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a b s t r a c t 

This paper examines the target detection problem for a passive multistatic radar employing illuminators 

of opportunity (IOs), where the receivers are contaminated by non-negligible noise and direct-path inter- 

ference (DPI). A parametric approach is proposed by modeling the unknown signal transmitted from the 

IO as an auto-regressive (AR) process whose temporal correlation is jointly estimated and exploited for 

passive detection. The proposed solution is developed based on the generalized likelihood ratio test prin- 

ciple, which involves non-linear estimation that is solved by using the expectation-maximization (EM) 

algorithm. We also discuss the initialization of the EM algorithm and the joint adaptive model order esti- 

mation for the AR process without using any training signal. In addition, we extend several conventional 

passive detectors, which were introduced by assuming no DPI is present, to provide them with an ability 

to handle the DPI problem. A clairvoyant matched filtering (MF) detector is derived as well assuming the 

knowledge of the IO waveform. Extensive simulation results are presented, using simulated waveforms 

whose temporal correlation can be easily controlled, as well as practical IO waveforms transmitted by 

frequency modulation (FM) radio. The results show that the proposed EM-based passive detector outper- 

forms conventional passive detectors due to the exploitation of the waveform correlation. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

By exploiting non-cooperative illuminators of opportunity (IOs),

uch as radio, television, and cellular signals, passive radar can

etect and track targets of interest without requiring a dedicated

ransmitter [1–5] . Passive radar has several advantages compared

ith an active system, including its covertness, because of the lack

f a transmitter. It is easier to deploy a passive radar without in-

urring additional spectrum usage. Furthermore, a passive radar

an readily employ a multistatic configuration by accessing mul-

iple IOs at different locations, which leads to spatial diversity and

mproved sensing capabilities [6,7] . 

Passive sensing is more challenging than its active counterpart.

 primary reason is that the IO waveform is unknown to the re-

eiver. There are two general approaches to deal with the unknown

O waveform. The first is to treat the IO waveform as a determinis-
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ic process. One popular solution within this category is the cross-

orrelation (CC) method [1,2,5,8] , which employs a reference chan-

el (RC) at the receiver to collect the direct-path (transmitter-to-

eceiver) signal and, in addition, a separate surveillance channel

SC) to collect the target echo. Then, a CC operation is conducted

etween the RC and SC, which resembles the matched filtering

MF) approach used in active radar. Specifically, the reference sig-

al obtained by the RC plays the role of the transmitted signal in

he MF. It should be noted that, while the MF is optimum as it

aximizes the receiver output signal-to-noise ratio (SNR), the CC

s sub-optimal due to the presence of noise in the RC. In fact, it has

een shown in [9] that the CC is highly sensitive to the presence of

uch noise. Recently, new improved passive detectors were intro-

uced that take into account the effect of noisy reference [10,11] .

n particular, [10] considered a multi-input multi-output (MIMO)

etup, assuming knowledge of the noise power, while [11] also ex-

mined the case when the noise power is unknown. Within the

eterministic category, another group of solutions employ multi-

hannel observations (e.g., via multiple spatially distributed sen-

ors) of the target echo [12–15] . Because of the inter-channel cor-

elation, a separate RC is no longer needed. 

The second approach to deal with the unknown IO waveform

s to model it as a stochastic process. The simplest solution within
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Fig. 1. Configuration of a multistatic passive radar system (dashed red line repre- 

sents the reflection from the target). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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this category is to treat the samples of the waveform as indepen-

dent and identically distributed (i.i.d.) Gaussian variables, i.e., the

waveform correlation is neglected. Two stochastic passive detec-

tors were derived based on this idea in [11] , under the assumption

that the noise power is either known or unknown. In [16,17] , two-

channel passive detection problems of known-rank signals were

considered, where the RC and SC were both equipped with mul-

tiple antennas and the IO waveforms were treated as temporally

white complex Gaussian signals. Due to coding, modulation, pulse

shaping, propagation effects, etc., the IO waveform is in general

correlated and such correlation can be exploited to improve pas-

sive sensing performance. Along this line, [18] considered the prob-

lem of estimating the delay and Doppler frequency of a target sig-

nal in passive radar by modeling the IO waveform as a correlated

Gaussian process with known correlation. In practice, the correla-

tion is unknown and has to be estimated. In addition, the correla-

tion may change over time. Therefore, it would be of interest to de-

velop techniques that can adaptively estimate the correlation and

use it for passive detection and estimation. 

Another challenge in passive sensing is the need to deal with

the direct-path interference (DPI), which is the direct transmission

from the IO source to the passive receiver. The DPI is generally sig-

nificantly stronger (by many tens to even over a hundred dB) com-

pared to the target echo [19,20] . The effect of the DPI on the CC

detector was analyzed in [9] , which showed that a modest level of

DPI can significantly degrade the detection performance of the CC.

As such, a passive radar has to employ some interference cancella-

tion technique, such as an adaptive antenna with a null formed in

the direction of the IO, and/or a temporal filter that employs the

reference signal in the RC to cancel the DPI [21–24] . Despite such

cancellation, some residual DPI may still exist due to, e.g., limited

array size and null depth [25] . As a result, the DPI may still be at

a non-negligible power level compared with the target echo. 

In this paper, we examine the target detection problem for

a passive multistatic radar system, where the receivers are con-

taminated by non-negligible noise and DPI. We propose a para-

metric approach that models the unknown IO signal as an auto-

regressive (AR) process, whose temporal correlation is estimated

and exploited online for passive detection. We develop a solution

using the generalized likelihood ratio test (GLRT) framework. Since

the maximum likelihood estimates (MLEs) of the unknown param-

eters required by the GLRT cannot be obtained in closed form, we

resort to an expectation-maximization (EM) procedure [26] to find

these estimates. The initialization of the EM algorithm is discussed

as well. We also examine adaptive joint model order selection for

the AR process, parameter estimation, and detection. Additionally,

we extend several well-known passive detectors, which originally

assume the absence of DPI, to provide them with the ability to

handle the DPI problem. For benchmarking, a clairvoyant MF de-

tector is derived with the knowledge of the IO waveform. Extensive

simulation results are presented to illustrate the effectiveness of

the proposed detector relative to several representative solutions.

These results are obtained using simulated waveforms whose tem-

poral correlation can be easily controlled to examine the impact of

the waveform correlation on passive detection, as well as practical

IO waveforms transmitted by a frequency modulation (FM) radio. 

