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Abstract—We consider the problem of joint delay-Doppler esti-
mation of amoving target in a passive radar that employs a non-co-
operative illuminator of opportunity (IO) for target illumination,
a reference channel (RC) steered to the IO to obtain a reference
signal, and a surveillance channel (SC) for target monitoring. We
consider a practically motivated scenario, where the RC receives a
noise-contaminated copy of the IO signal and the SC observation
is polluted by a direct-path interference that is usually neglected
by prior studies. We develop a data model without discretizing the
parameter space, which may lead to a straddle loss, by treating
both the delay and Doppler as continuous parameters. We propose
an expectation-maximization based estimator, as well as a modi-
fied cross-correlation (MCC) estimator that is a computationally
simpler solution resulting from an approximation of the former.
In addition, we derive the Cramér-Rao lower bound for the esti-
mation problem. Simulation results are presented to illustrate the
performance of the proposed estimators and the widely used CC
estimator.
Index Terms—Direct-path interference, joint delay-Doppler es-

timation, noisy reference, passive sensing.

I. INTRODUCTION

P ASSIVE sensing is employed in many applications, such
as radar, underwater acoustics, seismology, and many

others [1]–[7]. A passive radar system, which detects and tracks
targets of interest by utilizing non-cooperative illuminators of
opportunity (IOs) [1]–[5], has a number of benefits compared
with its active counterpart. First, since a transmitter is not
required, a passive radar is smaller and less expensive. Second,
by using ambient communication signals, such as radio and
television broadcasting signals [3], [4], a passive radar has the
ability to operate in a wide frequency band without causing
interference to existing wireless systems. Finally, spatial di-
versity can be readily exploited for improved target detection
and classification capabilities through bistatic or multistatic
configuration of a passive radar system [8].

Manuscript received May 05, 2015; revised August 27, 2015; accepted
September 24, 2015. Date of publication October 08, 2015; date of current
version January 05, 2016. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Joseph Guerci.
X. Zhang and H. Li are with the Department of Electrical and Computer En-

gineering, Stevens Institute of Technology, Hoboken, NJ 07030 USA (e-mail:
xzhang23@stevens.edu; Hongbin.Li@stevens.edu).
J. Liu was with the Department of Electrical and Computer Engineering,

Stevens Institute of Technology, Hoboken, NJ 07030 USA. He is now with
the National Laboratory of Radar Signal Processing, Xidian University, Xi'an,
710071, China (e-mail: jun_liu_math@hotmail.com).
B. Himed is with the AFRL/RYMD, Dayton, OH 45433 USA (e-mail:

braham.himed@us.af.mil).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2488584

Since the transmitted signal is unknown due to the non-co-
operative nature of the IO, a passive radar often utilizes a
reference channel (RC) at the receiver to collect a direct-path
(transmitter-to-receiver) signal and, respectively, a surveillance
channel (SC) to measure a potential target echo [1]–[4]. An RC
is usually implemented by using directional antennas [9]. Given
both the RC and SC observations, a cross-correlation (CC)
operation can be conducted between the two channels to mimic
matched filtering (MF) in active radar, where the reference
signal obtained with the RC plays the role of the transmitted
signal in the MF operation. However, the CC operation is
sub-optimal, because the reference signal is contaminated by
the inevitable channel noise in the RC. In [10], [11], the effect
of noise in the RC is taken into account, and several improved
passive detectors are developed by treating the transmitted
waveform as a deterministic or random process. The effect
of noise is also examined in [12] in a passive multi-input
multi-output (MIMO) radar setup, where the interplay between
the noise in the RC and the noise in the SC is extensively
studied. Instead of using a dedicated RC to measure the trans-
mitted signal, an alternative approach to passive sensing is to
employ multi-channel observations (e.g., via an antenna array)
of the target echo and exploit the inter-channel correlations for
target estimation and detection [13]–[16]. Sometimes, the trans-
mitted signal may exhibit certain modulation induced structures
that can be exploited for passive sensing without using a
dedicated RC as well. For example, the P1 symbol embedded
in the second generation digital video broadcasting-terrestrial
(DVB-T2) signals is employed for target detection in [17]
and [18].
Nevertheless, there exist some issues in the above studies.

