ

s
i

)−1

r̂m = μxm + τ rm
∑

i

ui,m ψ̂i

Step 4. ∀m ∈ {1, . . . ,M}:
μxm = gin(r̂m , τ rm )

φxm = τ rm
∂

∂r̂m
gin(r̂m , τ rm )

end while

The scaled partial derivative of τ rmgin(r̂m , τ rm ) with respect to
r̂m is the posterior variance φxm , i.e.,

τ rm
∂

∂r̂m
gin(r̂m , τ rm ) = φxm =

{
τ rm

1+ξτ rm
ifπm = 1

τ rm ifπm = 0
(52)

The output scalar function gout(·) is related to the posterior mean
μzi as follows

gout(p̂i , τ
p
i,n ) =

1
τpi

(μzi − p̂i) =
si(bi − p̂i)
1 + siτ

p
i

(53)

The partial derivative of gout(p̂i , τ
p
i ) is related to the posterior

variance φzi,n in the following way

∂

∂p̂i
gout(p̂i , τ

p
i ) =

φzi − τpi
(τpi )2 =

−si
(1 + siτ

p
i )

(54)

Given the above definitions of gin(·) and gout(·), the GAMP
algorithm tailored to the considered problem (37) can now be
summarized as follows (details of the derivation of the GAMP
algorithm can be found in [39]), in which ui,m denotes the
(i,m)th entry of UT .

Algorithm 3: VB-GAMP Algorithm for Matrix
Completion.

Input: Y , Ω, ν and W .
Output: qx(X), qΣ(Σ), and qγ (γ).

1: Initialize 〈X〉, 〈Σ〉;
2: while not converge do
3: Calculate singular value decomposition of 〈Σ〉;
4: for n = 1 to N do
5: Obtain an approximation of qx(xn ) via

Algorithm 2;
6: end for
7: Update qΣ(Σ) via (27);
8: Update qγ (γ) via (31);
9: end while

B. Discussions

We have now derived an efficient algorithm to obtain an ap-
proximate posterior distribution of x for (37). Specifically, the
true marginal posterior distribution of xm is approximated by a
Gaussian distribution p̂(xm |b, r̂m , τ rm ) with its mean and vari-
ance given by (44)–(45) or (46)–(47), depending on the value of
πm . The joint posterior distribution p(x|b) can be approximated
as a product of approximate marginal posterior distributions:

p(x|b) ≈ p̂(x|b) =
M∏

m=1

p̂(xm |b, r̂m , τ rm ) (55)

As indicated earlier, by setting b = 0, κ = yn , π = on , and ξ =
〈γ〉, the posterior distribution p̂(x|b) obtained via the GAMP
algorithm can be used to approximate qx(xn ) in (23).

We see that to approximate qx(X) by using the GAMP, we
first need to perform a singular value decomposition (SVD) of
〈Σ〉, which has a computational complexity of O(M 3). The
GAMP algorithm used to approximate qx(xn ) involves very
simple matrix-vector multiplications which has a computational
complexity scaling as O(M 2). Therefore the overall computa-
tional complexity for updating qx(X) is of order O(M 2N). In
contrast, using (24)–(25) to update qx(X) requires a compu-
tational complexity of O(NM 3). Thus the GAMP technique
can help achieve a significant reduction in the computational
complexity as compared with a direct calculation of qx(X). For
some practical problems involving completion of matrices with
very large dimensions, a computational complexity of O(M 2)
may be still high. Also, in such cases, the memory efficiency is
an important issue that should be considered. Since the compu-
tational complexity scales linearly withN , the proposed method
may be more suitable for cases whereM is relatively small while
N can be large.

For clarity, the VB-GAMP algorithm for matrix completion
is summarized as Algorithm 3.

The proposed method proceeds in a double-loop manner, the
outer loop calculate the variational posterior distributions qγ (γ)
and qΣ(Σ), and the inner loop computes an approximation of
qx(X). It is noted that there is no need to wait until the GAMP
converges. Experimental results show that GAMP provides a
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Fig. 2. Synthetic data: (a) Success rates vs. the rank of the matrix, ρ = 0.2; (b) Run times vs. the rank of the matrix, ρ = 0.2; (c) Success rates vs. the rank of
the matrix ρ = 0.5; (d) Run times vs. the rank of the matrix, ρ = 0.5.

reliable approximation of qx(xn ) even if only a few iterations
are performed. In our experiments, only one iteration is used to
implement GAMP.