The remainder of the paper is organized as follows. In Section 2 ,

we present the system model and formulate the problem of inter-

est. In Section 3 , the proposed GLRT like detector 1 is derived. Ex-

tensions of conventional detectors and the benchmark detector are

presented in Section 4 . Numerical results and discussions are in-

cluded in Section 5 , followed by conclusions in Section 6 . 
1 Strictly speaking, the proposed detector is not an exact GLRT because of the 

use of the EM estimates instead of the exact MLEs. With some notational abuse, 

the proposed detector will be referred to as the GLRT for simplicity. 

y  

t  

t

y  
Notation: Vectors (matrices) are denoted by boldface lower (up-

er) case letters, and all vectors are column vectors. Superscripts

 ·) ∗, ( ·) T , and ( ·) H denote complex conjugate, transpose, and com-

lex conjugate transpose, respectively. � { ·} represents the real part

f a complex quantity, E { ·} denotes statistical expectation, and j
tands for the imaginary unit. 0 p × q denotes a p × q matrix with

ll zero entries, I N denotes an identity matrix of size N , [ · ] m, n de-

otes the ( m, n )th entry of a matrix, and [ · ] m 

denotes the m th

lement of a vector. � and � stand for the Hadamard and the

ronecker products, respectively. The notation CN denotes a cir-

ularly symmetric, complex Gaussian distribution. det {·} represents

he determinant of a matrix, ‖·‖ is the Frobenius norm, and tr {·}
enotes the trace of a matrix. 

. Problem formulation 

Consider a multistatic passive radar system, as shown in Fig. 1 ,

hich contains one non-cooperative illuminator of opportunity

IO) and K distributed receivers. The signal collected by the k th re-

eiver (channel) in the presence of a target, denoted by y ′ 
k 
(t) , can

e expressed as 

y ′ k (t) = βk x (t − d k ) + α′ 
k x (t − t k ) e 

j 2 π f k t + n 

′ 
k (t) , 

k = 1 , 2 , . . . , K, (1)

here x ( t ) is the unknown signal (baseband equivalent) transmit-

ed by the IO, d k is the propagation delay from the IO to the k th

eceiver, i.e., the propagation delay of the DPI, t k is the propaga-

ion delay of the target, due to the transmission from the IO to the

arget and then from the target to the k th receiver, f k is the tar-

et’s Doppler frequency seen at the k th receiver, βk is the scaling

oefficient which includes the antenna attenuation and the chan-

el propagation effects from the IO to the k th receiver, α′ 
k 

is the

caling coefficient accounting for the target reflectivity, the antenna

ain, and the channel propagation effects, and n ′ 
k 
(t) is the additive

ero-mean white Gaussian noise at the k th channel. 

To simplify the system model, we observe that the direct-path

elay d k is generally known a priori and can be compensated for,

ince the location of the IO is usually known to each receiver. Let

 k (t) = y ′ 
k 
(t + d k ) denote the k th delay-compensated signal, and

he delay-compensated noise n k ( t ) is similarly defined. This leads

o 

 (t) = β x (t) + α x (t − τ ) e j 2 π f k t + n (t) , (2)
k k k k k 
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here τ k is the k th bistatic delay given by τk = t k − d k and αk =′ 
k 
e j 2 π f k d k . 

We assume that x ( t ) has a duration of T seconds, e.g., due to

he framed transmissions employed by the IO, in which case T

epresents the frame duration. The observation interval T o is se-

ected such that T o ≥ T + τmax , where τmax denotes the maximum

istatic delay that can be tolerated by the system. We sample

ach channel using a sampling frequency f s ≥ 2(B + f max ) , where

 denotes the bandwidth of the signal x ( t ) and f max is the maxi-

um Doppler frequency of the target that is designed detectable

y the system. Suppose M samples are collected for each channel

ver the observation window T o , i.e., T o = MT s , where T s = 1 / f s de-

otes the sampling interval. Let y k , x , and n k be M × 1 vectors

ormed by M adjacent samples of y k ( t ), x ( t ), and n k ( t ), respectively.

n addition, the M -point discrete Fourier transform (DFT) matrix T

as entries [ T ] p,q = e −j 2 π(p−1)� f (q −1) T s / 
√ 

M , p, q = 1 , 2 , . . . , M, with

he frequency domain sample spacing � f = 

f s 
M 

= 

1 
T s M 

, and W ( x )

s a diagonal matrix with diagonal entries [ W (x )] p,p = e j 2 π(p−1) x ,

p = 1 , 2 , . . . , M. The discretized model can be written as [13,27] 

 k = βk x + αk D(τk , f k ) x + n k , k = 1 , 2 , . . . , K, (3)

here the channel noise n k is a zero-mean white Gaussian noise

ith variance ηk and 

(τk , f k ) = W ( f k T s ) T 

H W (−τk � f ) T . (4)

n this paper, the signal waveform x is modeled as a correlated

tochastic process with unit average power per sample. The tem-

oral correlation of the waveform is usually unknown. In particu-

ar, we use an auto-regressive (AR) model to fit the stochastic IO

aveform where the temporal correlation is parameterized by the

R coefficients and the zero-mean driving noise variance. The AR

odel has been widely used to model various correlated random

rocesses in speech processing [28] , wireless channel estimation

29] , radar clutter modeling and cancellation [30,31] , etc. A P th or-

er AR process is described by 

 (n ) = −
P ∑ 

p=1 

a (p) x (n − p) + w (n ) , n = 1 , 2 , . . . , N, (5)

here N = � T T s 
+ 1 	 ≤ M is the number of the non-zero IO signal

amples out of M observations, and w (n ) ∼ CN (0 , σ 2 ) is the zero-

ean driving noise. Consequently, x is a zero-mean Gaussian vec-

or with covariance matrix C x ( a , σ 2 ) which is parameterized by

 � [ a (1) , a (2) , . . . , a (P )] T and σ 2 . The covariance matrix is Hermi-

ian, Toeplitz, and fully determined by the auto-correlation func-

ion (ACF) sequence { r x ( n )} as 
 

 

 

 

r x (0) r ∗x (1) · · · r ∗x (M − 1) 
r x (1) r x (0) · · · r ∗x (M − 2) 

. . . 
. . . 

. . . 
. . . 

r x (M − 1) r x (M − 2) · · · r x (0) 

⎤ 

⎥ ⎥ ⎦ 

. 

he ACF sequence is related to the AR parameters a and σ 2 by the

ule-Walker equation [32] 

 x (n ) = 

{ 

−∑ P 
p=1 a (p) r x (n − p) for n ≥ 1 

−∑ P 
p=1 a (p) r x (−p) + σ 2 for n = 0 

, (6)

here r x (n ) = r ∗x (−n ) for n < 0. Note that r x (0) = 1 due to the unit

ower assumption for the IO signal. The problem of interest is to

etermine if a target is present in the cell of interest (test cell) us-

ng the observations { y k }. For each cell under test, the detection

roblem can be described by the following composite binary hy-

othesis test [10,11,13,14,33] : 

 1 : y = β x + α D(τ , f ) x + n 
k k k k k k 
 0 : y k = βk x + n k , k = 1 , 2 , . . . , K, (7) 

here the unknown parameters are the AR coefficients a , σ 2 , β =
 β1 , β2 , . . . , βK ] 

T , α = [ α1 , α2 , . . . , αK ] 
T , and η = [ η1 , η2 , . . . , ηK ] 

T .

n radar detection problem, it is customary to divide the uncer-

ainty region of the target delay and Doppler frequency into small

ells and each cell is tested for the presence of a target [34] . There-

ore, for each cell under test, D(τk , f k ) is known because the delay

nd Doppler associated with that cell is known and will be de-

oted as D k . 