One limitation is that either the target parameters (propagation
delay and Doppler shift) are assumed known, or a scanning
process is involved in the detection process, where the two-di-
mensional delay-Doppler uncertainty region is discretized into
small cells and the detection is performed on each cell in a se-
quential fashion (e.g., [10]–[16]). Such discretization may lead
to a straddle loss and degraded detection performance. Another
limitation with the previous studies is that they often assume the
SC only receives the target echo but not the direct-path signal
from the transmitter. In practice, while the direct-path signal is
mitigated by, e.g., a directional antenna, some residual, hence-
forth referred to as the direct-path interference (DPI), may still
exist in the SC. In particular, the direct-path signal is generally
much stronger (by many tens of dB) compared with the target
echo [19]. Non-negligible DPI may be caused by possible mis-
matches between the null of the antenna and the direction of
arrival of the DPI due to, e.g., vibrations of the radar platform
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[20]. Furthermore, when an adaptive antenna array is used to
mitigate the DPI [20], [21], the mitigation is limited by the array
size which dictates the null depth. As a result, the DPI in the SC
may still be at a power level comparable to the target echo.
We examine herein the joint delay-Doppler estimation

problem for passive sensing by using observations from an
RC and SC. We consider the case when both channels are
contaminated by non-negligible disturbance and, in addition,
the DPI is present in the SC. The problem involves estimating
the delay and Doppler of the target and other related param-
eters including the transmitted waveform and the channel
coefficients of the SC. Unlike conventional methods (e.g., the
aforementioned scanning based solutions) that discretize the
parameter space and may lead to a straddle loss, we develop
a data model which treats both the delay and Doppler as con-
tinuous parameters without discretization. As the problem is
highly non-linear, we develop an iterative estimation algorithm
based on the expectation-maximization (EM) principle [22],
along with several simplifications aimed at improving the
computational efficiency. Analysis is provided to shed light on
the problem, which reveals that the proposed algorithm consists
of iterations of sequential DPI cancellation and data fitting.
Based on this insight, we introduce a modified CC estimator,
which is computationally more efficient, involving a single
DPI cancellation followed by cross-correlation. In addition, we
derive the Cramér-Rao lower bound (CRLB) for the estimation
problem to benchmark the proposed estimators.
The remainder of the paper is organized as follows. In

Section II, we formulate the passive radar system model. In
Section III, the proposed approaches and the CRLB are derived.
Numerical results and discussions are included in Section IV,
followed by conclusions in Section V.
Notation: Vectors (matrices) are denoted by boldface lower

(upper) case letters, and all vectors are column vectors. Super-
scripts , , and denote complex conjugate, trans-
pose, and complex conjugate transpose, respectively. rep-
resents the real part of a complex quantity and denotes
statistical expectation. denotes a matrix with all zero
entries, denotes an identity matrix of size , stands for
the Hadamard product, denotes an entry at the -th row
and the -th column of a matrix, and denotes the -th ele-
ment of a vector. denotes a circularly symmetric, complex
Gaussian represents the determinant of a matrix, is
the Frobenius norm, and denotes the trace of a matrix.

II. SYSTEM MODEL

Consider a scenario depicted in Fig. 1, where a passive radar
employs a non-cooperative illuminator of opportunity (IO) for
moving target detection and estimation. The passive radar is
equipped with an RC to receive the unknown source signal sent
directly from the IO, as well as an SC to observe the target echo.
A directional antenna is utilized at the passive radar receiver to
form the RC, with its main-beam pointing to the IO. Then, the
signal received in the RC can be written as

(1)

where is the unknown signal (baseband equivalent) trans-
mitted by the IO, is the scaling coefficient accounting for the

Fig. 1. A passive radar system with a reference channel and surveillance
channel.

antenna gain and the channel propagation effects from the IO
to the RC, is the propagation delay between the IO and the
RC, and is the additive zero-mean Gaussian disturbance
(clutter and noise) in the RC.
For the SC, a different antenna or antenna beam is used to

receive the target echo. Although it is standard for the SC to
employ someDPI suppression scheme, there may still exist non-
negligible DPI as noted before. The signal received in the SC
can be expressed as

(2)

where is the scaling coefficient considering the antenna at-
tenuation and the channel propagation effects from the IO to
the SC, is the propagation delay of the DPI, which is iden-
tical to that in (1) since the RC and SC are co-located, is the
scaling coefficient accounting for the target reflectivity, the an-
tenna gain, and the channel propagation effects, is the propa-
gation delay due to the transmission from the IO to the target and
then from the target to the SC, is the Doppler frequency, and

is the additive zero-mean Gaussian disturbance (clutter
and noise) in the SC.
To simplify our system model, it is observed that the bistatic

delay is of interest in practice, and the direct-path
delay is generally known a priori since the location of the IO is
usually known. Thus, we can compensate for the delay in the
received signals.Moreover, since and are both unknown,
they cannot be separately estimated. In the sequel, is absorbed
into . Define the delay-compensated signals as

and . The delay-compensated
disturbances and are similarly defined. Accordingly,
the system model in the time domain can be formulated into a
compact form:

(3)

where , , and . Note
that our system model is notably different from those in prior
delay-Doppler estimation works (e.g., [23]–[26]), due to the dif-
ferent application targeted herein, namely, the 2-channel passive
sensing problem with DPI.
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We assume that has a duration of seconds, e.g., due
to the framed transmissions employed by the IO, in which case
represents the frame duration. The observation interval

is selected such that , where denotes the
maximum bistatic delay of the passive radar system. We sample
the RC and the SC signals using a sampling frequency

, where denotes the bandwidth of the communication
signal and is the maximum Doppler frequency of the
target that is designed detectable by the passive radar. Suppose

samples are collected over the observation window , i.e.,
where denotes the sampling interval. Let

,
1 and , , , and

be similarly defined vectors formed from samples of
, , , and , respectively. The digitized model

becomes

(4)

where

(5)

In this work, we assume , , and are zero-mean
Gaussian distributed with covariance matrices , , and

, respectively. In particular, it is noted that the signal
waveform is modeled as a correlated stochastic process. This
stochastic model is suitable for the IOs using orthogonal fre-
quency division multiplexing (OFDM) based modulations,
which involve multiple random information streams riding on
different subcarribers to form a composite transmitted signal
and can be well appropriated as Gaussian by the central limit
theorem [11]. OFDM based modulations are popular choices
for broadband wireless systems including the DVB-T2.
Denote the -point discrete Fourier transform (DFT) of

as , where the DFT matrix has the entries
, , with the fre-

quency spacing , and , , , , are
similarly defined vectors. Let

(6)

where

if

otherwise (7)

for . Applying basic DFT properties [27],
we can write the system model in the frequency domain as

(8)

where is a circulant matrix formed from
and is a diagonal matrix with diagonal entries

1We assume is not discretized, i.e., it is arbitrary and not necessarily an
integer multiple of .

, . Since the
sequence is periodic with period , we have

. Hence, the matrix is

(9)

Clearly, , , and are Gaussian random vectors with
zero mean and covariance matrices ,

, and . It is assumed
that the vectors , , are mutually independent and their
covariance matrices , , are known. In practice, the
covariance matrices can be estimated by exploiting training
data [28].
The problem of interest is to jointly estimate the unknown

parameters , , , and from the observations and . In
the following, the arguments in the matrices and
are dropped for simplicity.

III. PROPOSED APPROACHES

Let . Clearly, is Gaussian with zero mean
and covariance matrix

(10)

where

(11)
(12)

(13)

One may resort to the maximum likelihood (ML) estimation,
and the ML estimates can be obtained by

(14)

Unfortunately, the ML cost function is highly non-linear. A
brute force search over the multi-dimensional parameter space
is computationally difficult. In the following, we consider al-
ternative solutions by exploiting the expectation-maximization
(EM) principle and approximations.

A. Em Estimator

The first step of the EM algorithm is to specify the “complete”
data , whereas the observed data is regarded as the “incom-
plete” data [22]. In our case, we can set as

(15)

The EM algorithm starts with an initial guess of the parameters
. Given the parameter estimates obtained after the -th itera-

tion, , the -th iteration consists of an expectation step
(E-step) followed by a maximization step (M-step):
E-step:

(16)
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M-step:

(17)

The E-step is precisely to find the expectation of the log-likeli-
hood function (LLF) of the “complete” data , which is taken
with respect to the signal waveform and conditioned on obser-
vations and . The M-step is to maximize the expectation
with respect to the unknown parameters. This iteration cycle is
repeated until the algorithm converges, e.g., for some small tol-
erance ,

(18)

The expectation is computed in Appendix A. Furthermore, it
is shown there that the maximization (17) is equivalent to

(19)

where

(20)

with , , , , and are defined
in (56)–(60).
Jointly minimizing (20) with respect to the unknown param-

eters is still quite involved. Further simplifications can be made
by using the person-by-person optimization idea [29]. Specifi-
cally, we partition the unknown parameters into three subsets as