V. EXPERIMENTS

In this section, we carry out experiments to illustrate the
performance of our proposed GAMP-assisted Bayesian matrix
completion method with hierarchical Gaussian priors (referred
to as BMC-GP-GAMP). Note that our method involves select-
ing a, b, ν, and W . To provide non-informative hyperpriors,
we usually set a, b, to be small values, say, a = b = 10−10 , and
W = 1010I . Also, we choose a small value of ν (ν = 1 in our
experiments) in order to encourage a low-rank precision matrix.
If we want to capture the smoothness between neighboring co-
efficients, the matrix parameter W can be chosen according to
(10) or (12), where (10) does not need to specify any parameter,
and (12) only involves a parameter θ whose choice can be easily
determined by trying different values of θ on a validation set
and selecting the best one.

We compare our method with several state-of-the-art meth-
ods, namely, the variational sparse Bayesian learning method
(also referred to as VSBL) [20] which models the low rank of

the matrix as the structural sparsity of its two factor matrices,
the bilinear GAMP-based matrix completion method (also re-
ferred to as BiGAMP-MC) [23] which implements the VSBL
using bilinear GAMP, the inexact version of the augmented
Lagrange multiplier based matrix completion method (also re-
ferred to ALM-MC) [15], a low-rank matrix fitting method (also
referred to as LMaFit) [41] which iteratively minimizes the fit-
ting error and estimates the rank of the matrix, and an L1-norm
regularized rank-one matrix completion method with automatic
rank estimation (also referred to L1MC) [28]. It should be
noted that VSBL, LMaFit, and L1MC require to set an over-
estimated rank. Codes of our proposed algorithm along with
other competing algorithms are available at http://www.junfang-
uestc.net/codes/LRMC.rar, in which codes of other competing
algorithms are obtained from their respective websites.

A. Synthetic Data

We first examine the effectiveness of our proposed method
on synthetic data. We generate the test rank-k matrix X of size
500 × 500 by multiplying A ∈ R500×k by the transpose of B ∈
R500×k , i.e., X = ABT . All the entries of A and B are sampled
from a normal distribution. We consider the scenarios where
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TABLE I
SUCCESS RATES/RUN TIMES VS. RANK

20% (ρ = 0.2) and 50% (ρ = 0.5) entries of X are observed.
Here ρ denotes the sampling ratio. The success rates as well as
the run times of respective algorithms as a function of the rank
of X , i.e., k, are plotted in Fig. 2 Results are averaged over 25
independent trials. A trial is considered to be successful if the
relative error is smaller than 10−2 , i.e., ||X − X̂||F /||X||F <
10−2 , where X̂ denotes the estimated matrix. For our proposed
method, the matrix parameter W is set to 1010I . The pre-defined
overestimated rank for VSBL, LMaFit and L1MC is set to be
twice the true rank. For the case ρ = 0.2, VSBL and BiGAMP-
MC present the same recovery performance with their curves
overlapping each other. From Fig. 2, we can see that

1) Our proposed method presents the best performance for
both sampling ratio cases. Meanwhile, it has a moderate
computational complexity. When the sampling ratio is set
to 0.5, our proposed method has a run time similar to the
ALM-MC method, while provides a clear performance
improvement over the ALM-MC.

2) The LMaFit method is the most computationally efficient.
But its performance is not as good as our proposed method.

3) The proposed method outperforms the other two Bayesian
methods, namely, the VSBL and the BiGAMP-MC, by a
big margin in terms of both recovery accuracy and compu-
tational complexity. Since the BiGAMP cannot automati-
cally determine the matrix rank, it needs to try all possible
values of the rank, which makes running the BiGAMP-
MC time costly.

Since the algorithm proposed in [24] (referred as to BRAM)
has a prohibitive computational complexity when the matrix
dimension is large, we only report its results on a small-size
data set. Specifically, we randomly generate a 50 × 50 matrix
with rank-k, and randomly select 40% entries as the observed
data. The success rates and average run times of our proposed
method and the BRAM are given in Table I. From Table I, we
see that our proposed method achieves a higher success rate
than the BARM. Also, it takes much less time for our proposed
algorithm to perform the matrix completion task.