. Proposed detector 

In this section, we develop a GLRT like detector for the pas-

ive multistatic detection problem (7) . The GLRT principle requires

he maximum likelihood estimates (MLEs) of the unknown param-

ters under both hypotheses. Let the observations from K receivers

e vectorized as y = [ y T 
1 
, y T 

2 
, . . . , y T 

K 
] T . We can rewrite the detection

roblem (7) as 

H 1 : y ∼ CN ( 0 MK×1 , C y ( α, β, η, a , σ 2 )) 

H 0 : y ∼ CN ( 0 MK×1 , C y ( α = 0 , β, η, a , σ 2 )) , (8) 

here the covariance matrix is given by 

 y ( α, β, η, a , σ 2 ) 

= ( ββ
H 
) � C x (a , σ 2 ) + [( βαH ) � C x (a , σ 2 )] D 

H 

+ D [( αβ
H 
) � C x (a , σ 2 )] + C n ( η) 

+ D [( ααH ) � C x (a , σ 2 )] D 

H , (9) 

ith block diagonal matrices C n ( η) = diag { η} � I M 

and D =
iag {D 1 , D 2 . . . , D K } . Then, the GLRT is given by 

max { α, β, η, a ,σ 2 } p 1 (y | α, β, η, a , σ 2 ) 

max { β, η, a ,σ 2 } p 0 (y | β, η, a , σ 2 ) 

H 1 

≷ 

H 0 

γ , (10) 

here p 1 ( y | α, β, η, a , σ 2 ) and p 0 ( y | β, η, a , σ 2 ) denote the likeli-

ood functions under H 1 and H 0 , respectively. The two maximum

ikelihood estimation problems in (10) do not have closed-form so-

utions. A brute force search over the multi-dimensional parameter

pace is computationally intensive. Therefore, we resort to the EM

lgorithm to solve the maximum likelihood estimation problems,

nd the estimates are used in the GLRT detector. 

To apply the EM algorithm under each hypothesis, the first step

s to specify the “complete” data z , which includes the observed

ata y (regarded as the “incomplete” data) [26] . In our case, the

complete” data is specified as 

 = [ x 

T , y T ] T . (11)

fter determining the “complete” data, the EM algorithm starts

ith an initial guess of the unknown parameters, ˆ θ
(0) 

( θ =
 α, β, η, a , σ 2 } under H 1 ; θ = { β, η, a , σ 2 } under H 0 ). Given the

atest update for the parameter estimation after l iterations, ˆ θ
(l) 

,

he (l + 1) th iteration consists of an expectation step (E-step) fol-

owed by a maximization step (M-step): 

E-step : 

Q 

(
θ; ˆ θ

(l) ) = E 
x | y , ̂ θ(l) 

{
log p(z | θ) 

}
. (12) 

M-step : 

ˆ θ
(l+1) = arg max 

θ
Q 

(
θ; ˆ θ

(l) )
. (13) 

The E-step is intended to find the expectation of the log-

ikelihood function (LLF) of the “complete” data z , which is taken
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with respect to the signal waveform x and conditioned on observa-

tions y given 

ˆ θ
(l) 

. The M-step is intended to maximize the expecta-

tion with respect to the unknown parameters. This iteration cycle

is repeated until the algorithm converges, e.g., when the following

inequality holds for some small tolerance ε: ∥∥ˆ θ
(l+1) − ˆ θ

(l) ∥∥ < ε. (14)

In the following, we discuss the details of using the EM algorithm

to find estimates of the unknown parameters under the two hy-

potheses. 

3.1. Parameter estimation under H 1 

Here, we derive the MLEs of the unknown parameters under H 1 

by assuming knowledge of the AR model order P . In Section 3.5 , we

will discuss how to determine the AR model order through stan-

dard model order selection criteria. 

It is shown in Appendix A that, for the (l + 1) th iteration, the

M-step (13) under H 1 is equivalent to 

ˆ θ
(l+1) = arg min 

θ
Q 1 

(
θ; ˆ θ

(l) )
, (15)

where 

Q 1 

(
θ; ˆ θ

(l) ) = (M − P ) ln σ 2 + 

ˆ �(l) 
1 

(a ) 

σ 2 

+ 

K ∑ 

k =1 

(
M ln ηk + 

ˆ �(l) 
2 

(αk , βk ) 

ηk 

)
, (16)

with 

ˆ �(l) 
1 

(a ) = c (l) 
5 

+ (c (l) 
6 

) H a + a H c (l) 
6 

+ a H C 

(l) 
7 

a , (17)

ˆ �(l) 
2 

(αk , βk ) = ‖ 

y k ‖ 

2 + 

(| βk | 2 + | αk | 2 
)
c (l) 

1 

+2 � 

{
αk β

∗
k c 

(l) 
2 ,k 

− βk c 
(l) 
3 ,k 

− αk c 
(l) 
4 ,k 

}
. (18)

From (16) , it can be seen that the unknown parameters are well

separated into K + 1 subsets, i.e., { a , σ 2 } and { αk , βk , ηk } for

k = 1 , 2 , . . . , K. The cost functions (17) and (18) are quadratic with

respect to { a } and { αk , βk }, respectively, and thus admit closed-

form solutions. Through standard manipulations, we have 

ˆ a (l+1) = −
(
C 

(l) 
7 

)−1 
c (l) 

6 
, (19)

ˆ σ 2 
(l+1) = 

1 

M − P 

(
c (l) 

5 
−

(
c (l) 

6 

)H (
C 

(l) 
7 

)−1 
c (l) 

6 

)
(20)

ˆ α(l+1) 
k 

= 

(
c (l) 

1 
c (l) 

4 ,k 
− c (l) 

2 ,k 
c (l) 

3 ,k 

)∗

(
c (l) 

1 

)2 −
∣∣c (l) 

2 ,k 

∣∣2 
, (21)

ˆ β(l+1) 
k 

= 

c (l) 
1 

(
c (l) 

3 ,k 

)∗ − c (l) 
2 ,k 

(
c (l) 

4 ,k 

)∗

(
c (l) 

1 

)2 −
∣∣c (l) 