, , and , and minimize the cost function sequen-
tially over these subsets. This leads to

(21)

(22)

(23)

The solutions to (21) and (22) can be obtained
by using Newton's method, which is discussed in
Appendix B. For the sub-problem (23), the cost function

is a quadratic function with
respect to and . Taking partial derivative of the cost
function with respect to the conjugate of and setting it equal
to zero, we have

(24)

Substituting (24) into the quadratic cost function, followed by
taking the derivative with respect to the conjugate of and set-
ting to zero, we have

(25)

It follows that

(26)

In the above equations, , , and are the resultant quan-
tities obtained by substituting and into (57), (58),
and (60), respectively.
Our proposed algorithm is summarized in Algorithm “EM

Estimator”.

Algorithm: EM Estimator

Input: observations and , initial estimate of , and
convergence tolerance .

Output: an estimate of .

for do

1) Compute and by substituting the -th estimate
into (12) and (13).

2) Compute IO signal estimate and by (51) and
(54).

3) Update the estimates of and by solving (21) and (22).

4) Substitute the results in Step 2) and Step 3) into (56)–(60),
and update the estimates of and using (25) and (26).

5) Check the stopping condition (18).

end for

return the latest estimate of .

Remark 1: Under the condition that the disturbance in the
SC is white, we show in Appendix C that the M-step of the EM
algorithm reduces to

(27)

It is noted that represents the observed SC signal
after subtracting an estimated DPI based on the parameter es-
timates from the last iteration, and represents an
estimate of the target echo. Hence, the updating of and
estimates can be interpreted as DPI cancellation followed by a
cross-correlation process.
Remark 2: To gain additional insight into the general scenario

when the SC disturbance is colored, we show inAppendix C that
the M-step of the EM algorithm can be written as

(28)

It is seen that updating and is equivalent to solving a
weighted least squares problem. The weighting matrix is the
disturbance covariance matrix in the SC.
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B. Modified Cross-Correlation Estimator
Based on the above remarks, we introduce a modified CC

(MCC) estimator by taking into account the effect of DPI. The
MCC first obtains a coarse estimate of the DPI amplitude as

(29)

Then, and can be estimated by

(30)

Finally, the amplitudes can be estimated as

(31)

(32)

where , , , and
. The MCC estimator is computa-

tionally more efficient than the EM estimator. Clearly, the MCC
method reduces to the conventional CC method by ignoring the
DPI, i.e., by setting .

C. CRLB
To benchmark the proposed estimators, the CRLB for the

considered estimation problem is calculated next. Since the am-
plitude parameters and are complex, we define the real pa-
rameter vector
where and . Using the Slepian-
Bangs formula [30, p. 525], the entries of the 6-by-6 Fisher in-
formation matrix (FIM) are

(33)
where

(34)

and

The matrices and are given by (68) and (73), respectively,
in Appendix B. Consequently,

(35)

TABLE I
PARAMETERS USED IN SIMULATIONS

IV. NUMERICAL SIMULATIONS

In our simulations, we use a first-order autoregressive AR (1)
process to model the narrowband IO signal . The AR co-
efficient and noise variance of the AR (1) process are denoted by

and , respectively. Let , so that the AR (1)
process has unit average power with an auto-correlation func-
tion given by . The temporal covariance
matrix of the IO waveform is

(36)

where
and is the average power of the IO waveform. We as-
sume that the disturbance in the RC and SC is zero-mean
white Gaussian distributed with covariance matrices:

. The
signal-to-noise ratio (SNR) in the RC is defined as

(37)

the DPI-to-noise ratio (DNR) in the SC is

(38)

and the SNR in the SC is

(39)

Assuming that the IO employs a framed transmission with a
frame length of seconds, in the above expressions
denotes the number of IO signal samples. As explained in
Section II, the observation window has samples
to include possible bistatic delay of the target. So, out of the
observed samples used for estimation, there are only
non-zero signal samples, which is why the normalization factor
of is included in the above definitions. The
parameters used in simulations are shown in Table I. Note that
the sampling rate is normalized as , and thus .
For delay and Doppler frequency estimation, we use Monte

Carlo simulations to measure the mean-square errors (MSEs) of
the considered estimators according to
and , respectively. Note that the
Doppler frequency estimate is normalized by , which
represents the bin spacing in Doppler processing. Hence,
the can be interpreted as the estimation accuracy
relative to the Fourier resolution. For amplitude estimation,
we use the normalized standard deviation (NSD) defined as

. The reason for using
the NSD is because the parameter may change with different
SNR (as in Fig. 2), and the normalization helps to see the trend
as the SNR changes. The definition for is similar.
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Fig. 2. Performance comparisons with and . (a) time delay; (b) Doppler frequency; (c) target echo amplitude; (d) DPI amplitude.