B. Gene Data

We carry out experiments on gene data for genotype estima-
tion. The dataset [4] is a matrix of size 790 × 112 provided by
Wellcome Trust Case Control Consortium (WTCCC) and con-
tains the genetic information from chromosome 22. The dataset,
which is referred to as “Chr22”, has been shown in [4] to be
approximately low-rank. We randomly select 20% or 50% of
the entries of the dataset as observations, and recover the rest
entries using low-rank matrix completion methods. Again, for
our proposed method, the matrix parameter W is set to 1010I .
The pre-defined ranks used for VSBL, LMaFit and L1MC are

TABLE II
ERROR RATE/RUN TIME(S) FOR CHR22 DATASET

TABLE III
NMAE/RUN TIME(S) FOR 100K MOVIELENS DATASET

all set to 100. Following [4], we use a metric termed as “allelic-
imputation error rate” to evaluate the performance of respective
methods. The error rate is defined as

Error Rate =
nnz(|X − round(X̂)|)

T
(56)

where X and X̂ denotes the true and the estimated matrices,
respectively, the operation round(X) returns a matrix with each
entry of X rounded to its nearest integer, nnz(X) counts the
number of non-zero entries of X , and T denotes the number
of unobserved entries. We report the average error rates as well
as average run times of respective algorithms in Table II. From
Table II, we see that all methods, except the LMaFit method,
present similar results and the proposed method slightly outper-
forms other methods when 50% entries are observed. Despite
the superior performance on synthetic data, the LMaFit method
incurs large estimation errors for this dataset.

C. Collaborative Filtering

In this experiment, we study the performance of respective
methods on the task of collaborative filtering. We use the Movie-
Lens 100 k dataset,1 which consists of 105 ratings ranging from
1 to 5 on 1682 movies from 943 users. The ratings can form a
matrix of size 943 × 1682. We randomly choose 20% or 50%
of available ratings as training data, and predict the rest rat-
ings using respective matrix completion methods. The matrix
parameter W used in the proposed method is set to 1010I . The
pre-defined ranks used for VSBL, LMaFit and L1MC are all set
to 100. The performance is evaluated by the normalized mean
absolute error (NMAE), which is calculated as

NMAE =

∑
(i,j )∈S |xij − x̂ij |
(rmax − rmin)|S| (57)

where S is a set containing the indexes of those unobserved
available ratings, rmax and rmin denote the maximum and

1Available at http://www.grouplens.org/node/73/
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TABLE IV
IMAGE INPAINTING (PSNR/SSIM/RUN TIMES (S))

Fig. 3. Top row (from left to right): observed Butterfly image with missing pixels (ρ = 0.3), images recovered by BMC-GP-GAMP-I, BMC-GP-GAMP-II,
BMC-GP-GAMP-III, VSBL, respectively. Bottom row (from left to right): images recovered by LMaFit, BiGAMP-MC, ALM-MC, and L1MC, respectively.

minimum ratings, respectively. The results of NMAE and run
times are shown in Table III, from which we see that the pro-
posed method achieves the most accurate rating prediction when
the number of observed ratings is small.

D. Image Inpainting

Lastly, we evaluate the performance of different methods on
image inpainting. The objective of image inpainting is to com-
plete an image with missing pixels. We conduct experiments
on the benchmark images Butterfly and Lena, which are of size
256 × 256 and 512 × 512, respectively. In our experiments, we
examine the performance of our proposed method under differ-
ent choices of W . As usual, we can set W = 1010I . Such a
choice of W is referred to as BMC-GP-GAMP-I. We can also set
W according to (10) and (12), which are respectively referred
to as BMC-GP-GAMP-II and BMC-GP-GAMP-III. The param-
eters ε̂ and θ in (12) are set to 10−6 and

√
3, respectively. As

discussed earlier in our paper, the latter two choices exploit both
the low-rank structure and the smoothness of the signal. For the
Butterfly image, we consider cases where 30% and 50% of pix-
els in the image are observed. For the Lena image, we consider
cases where 20% and 30% of pixels are observed. We report the
peak signal to noise ratio (PSNR) as well as the structural simi-
larity (SSIM) index of each algorithm in Table IV. The original

image with missing pixels and these images reconstructed by
respective algorithms are shown in Fig. 3, 4, 5, and 6. From
Table IV, we see that with a common choice of W = 1010I ,
our proposed method, BMC-GP-GAMP-I, outperforms other
methods in most cases. When W is more carefully devised,
our proposed method, i.e., BMC-GP-GAMP-II and BMC-GP-
GAMP-III, surpasses other methods by a substantial margin in
terms of both PSNR and SSIM metrics. This result indicates that
a careful choice of W that captures both the low-rank structure
as well as the smoothness of the latent matrix can help substan-
tially improve the recovery performance. From the reconstructed
images, we also see that our proposed method, especially BMC-
GP-GAMP-II and BMC-GP-GAMP-III, provides the best visual
quality among all these methods. We observed that the images
recovered by our proposed method are not very smooth along
the row dimension, particularly when the matrix W is chosen
to encourage the columnwise smoothness of the solution. The
loss of smoothness along the row dimension is possibly because
columns of X are assumed to be mutually independent in our
prior model. On the other hand, due to its potential to promote
a low-rank solution, our prior model is supposed to enhance the
similarity of columns and improve the row-wise smoothness.
Although imposing column-wise smoothness results in a cer-
tain amount of loss of smoothness along the row direction, it
generally helps obtain a better visual quality.
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Fig. 4. Top row (from left to right): observed Butterfly image with missing pixels (ρ = 0.5), images recovered by BMC-GP-GAMP-I, BMC-GP-GAMP-II,
BMC-GP-GAMP-III, VSBL, respectively. Bottom row (from left to right): images recovered by LMaFit, BiGAMP-MC, ALM-MC, and L1MC, respectively.