2 ,k 

∣∣2 
, (22)

ˆ η(l+1) 
k 

= 

1 

M 

ˆ �(l) 
2 

(
ˆ α(l+1) 

k 
, ˆ β(l+1) 

k 

)
. (23)

3.2. Parameter estimation under H 0 

Under H 0 , the received data is free of target echoes, and the

unknown parameters are θ = { β, η, a , σ 2 } . The MLEs under this hy-

pothesis can be obtained by repeating the steps under H 1 with α
set to zero. As a result, we have 

ˆ β(l+1) 
k 

= 

(
c (l) 

3 ,k 

)∗

c (l) 
, (24)
1 
ˆ (l+1) 
k 

= 

1 

M 

ˆ �(l) 
2 

(
0 , ˆ β(l+1) 

k 

)
, (25)

hile ˆ a (l+1) and 

ˆ σ 2 
(l+1) 

have the same expressions as in (19) and

20) , respectively. It is worth mentioning that, when conducting

he E-step calculations in this case, ˆ α(l) 
should also be treated as

ero. 

.3. Parameter initialization 

In this section, we discuss an initialization method that can be

sed to start the EM algorithm. First, the EM algorithm requires an

nitialization of the waveform covariance matrix which depends on

he AR coefficients a and the variance σ 2 of the driving noise. The

ovariance matrix is initialized as ˆ C 

(0) 
x = I M 

under both hypothe-

es. In other words, the waveform correlation is ignored for the

tart-up of the EM algorithm. Next, we discuss the initialization of

he related channel parameters, including the amplitudes and the

hannel noise variances. The initialization of these parameters is

ased on a principal eigenvector (PEV) method, which is detailed

n Section 4.1 . First, we use the PEV method to obtain an initial

stimate of the waveform x , and then coarse estimates of the am-

litudes and channel noise variances are obtained through cross-

orrelation. Denote the waveform estimates under H 1 and H 0 as

¯
 1 and x̄ 0 , respectively. We initialize the amplitudes and the chan-

el noise variances under H 1 as [18] 

ˆ (0) 
k 

= 

b 2 b 4 ,k − b 1 ,k b 
∗
3 ,k 

b 2 
2 

− | b 3 ,k | 2 , (26)

ˆ (0) 
k 

= 

b 1 ,k b 2 − b 3 ,k b 4 ,k 

b 2 
2 

− | b 3 ,k | 2 , (27)

here b 1 ,k = x̄ H 
1 

y k , b 2 = ‖ ̄x 1 ‖ 2 , b 3 ,k = x̄ H 
1 
D k ̄x 1 , and b 4 ,k = x̄ H 

1 
D 

H 
k 

y k ,

nd 

ˆ (0) 
k 

= 

1 

M 

∥∥y k − ˆ β(0) 
k 

x̄ 1 − ˆ α(0) 
k 

D k ̄x 1 

∥∥2 
. (28)

nder H 0 , we have 

ˆ (0) 
k 

= 

x̄ 

H 
0 y k 

‖ ̄x 0 ‖ 

2 
, (29)

nd 

ˆ (0) 
k 

= 

1 

M 

∥∥y k − ˆ β(0) 
k 

x̄ 0 

∥∥2 
. (30)

.4. Detection algorithm 

From the derivations in Sections 3.1 and 3.2 , we notice that the

-step of the EM-based estimation algorithm consists of two esti-

ation processes. The first deals with estimating the coefficients

elated to the AR model, i.e., a and σ 2 , and the second one is

or amplitude and channel noise variance estimation. The former

s obtained by least-squares (LS) via (19) . Another popular method

or AR coefficient estimation is the auto-correlation (AC) method

35] , which tends to perform better for our problem. For easy ref-

rence, the AC method is briefly summarized in Appendix B . 

Once the EM iteration converges, let ˆ θ1 = { ̂  α1 , ̂
 β1 , ̂  η1 , ̂  a 1 , ˆ σ

2 
1 }

nd 

ˆ θ0 = { ̂  β0 , ̂  η0 , ̂  a 0 , ˆ σ
2 
0 } be the final estimates of the unknown

arameters under H 1 and H 0 , respectively. The proposed detector

an be written as 

 = log p 1 (y | ̂ θ1 ) − log p 0 (y | ̂ θ0 ) 

= y H 
[ 

C 

−1 
y ( 0 , ̂  θ0 ) − C 

−1 
y ( ̂  θ1 ) 

] 
y 
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det 

{ 

C y ( 0 , ̂  θ0 ) 
} 

det 

{ 

C y ( ̂  θ1 ) 
} 

H 1 

≷ 

H 0 

ξ , (31) 

here ξ = ln γ . The proposed detector is summarized in

lgorithm 1 . 

lgorithm 1 Proposed detector. 

Input: K-channel observations y , AR model order P , a specific

delay-Doppler cell, initial guess of the parameters ˆ θ
(0) 

, and con-

vergence tolerance ε. 

Output: L as computed by (31). 

Estimation of θ = { α, β, η, a , σ 2 } under H 1 : 

for l = 0 , 1 , 2 , . . . do 

1. Compute the results of E-step using (65)–(74) and (80)–

(83). 

2. Update the estimates of unknown parameters using (19)–

(23) for k = 1 , 2 , . . . , K. 

3. Check the stopping condition (14). 

end for 

Estimation of θ = { β, η, a , σ 2 } under H 0 : 

for l = 0 , 1 , 2 , . . . do 

1. Compute the results of E-step using (65)–(70), (72), (74),

and (80)–(83) with 

ˆ α(l) = 0 . 

2. Update the estimates of unknown parameters using (19),

(20), (24), and (25) for k = 1 , 2 , . . . , K. 

3. Check the stopping condition (14). 

end for 

return 

The computational complexity of the proposed algorithm is

ominated by the update of the posterior mean (68) and poste-

ior correlation matrix (69) in the E-step, which involves inverting

n MK × MK matrix C 

(l) 
yy that is a structured matrix as defined in

9) . 