Fig. 3. Performance comparisons with and . (a) time delay; (b) Doppler frequency.

Fig. 2 considers a scenario where the RC is noisy
and the DPI in the SC is strong . Note

that the conventional CC estimator cannot provide the estimate
of and hence is not included in Fig. 2(d). It is seen that the EM
estimator is the best in this scenario and achieves the CRLB as

increases. In addition, the MCC estimator is worse than
the EM estimator, but outperforms the CC estimator. The CC

estimator fails completely in this scenario, mainly because of
the strong DPI in the SC. The MCC estimator, also affected by
the DPI, is able to correctly locate the target only when
is high enough.
In contrast to Fig. 2, Fig. 3 considers a more benign environ-

ment with and . In this case,
the EM estimator still outperforms the MCC and CC estimators
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Fig. 4. Performance comparisons with and . (a) time delay; (b) Doppler frequency.

Fig. 5. Performance comparisons with and . (a) time delay; (b) Doppler frequency.

in the low region. As increases, the performances
of all three estimators are similar and approach the CRLB. As
expected, the CC estimator performs very close to the MCC es-
timator in this case, due to the fact that the DPI in the SC is
very weak. A comparison of Figs. 2 and 3 reveals that the MCC
and CC estimators are sensitive to the quality of the reference
signal as well as the DPI, while the EM estimator is more robust
against these factors.
Fig. 4 depicts the estimation performance with respect to

when and . This param-
eter setting indicates that the target echo is much weaker than
the DPI and can be easily masked by the DPI or its sidelobes.
Again, we observe that the CC estimator does not work at all,
even when the reference signal in the RC becomes very clean.
This result is still due to the fact that the CC cannot handle a
strong DPI. The EM estimator outperforms the MCC and CC
estimators, especially at low , where the EM curve is also
very close to the CRLB. It can be seen that the MCC estimator
improves with the and approaches the EM performance.
Besides, when the RC is noisy (i.e., in the low region),
the performance of the MCC estimator can not be differentiated
from that of the CC estimator because of the ineffective DPI
cancellation (also seen in Fig. 2).

In this simulation, we also consider the effect of multiple tar-
gets to the proposed EM estimator. We simulated a two-target
scenario, where the first target has the same parameters as be-
fore, while the second target has a delay of 20 and a Doppler
frequency of , and an SNR of . The delay and
Doppler estimation performance of the EM estimator for the
first target is included in Fig. 4 as “EM (multi-target)”. It is seen
that there is some degradation of the EM estimator in the pres-
ence of multiple targets relative to the single-target case, but
the estimator is still functional. The reason can be seen from
Remark 1 in Section III-A. In essence, following DPI cancel-
lation, the EM estimator uses a peak finding procedure to ob-
tain the delay and Doppler estimates. With multiple targets, the
procedure is able to identify the strongest target. The weaker
targets can be estimated by subtracting the stronger ones and a
similar peak finding procedure. It should be noted that at suf-
ficiently high , EM (multi-target) becomes slightly worse
thanMCC, which is expected, since for the latter, the signal con-
tains only a single target.
Fig. 5 provides the performance comparison with respect to

, where and are fixed at 5 dB and 0 dB, re-
spectively. From this figure, we see that the EM estimator still
has the best performance and can achieve the CRLB. In par-
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ticular, it is seen that the EM estimator is robust to the DPI.
Both the MCC and CC estimators are sensitive to DPI and the
MCC estimator outperforms the CC estimator when the DPI is
moderate. The EM estimator requires the signal covariance ma-
trix , which may be unknown and needs to be estimated. In
Fig. 5, we have also included the performance of the EM es-
timator with an estimated covariance matrix , which is ob-
tained by using the reference signal. Specifically, we use the un-
biased correlation estimator on the reference signal to estimate
the signal correlation sequence, which is windowed by using a
tapering window, and a Toeplitz covariance matrix estimate
is formed by the windowed correlation sequence. The results
are shown in Fig. 5 as “EM (est. cov. matrix, 256 samples)” and
“EM (est. cov. matrix, 1000 samples)”. Two cases are included.
The first uses only the samples from the reference
channel to estimate ; these are the same reference signal sam-
ples used by all other estimators and, hence, no extra training
data is involved. In the second case, is estimated with 1000
samples from the training data. It is seen from Fig. 5 that, as ex-
pected, there is some degradation of the EM estimator, and the
degradation decreases as more training data is available.
Finally, we consider the computational complexity of the CC,