Fig. 5. Top row (from left to right): observed Lena image with missing pixels (ρ = 0.2), images recovered by BMC-GP-GAMP-I, BMC-GP-GAMP-II,
BMC-GP-GAMP-III, VSBL, respectively. Bottom row (from left to right): images recovered by LMaFit, BiGAMP-MC, ALM-MC, and L1MC, respectively.

Fig. 6. Top row (from left to right): observed Lena image with missing pixels (ρ = 0.3), images recovered by BMC-GP-GAMP-I, BMC-GP-GAMP-II,
BMC-GP-GAMP-III, VSBL, respectively. Bottom row (from left to right): images recovered by LMaFit, BiGAMP-MC, ALM-MC, and L1MC, respectively.
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VI. CONCLUSION

The problem of low-rank matrix completion was studied in
this paper. A hierarchical Gaussian prior model was proposed
to promote the low-rank structure of the underlying matrix, in
which columns of the low-rank matrix are assumed to be mu-
tually independent and follow a common Gaussian distribution
with zero mean and a precision matrix. The precision matrix
is treated as a random parameter, with a Wishart distribution
specified as a hyperprior over it. Based on this hierarchical prior
model, we developed a variational Bayesian method for matrix
completion. To avoid cumbersome matrix inverse operations,
the GAMP technique was used and embedded in the variational
Bayesian inference, which resulted in an efficient VB-GAMP
algorithm. Empirical results on synthetic and real datasets show
that our proposed method offers competitive performance for
matrix completion, and meanwhile achieves a significant reduc-
tion in computational complexity.

APPENDIX A
DETAILED DERIVATION OF (7)

We provide a detailed derivation of (7). We have

p(X) =
∫ N∏

i=1

p(xi |Σ)p(Σ)dΣ

∝
∫ ( |Σ|

(2π)M

)N
2

exp
(

−1
2

tr(XT ΣX)
)

× |Σ| ν −M −1
2 exp

(

−1
2

tr(W−1Σ)
)

dΣ

∝ 2
ν M

2 π−M N
2 ΓM

(
ν +N

2

)

|W−1 + XXT |− ν + N
2

×
∫ |Σ| ν + N −M −1

2 exp(− 1
2 Tr((W−1 + XXT )Σ))

2
( ν + N )M

2 |(W−1 + XXT )−1 | ν + N
2 ΓM ( ν+N

2 )
dΣ

(58)

where

ΓM (x) = π
M (M −1 )

4

M∏

j=1

Γ
(

x+
1 − j

2

)

(59)

Note that the term in the integral of (58) is a standard Wishart
distribution with ν +N degrees of freedom and variance matrix
(W + XXT )−1 . Thus we arrive at

p(X) ∝ 2
ν M

2 π−M N
2 ΓM

(
ν +N

2

)

|W−1 + XXT |− ν + N
2

∝ |W−1 + XXT |− ν + N
2 (60)

APPENDIX B
PROOF OF LEMMA 1

Since we have |XXT + W−1 | = |W−1 ||WXXT + I|,
we only need to prove

|WXXT + I| = |XT WX + I| (61)

Recalling the determinant of block matrices, we have

|WXXT + I| =

∣
∣
∣
∣
∣
I XT

0 WXXT + I

∣
∣
∣
∣
∣

(62)

and

|I| =
∣
∣
∣
∣

I 0
−WX I

∣
∣
∣
∣ =

∣
∣
∣
∣
I −XT

0 I

∣
∣
∣
∣ (63)

which yields

|WXXT + I|

=
∣
∣
∣
∣
I XT

0 WXXT + I

∣
∣
∣
∣

=
∣
∣
∣
∣

[
I −XT

0 I

][
I 0

−WX I

][
I XT

0 WXXT + I

]∣
∣
∣
∣

=
∣
∣
∣
∣
XT WX + I 0

−WX I

∣
∣
∣
∣

= |XT WX + I| (64)

Thus we have

log |XXT + W−1 | = log |W−1 |+ log |I +XT WX| (65)

This completes the proof.
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