.5. Model order selection 

The above detector is developed under the assumption that the

R model order P is known a priori. In this section, we extend

he proposed detector to provide joint adaptive model order es-

imation. In other words, the AR model order P is adaptively esti-

ated from the observations. In practice, the model order can be

etermined by many model order selection techniques, such as the

inimum description length (MDL) criterion or Akaike information

riterion (AIC) [32] . Here, we consider the generalized Akaike in-

ormation criterion (GAIC) due to its simplicity and accuracy [36] .

pecifically, the GAIC combines the negative logarithmic likelihood

unction with a penalty term proportional to the model order. For

ur problem, the GAIC is shown as 

 1 : ˆ P 1 = arg min 

P 1 
[ y H C y ( ̂  θ1 (P 1 )) y 

+ ln det 

{ 

C y ( ̂  θ1 (P 1 )) 
} 

+ κ( 2 P 1 + 5 K + 1 ) ] , (32) 

 0 : ˆ P 0 = arg min 

P 0 
[ y H C y ( 0 , ̂  θ0 (P 0 )) y 

+ ln det 

{ 

C y ( 0 , ̂  θ0 (P 0 )) 
} 

+ κ( 2 P 0 + 3 K + 1 ) ] , (33) 
m
here κ is a user parameter chosen as κ = 

4 M 

M−K−1 in our case. Par-

icularly, the estimates ˆ θ1 (P 1 ) and 

ˆ θ0 (P 0 ) are obtained using the

roposed EM-based algorithms, which are dependent on the tested

R model orders under H 1 and H 0 , respectively. 

. Other passive detectors and extensions 

There are several passive detectors, including the energy detec-

or (ED) [37] , the generalized canonical correlation (GCC) detec-

or [33,38] , the generalized coherence (GC) detector [39] , and an

igenvalue-based detector [14] , which were introduced by assum-

ng the absence of DPI. As such, they cannot be directly applied

o solve our detection problem as specified in Section 2 . To pro-

ide these detectors with the ability to handle the DPI, the idea

s to obtain an estimate of the DPI, followed by DPI cancellation.

n the following, we first briefly discuss a DPI estimator based on

he principal eigenvector (PEV) of the sample covariance matrix.

hen, we introduce extensions of several existing passive detectors

o deal with DPI. In addition, we also discuss a clairvoyant MF de-

ector that assumes knowledge of the source waveform and pro-

ose an implementable MF detector modified from the clairvoyant

F. 

.1. PEV method for DPI estimation 

The PEV method estimates the IO waveform as the normalized

rincipal eigenvector of the sample covariance matrix of the obser-

ations [13,14] . Under H 0 , it is clear that an estimate of x is given

y 

ˆ 
 = v 1 

(
YY 

H 
)
, (34) 

here Y = [ y 1 , y 2 , . . . , y K ] and v 1 ( ·) represents the normalized

rincipal eigenvector of a matrix. The above estimate also holds

pproximately under H 1 , since in practice the DPI is stronger than

he target echo which can be neglected. 

.2. Modified existing passive detectors with DPI cancellation 

Here, we extend several existing detectors by adding a DPI can-

ellation step based on the PEV method. Once we have the esti-

ated IO waveform, the amplitude of the DPI in the k th channel

an be estimated as 

ˆ 
k = 

ˆ x 

H y k 
ˆ x 

H ˆ x 

. (35) 

onsequently, the signal after suppressing the DPI is 

˜ 
 k = y k − ˆ βk ̂  x , k = 1 , 2 , . . . , K. (36)

hen, { ̃ y k } can be used to replace the original observation { y k } in

he existing detectors as modified versions. For instance, the modi-

ed energy detector (mED) and modified GCC (mGCC) detector are

iven by 

 mED = 

K ∑ 

k =1 

‖ ̃

 y k ‖ 

2 
H 1 

≷ 

H 0 

γmED , (37) 

nd 

 mGCC = λ1 

(
˜ Y 

H ˜ Y 

) H 1 

≷ 

H 0 

γmGCC , (38) 

espectively, where ˜ Y = [ D 

H 
1 ̃

 y 1 , D 

H 
2 ̃

 y 2 , . . . , D 

H 
K ̃

 y K ] and λ1 ( ·) is the

rincipal eigenvalue of a K -dimensional matrix. The mED and the

GCC detector are used for comparisons in our simulations; other

odified detectors can be formulated in a similar way. 
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Fig. 2. Detection and estimation performance versus SNR with M = 50 , K = 3 , and 

DNR = 0 dB . Detection probability with (a) highly correlated waveform ( ρ = 0 . 9 ) 

and (b) lowly correlated waveform ( ρ = 0 . 1 ). (c) Normalized root mean-square error 

(RMSE) of waveform estimate with ρ = 0 . 9 . 
4.3. A Clairvoyant matched filter in the presence of DPI 

For comparison purposes, we also derive a clairvoyant MF de-

tector under the GLRT framework. The detector is clairvoyant be-

cause it assumes the IO waveform is known and serves as an upper

bound for all passive detectors considered in this paper. The likeli-

hood function under H 1 can be written as 

p(y | α, β, η) = 

1 

πMK 
∏ K 

k =1 η
M 

k 

× exp 

{ 

−
K ∑ 

k =1 

‖ 

y k − βk x − αk D k x ‖ 

2 

ηk 

} 

. (39)

The MLEs of the unknown parameters are [ 
ˆ αk, 1 , 

ˆ βk, 1 

] T 
= 

(
H 

H 
k H k 

)−1 
H 

H 
k y k , (40)

where 

H k = [ D k x , x ] , (41)

and 

ˆ ηk, 1 = 

1 

M 

∥∥P 

⊥ 
k y k 

∥∥2 
, (42)

where 

P 

⊥ 
k = I − H k 

(
H 

H 
k H k 

)−1 
H 

H 
k . (43)

Under H 0 , the likelihood function is given by 

p(y | β, η) = 

1 

πMK 
∏ K 

k =1 η
M 

k 

× exp 

{ 

−
K ∑ 

k =1 

‖ 

y k − βk x ‖ 

2 

ηk 

} 

. (44)

It is easy to show that the MLEs are given by 

ˆ βk, 0 = 

(
x 

H x 

)−1 
x 

H y k , (45)

and 

ˆ ηk, 0 = 

1 

M 

∥∥P 

⊥ 
x y k 

∥∥2 
, (46)

where 

P 

⊥ 
x = I − 1 

‖ 

x ‖ 

2 
xx 

H . (47)

Finally, the clairvoyant MF detector is the GLRT obtained by using

the above MLEs in the likelihood functions (39) and (44) : 

L MF = 

∏ K 
k =1 

ˆ ηk, 0 

ˆ ηk, 1 

= 

K ∏ 

k =1 

∥∥P 

⊥ 
x y k 

∥∥2 ∥∥P 

⊥ 
k 

y k 
∥∥2 

. (48)

5. Numerical simulations 

In this section, numerical results are presented to illustrate the

performance of the proposed techniques. In order to show the ben-

efit of using an AR model to estimate and exploit the IO wave-

form correlation, we consider three implementations of the pro-

posed GLRT. The first is referred to as the pGLRT , which stands for

the parametric GLRT detector presented in Section 3 that utilizes

an AR model for the IO waveform. The second, denoted as iGLRT ,

is an ideal GLRT that assumes knowledge of the covariance matrix

C x of the IO waveform. The third, denoted as sGLRT , is the simple

GLRT when the covariance matrix C x is replaced by an identity ma-

trix, i.e., the correlation of the IO waveform is completely ignored

for detection. Note that the latter two GLRT detectors do not in-

volve an AR model as they assume a given waveform covariance
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Fig. 3. Detection and estimation performance versus DNR with M = 50 , K = 3 , and ρ = 0 . 9 . Detection probability with (a) SNR = −5 dB , (b) SNR = 0 dB , and (c) SNR = 5 dB . 