MCC, and EM methods. As pointed out earlier, the EM esti-
mator is notably more involved than the other methods. To pro-
vide more details, we numerically measure the complexity by
the elapsed time in Matlab, using a PC running Matlab R2013b
in Windows 7 Professional (64-bit) with 3.30 GHz CPU and
8 GB RAM. For the set-up in Fig. 5, the CC estimator needs
0.37 seconds on average, the MCC estimator needs 0.42 sec-
onds, while the EM estimator needs 5.83 seconds. Hence, the
proposed EM estimator achieves the improved estimation accu-
racy at the cost of higher complexity.

V. CONCLUSION

In this paper, we examined the joint delay and Doppler
estimation problem for passive sensing in the presence of
disturbance (clutter and noise) and DPI. Unlike conventional
methods, our approach treats the delay and Doppler as con-
tinuous parameters without discretization. We proposed an
EM based estimator as well as an MCC estimator which is
computationally more efficient. We also derived the CRLB
for the joint estimation problem. Numerical results show that
the EM estimator significantly outperforms the MCC and CC
estimators when the RC is noisy and the DPI is stronger than
the target echo. Under this challenging condition, the MCC
estimator enjoys some benefits provided by DPI cancellation
and is notably better than the CC. When the RC is clean and
the DPI is weaker than the target echo, the EM estimator still
outperforms the other approaches in the low region, but
that advantage diminishes as increases. In general, the
MCC and CC estimators are more sensitive to the quality of
the reference signal and the DPI effects than the EM estimator.
The CRLB is provided as a benchmark of the estimation per-
formance. It is shown that the performance of the EM estimator
is very close to the predicted accuracy.

APPENDIX A
PROOF OF (19)

The likelihood function of the “complete” data
is

(40)

where

(41)

Thus, the LLF can be written as

(42)

where

(43)

(44)

The cost function is consequently given by

(45)

Note that only the second term in (45) involves the parameters
to be estimated and that the first term is constant in the M-step.
Therefore, we have the following result for the M-step,

(46)

where

(47)

Next, we find an explicit expression for . Let

(48)

Since and are jointly Gaussian, has a closed-form ex-
pression. By denoting

(49)

(50)
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where and are obtained by substituting the -th esti-
mate into (12) and (13), respectively, we have [30, p. 324]

(51)

where the third equality is obtained by using the block matrix
inversion formula [31], and the Schur complements and
are defined by

(52)

(53)

Consequently,

(54)

where the fourth equality is also a result of using the block ma-
trix inversion formula. Finally, we get

(55)

where

(56)

(57)

(58)

(59)

(60)

APPENDIX B
SOLUTION TO (21) AND (22)

To solve (21), a coarse one-dimensional search is conducted
to find an initial estimate. Then, the solution is refined by ex-
ploiting the following necessary condition of optimality

(61)

where

(62)

Newton's method is used to find the root of the first derivative
in the neighborhood of the initial estimate. Specifically, at

the -th iteration of Newton's method, we compute

(63)

where is the gradient

(64)

This process is repeated until convergence.
The first two derivatives and are obtained using

the following results:

(65)

and

(66)

where

(67)

The diagonal matrices and have diagonal entries

(68)

and

(69)

respectively, for .
A similar Newton's approach can be applied to (22), where

(70)



ZHANG et al.: JOINT DELAY AND DOPPLER ESTIMATION FOR PASSIVE SENSING 639

(73)

(74)

and

(71)

with

(72)

The entries of and are shown in (73) and (74), at the top
of the page, respectively.

APPENDIX C
DERIVATION OF (27) AND (28)

As the iterative process converges, we have: (i) ,
(ii) , and (iii) . Thus, (21) and
(22) can be approximated as

(75)

where the first approximation is due to (i) and (ii), the second
one is obtained by using (iii), and

(76)

By ignoring the second term of the last equation in (76), which
does not depend on and , we obtain (28). When the distur-
bance in the SC is white Gaussian distributed with unit power,
i.e., , (28) can be simplified as (27).
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