(d) Normalized RMSE of waveform estimate with SNR = 0 dB . 
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atrix. As we shall see, the pGLRT is able to approach the iGLRT,

hile the sGLRT may experience considerable degradation by not

xploiting the waveform correlation for passive detection. In ad-

ition to the GLRT detectors, we also include the clairvoyant MF

f Section 4.3 as a benchmark, the modified detectors mED and

GCC of Section 4.2 , as well as a modified version of the clair-

oyant MF, referred to as the mMF , for comparison purposes. The

MF replaces the true waveform with the PEV estimate (34) and

hus represents a practical solution. 

We consider two types of IO waveforms. The first is based on

 stochastic model, where we can easily control/change the wave-

orm temporal correlation, which allows us to examine the impact

f correlation on passive detection. The second is an FM wave-

orm as transmitted by an FM radio station, which corresponds to

 more realistic passive sensing scenario. 

.1. Stochastic model based IO waveform 

Here, the IO waveform is generated as a correlated stochastic

rocess with a widely used Gaussian-shaped power spectral den-

ity (PSD) [40,41] . Specifically, the temporal correlation of the ran-
om process is given by 

(n ) = P x e 
− n 2 

2 σ2 
r , (49)

here P x denotes the average power, n the correlation lag, and

r the standard deviation that specifies how rapidly the waveform

uctuates in time: a large value of σ r implies that the waveform

s highly correlated and vice versa. In our simulations, we choose

 x = 1 due to the unit power assumption. The IO waveform is sta-

istically stationary with a Toeplitz covariance matrix C x formed by

amples of the temporal correlation: r (0) , r (1) , . . . , r (N − 1) . Note

hat the above random process is in general not an AR process.

herefore, by treating it as an AR process, there is a model mis-

atch in the proposed pGLRT detector. Nevertheless, as we shall

ee, the AR modeling is still able to effectively capture the tempo-

al correlation of the random waveform, allowing us to exploit the

orrelation for passive detection. In the sequel, we will test differ-

nt detectors under both high correlation and, respectively, low cor-

elation scenarios, measured by the following correlation parameter

= 

1 

N − 1 

N−2 ∑ 

n =0 

∣∣∣∣ r(n + 1) 

r(n ) 

∣∣∣∣. (50) 
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The signal-to-noise ratio (SNR) is defined as 

SNR = 

1 

K 

K ∑ 

k =1 

N| αk | 2 
Mηk 

, (51)

and the DPI-to-noise ratio (DNR) is 

DNR = 

1 

K 

K ∑ 

k =1 

N| βk | 2 
Mηk 

. (52)

The detection probability curves versus SNR are plotted in

Fig. 2 where the observation length M = 50 , channel number K =
3 , and DNR = 0 dB . In the simulations throughout this paper, the

probability of detection is measured when the probability of false

alarm is set to 10 −2 . Two cases of different waveform correlations

are considered in this scenario. From Fig. 2 (a), where ρ = 0 . 9 , we

see that the performance of the proposed pGLRT detector is very

close to that of the iGLRT detector, and the clairvoyant MF detector

is slightly better. The sGLRT detector performs about 4 dB worse

than the pGLRT detector. The mED and mGCC detectors have simi-

lar performances, which are nearly 7 dB worse than the pGLRT de-

tector. The mMF performs quite well for low SNR. Its degradation

at high SNR is caused by the PEV estimate of the waveform. As

noted in Section 4.1 , the PEV estimate is based on the assumption

that the DPI is strong and the target is absent, which is seriously

violated at high SNR. The poor PEV estimate at high SNR has a di-

rect impact on the mMF, which relies on the estimated waveform

for signal projection. The impact on the mED and mGCC, however,

is less since both are energy based detectors. 

Fig. 2 (b) depicts the results of a low correlation case with ρ =
0 . 1 . It is seen that the performance of the pGLRT detector can still

approach that of the iGLRT detector; however, their performance

gain over the sGLRT detector is not as significant as in the former

case, since low correlation implies less information so that the im-

provement through exploiting the correlation is limited. 

Fig. 2 (c) shows waveform estimation performance of different

estimators for the case of ρ = 0 . 9 . It should be pointed out that

waveform estimation has a multiplicative ambiguity due to the fact

that both the amplitude parameters, αk and βk , and the wave-

form x in (7) are unknown. The ambiguity has to be accounted

for before different waveform estimators can be compared with

each other. Specifically, let ˆ x be the waveform estimate obtained

by any estimator. It is normalized as follows to remove the am-

biguity: ˆ x ′ = 

[ x ] 1 
[ ̂ x ] 1 

ˆ x . Then, the normalized root mean-square error

(RMSE), defined as 

√ 

E 
{‖ ̂ x ′ − x ‖ 2 }/ ‖ x ‖ , is used to measure the es-

timation accuracy. We consider the performance of the EM esti-

mator with three implementations, namely with (1) a parametric

AR model; (2) known covariance matrix C x ; and (3) C x = I , which

corresponds to the EM estimator underlying the pGLRT, iGLRT, and

sGLRT, respectively. These EM estimators are accordingly referred

to as pEM , iEM , and sEM , respectively. In addition, the PEV estima-

tor of Section 4.1 is also included for comparison. Fig. 2 (c) shows

the normalized RMSEs of the above estimators versus SNR under

the H 1 hypothesis, where the simulation parameters are the same

as those in Fig. 2 (a). We observe that the iEM method performs the

best, and the pEM method is slightly worse. The sEM method per-

forms much worse than the pEM method, since the former does

not exploit the waveform correlation. The PEV performance gets

worse as the SNR increases (high SNR region), due to the increased

interference strength caused by the target signal. 

Fig. 3 shows the numerical results versus DNR with M = 50 ,

K = 3 , and ρ = 0 . 9 . Fig. 3 (a)–(c) illustrate the detection perfor-

mances when SNR = −5 dB , 0 dB, and 5 dB, respectively. Interest-

ingly, it is observed that the probabilities of detection for the pro-

posed detectors improve at high DNR. The reason is that a stronger

d

PI, which contains information about the waveform, helps esti-

ate the waveform. The evidence will be illustrated in Fig. 3 (d).

rom these figures, we also see that the iGLRT detector performs

he best, i.e., with its detection probability close to the upper

ound, and the pGLRT approaches the iGLRT as DNR increases. The

GLRT detector is outperformed by the former two detectors. In the

ase of SNR = 5 dB , except for the mMF detector, all the remain-

ng detectors perform well throughout the DNR region under test,

ith their detection probabilities close to 1. The mMF detector per-

orms poorly at low DNR. This is again due to a mismatch: the PEV

stimate assumes the presence of a strong DPI. 

Fig. 3 (d) shows the waveform estimation performance versus

NR in the same scenario as in Fig. 3 (b). We can see that all the

ethods benefit from increasing DNR. From this figure, it is ob-

erved that the direct-path signal is not always an “interference”

o a passive multistatic detection system. Since the DPI is a trans-

ormed replica of the IO waveform, utilizing it, instead of canceling

t, can improve performance. 

In Fig. 4 (a), the detection performance is presented as a func-

ion of the channel number K , where M = 20 , ρ = 0 . 5 , SNR = 0 dB ,

nd DNR = 0 dB . All detectors are seen to benefit from increasing

 . In this scenario, the pGLRT detector approaches the iGLRT de-

ector as the channel number increases, and both are very close

o the clairvoyant MF. Without utilizing the waveform correlation,

he sGLRT detector is outperformed by the proposed pGLRT detec-

or. Fig. 4 (b) shows the waveform estimation performance in the

ame setup. Obviously, the estimation performance of all methods

mproves as the channel number increases. 

Fig. 5 (a) illustrates the detection performance comparison ver-

us the sample length M , where K = 3 , ρ = 0 . 5 , SNR = −5 dB ,

nd DNR = 0 dB . We can see that increasing M leads to improved

etection performance for all detectors. The performance of the

GLRT detector is very similar to that of iGLRT, which is close

o the clairvoyant MF performance. The sGLRT detector is much

orse without exploiting the waveform correlation. In Fig. 5 (b), we

lso observe that all methods benefit from increasing the sample

ength, i.e., wider observation windows. 

.2. FM waveform 

Besides the stochastic waveform with the Gaussian-shaped PSD,

e also employ a practical FM signal as the IO waveform to test

he performance of our detectors. The message signal is an au-

io signal which is frequency modulated by using a built-in Mat-

ab function “fmmod”. Since the exact covariance matrix of the FM

aveform is unknown, the iGLRT detector is not included for com-

arison in this scenario. The detection performance versus SNR is

hown in Fig. 6 where M = 50 , K = 3 , and DNR = 0 dB . We see

hat the performance of the proposed pGLRT detector is close to

he upper bound provided by the clairvoyant MF. The sGLRT de-

ector performs about 2 dB worse than the pGLRT detector but

s slightly better than the mMF in the low SNR region. Again,

he performance degradation of the mMF detector is observed at

igh SNR, due to the poor waveform estimate of the PEV method.

he mED and mGCC detectors have similar performance, which is

bout 6 dB worse than the pGLRT detector. 

Fig. 7 shows the detection performance versus the sample

ength with K = 3 , SNR = −5 dB , and DNR = 0 dB . Among all prac-

ical detectors, the pGLRT detector is still the one that is clos-

st to the clairvoyant MF detector. The sGLRT detector is much

orse without exploiting the correlation, especially when the sam-

le length is small. The mMF performs slightly worse than the

GLRT but significantly better than the mED and mGCC. From these

esults, it is seen that the AR modeling is able to effectively cap-

ure and exploit the correlation of the FM waveform for passive

etection. 
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Fig. 4. Detection and estimation performance versus channel number K with M = 

20 , ρ = 0 . 5 , SNR = 0 dB , and DNR = 0 dB . (a) Detection probability. (b) Normalized 

RMSE of waveform estimate. 
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Fig. 5. Detection and estimation performance versus sample length M with K = 3 , 

ρ = 0 . 5 , SNR = −5 dB , and DNR = 0 dB . (a) Detection probability. (b) Normalized 

RMSE of waveform estimate. 

A

 

{
d

w

x  

f

X  
. Conclusion 

In this paper, we considered the target detection problem for

 multistatic passive radar system by exploiting the correlation of

he IO waveform. We proposed a parametric GLRT approach, which

odels the waveform as an AR process, and the AR model is inte-

rated in an EM framework for model order selection, parameter

stimation, and detection. We also derived a clairvoyant MF detec-

or, which provides a performance upper bound, and several mod-

fied detectors based on the clairvoyant MF and conventional so-

utions by accounting for DPI in the observations. These detectors

ave been extensively tested using both stochastic waveforms with

 Gaussian-shaped PSD and FM waveforms as the IO signals. Nu-

erical results show that the performance of the proposed para-

etric GLRT is very close to that of the clairvoyant MF detector

nd significantly outperforms the other detectors which ignore the

O waveform correlation. 
ppendix A. Proof of (15) –(18) 

Under H 1 , we have the unknown parameters θ =
 α, β, η, a , σ 2 } , and the likelihood function of the “complete”

ata z = [ x T , y T ] T can be written as 

p(z | θ) = p(y | x , θ) p(x | θ) ≈ 1 

(πσ 2 ) M−P det { πC n ( η) } 

× exp 

{ 

−‖ x P + X P a ‖ 

2 

σ 2 
−

K ∑ 

k =1 

‖ 

y k − βk x −αk D k x ‖ 

2 

ηk 

} 

, (53) 

here 

 m 

= [ x (m + 1) , x (m + 2) , . . . , x (m + M − P )] T , (54)

or m = 0 , 1 , . . . , P, and 

 P = [ x P−1 , x P−2 , . . . , x 0 ] . (55)
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Fig. 6. Detection performance versus SNR using the FM waveform with M = 50 , 

K = 3 , and DNR = 0 dB . 

Fig. 7. Detection performance versus sample length M using the FM waveform with 

K = 3 , SNR = −5 dB , and DNR = 0 dB . 
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Herein, we use the asymptotic form for the likelihood function of

the waveform p ( x | θ), instead of the exact likelihood function, to

avoid some cumbersome mathematical operations [32] . The LLF is

thus given by 

log p(z | θ) = s 1 − s 2 (x , θ) , (56)

where 

s 1 = [ P − M(K + 1)] ln π, (57)

s 2 (x , θ) = (M − P ) ln σ 2 + 

�1 (x , a ) 

σ 2 

+ 

K ∑ 

k =1 

(
M ln ηk + 

�2 (x , αk , βk ) 

ηk 

)
, (58)

with 

�1 (x , a ) = ‖ x P + X P a ‖ 

2 = x 

H 
P x P + x 

H 
P X P a 

+ a H X 

H 
P x P + a H X 

H 
P X P a , (59)

�2 (x , αk , βk ) = ‖ 

y k ‖ 

2 + 

(| βk | 2 + | αk | 2 
)
x 

H x 
+2 � 

{
αk β

∗
k x 

H D k x − βk y 
H 
k x − αk y 

H 
k D k x 

}
. (60)

he cost function is consequently given by 

 

(
θ; ˆ θ

(l) ) = s 1 − E 
x | y , ̂ θ(l) 

{
s 2 (x , θ) 

}
. (61)

ote that only the second term in (61) involves the parameters to

e estimated, and thus we have the following result for the M-step,

rg max 
θ

Q 

(
θ; ˆ θ

(l) ) = arg min 

θ
Q 1 

(
θ; ˆ θ

(l) )
, (62)

here 

 1 

(
θ; ˆ θ

(l) ) = E 
x | y , ̂ θ(l) 

{
s 2 (x , θ) 

}
. (63)

ext, we find an explicit expression for Q 1 

(
θ; ˆ θ

(l) )
. Since the vec-

ors x and y are jointly Gaussian distributed with zero mean, the

osterior mean 

ˆ x (l) = E 
x | y , ̂ θ(l) { x } has a closed-form expression [42,

. 324] . By denoting the partitioned covariance matrix of z as 

 

(l) 
z = 

[
C 

(l) 
xx C 

(l) 
xy 

C 

(l) 
yx C 

(l) 
yy 

]
, (64)

here 

C 

(l) 
xx = E 

{ 

xx 

H ; ˆ θ
(l) 
} 

= C x ( ̂ a (l) , ˆ σ 2 
(l) 

) , (65)

 

(l) 
xy = 

(
C 

(l) 
yx 

)H = E 

{ 

xy H ; ˆ θ
(l) 
} 

= 

(
ˆ β

(l) )H 
� C 

(l) 
xx + C 

(l) 
xx 

(
ˆ α

(l) 
� I M 

)H 
D 

H , (66)

C 

(l) 
yy = E 

{ 

yy H ; ˆ θ
(l) 
} 

= C y 

(
ˆ θ
(l) )

. (67)

s mentioned before, the covariance matrix C x ( ̂ a (l) , ˆ σ 2 
(l) 

) is

ormed from the ACF sequence with its first element normalized,

hile the ACF function is computed by the Levinson–Durbin Algo-

ithm (LDA) and the step-down (SD) procedure. Consequently, we

ave the posterior mean as 

ˆ 
 

(l) = E{ x } + C 

(l) 
xy 

(
C 

(l) 
yy 

)−1 
( y − E{ y } ) 

= C 

(l) 
xy 

(
C 

(l) 
yy 

)−1 
y , (68)

nd the posterior correlation matrix as 

 

(l) 
xx | y = E 

x | y , ̂ θ(l) 

{
xx 

H 
}

= 

ˆ x 

(l) 
(

ˆ x 

(l) 
)H + E 

x | y , ̂ θ(l) 

{ (
x − ˆ x 

(l) 
)(

x − ˆ x 

(l) 
)H 

} 

= 

ˆ x 

(l) 
(

ˆ x 

(l) 
)H + C 

(l) 
xx − C 

(l) 
xy 

(
C 

(l) 
yy 

)−1 (
C 

(l) 
xy 

)H 
. (69)

enote 

c (l) 
1 

= E 
x | y , ̂ θ(l) 

{
x 

H x 

}
= tr 

{
R 

(l) 
xx | y 

}
, (70)

c (l) 
2 ,k 

= E 
x | y , ̂ θ(l) 

{
x 

H D k x 

}
= tr 

{
D k R 

(l) 
xx | y 

}
, (71)

c (l) 
3 ,k 

= E 
x | y , ̂ θ(l) 

{
y H 

k 
x 

}
= y H 

k ̂
 x 

(l) , (72)

c (l) 
4 ,k 

= E 
x | y , ̂ θ(l) 

{
y H 

k 
D k x 

}
= y H 

k 
D k ̂  x 

(l) , (73)

c (l) 
5 

= E 
x | y , ̂ θ(l) 

{
x 

H 
P x P 

}
= 

∑ M 

i = P+1 

[
R 

(l) 
xx | y 

]
i,i 

, (74)

c (l) 
6 

= E 
x | y , ̂ θ(l) 

{
X 

H 
P x P 

}
, (75)
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here 

c (l) 
6 

]
p 

= E 
x | y , ̂ θ(l) 

{
x 

H 
P−p x P 

}
= 

M ∑ 

i = P+1 

[
R 

(l) 
xx | y 

]
i,i −p 

, p = 1 , 2 , . . . , P, (76) 

nd 

 

(l) 
7 

= E 
x | y , ̂ θ(l) 

{
X 

H 
P X P 

}
, (77) 

here 

C 

(l) 
7 

]
p,q 

= E 
x | y , ̂ θ(l) 

{
x 

H 
P−p x P−q 

}
= 

M ∑ 

i = P+1 

[
R 

(l) 
xx | y 

]
i −q,i −p 

, p, q = 1 , 2 , . . . , P. (78) 

inally, we get the expressions shown in (16) –(18) . 

ppendix B. Auto-correlation method 

For easy reference, the auto-correlation method for AR coeffi-

ient estimation is summarized here. The AC method employs the

ollowing cost function 

2 [35] 

3 (x , a ) = ‖ x 0 + X P a ‖ 

2 = x 

H 
0 x 0 + x 

H 
0 X P a 

+ a H X 

H 
P x 0 + a H X 

H 
P X P a , (79) 

here X P = [ x 1 , x 2 , . . . , x P ] and x m 

= [ 0 1 ×m 

, x T , 0 1 ×(P−m ) ] 
T , m =

 , 1 , . . . , P . As a result, we have 

c (l) 
6 

= E 
x | y , ̂ θ(l) 

{
X 

H 
P x 0 

}
, (80) 

here 

c (l) 
6 

]
p 

= E 
x | y , ̂ θ(l) 

{
x 

H 
p x 0 

}
= 

M ∑ 

i = p+1 

[
R 

(l) 
xx | y 

]
i,i −p 

, p = 1 , 2 , . . . , P, (81) 

nd 

 

(l) 
7 

= E 
x | y , ̂ θ(l) 

{
X 

H 
P X P 

}
, (82) 

here 

C 

(l) 
7 

]
p,q 

= E 
x | y , ̂ θ(l) 

{
x 

H 
p x q 

}

= 

⎧ ⎨ 

⎩ 

∑ M 

i = q −p+1 

[
R 

(l) 
xx | y 

]
i −q + p,i 

, q ≥ p 

∑ M 

i = p−q +1 

[
R 

(l) 
xx | y 

]
i,i −p+ q , p > q 

, 

p, q = 1 , 2 , . . . , P. (83) 

he (l + 1) th update of the AR coefficients is then computed by

quation (19) . 
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