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Differential Modulation for Cooperative
Wireless Systems

Qiang Zhao and Hongbin Li, Member, IEEE

Abstract—This paper examines differential binary modulation
for wireless networks that utilize wireless relays to seek coopera-
tive diversity and improved performance. Two differential coop-
erative transmission schemes, referred to as differential amplify-
and-forward (DAF) and differential decode-and-forward (DDF), re-
spectively, are introduced. These schemes require no channel state
information at any node in the system. A set of analytical results
pertaining to the probability density function of the instantaneous
signal-to-noise ratio, average bit error rate, outage probability, and
diversity order of the proposed schemes in Rayleigh fading chan-
nels are obtained. The analytical results are confirmed by numer-
ical simulations. It is shown that the differential cooperative DAF
and DDF schemes achieve cooperative diversity and outperform
the conventional noncooperative differential modulation.

Index Terms—Average bit error rate (BER), cooperative diver-
sity, differential modulation, outage probability, wireless relays.

I. INTRODUCTION

DIVERSITY provides an effective mechanism to combat
multipath-induced fading in wireless communication

systems. Among various diversity techniques, spatial diversity
derived from multiantenna transmission/reception has received
widespread interest in recent years. However, multiple antennas
may be unavailable in some systems, e.g., the mobile terminals
of cellular networks, mobile ad-hoc networks, and wireless
sensor networks, due to size, power, and cost limitations. In
such cases, cooperative diversity, which relies on cooperation
among multiple spatially distributed nodes, provides a useful
alternative for fading mitigation. Specifically, owing to the
broadcasting nature of the wireless medium, transmission from
a source node may be heard by nodes in the neighborhood.
These neighbor nodes may act as wireless relays and provide
alternative communication routes that give rise to cooperative
diversity.

A. Prior Related Research

Cooperative diversity has root in classical work on relay chan-
nels (e.g., [1] and [2]). Practical cooperative techniques were
first proposed and investigated in [3] and [4]. It was shown
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that cooperative diversity increases the achievable rate region
over noncooperative schemes in ergodic fading channels, pro-
viding that the channel state information (CSI) is known to the
transmitters and receivers. Several low-complexity cooperative
transmission schemes based on half-duplex operation were dis-
cussed in [5], including the amplify-and-forward (AF) scheme
by which relays amplify the received signal subject to a power
constraint and retransmit it to the destination, the decode-and-
forward (DF) scheme that performs hard decisions at the relays
before retransmission, and a few other cooperative schemes that
utilize selection or incremental relaying. Outage capacity and
diversity of these cooperative schemes when the CSI is known
only at the receivers in delay-limited scenarios were also exam-
ined in [5]. Coherent maximum likelihood (ML) detectors for
AF and DF were developed in [6].

Along the line of end-to-end performance analysis, the av-
erage bit error rate (BER) and outage probability of a two-hop,
single-relay system were examined in [7] for Rayleigh fading
and in [8] for Nakagami fading. The two-hop system assumes
no direct transmission from the source to destination and, thus,
provides no diversity. A closed-form asymptotic (for high SNR)
approximation of the average symbol error rate for multibranch
multihop systems using AF was obtained in [9]. It was shown
there that the optimum location for the relay is at the mid-point
between the source and destination. Meanwhile, Chen and
Laneman recently considered ML detection for noncoherent
binary phase-shift keying (BFSK) and computed the associated
average BER and diversity [10].

B. Motivation and Contributions

With the exception of the noncoherent scheme in [10], most
of the aforementioned studies focused on coherent detection, as-
suming the CSI can be reliably estimated at the relays and desti-
nation nodes, either by training or blind estimation techniques.
However, channel estimation is known to be a challenging and
costly task, especially in time-selective fading environments.
The difficulty is exacerbated in multiantenna or multinode wire-
less systems since the amount of training or convergence time
(incurred by blind techniques) grows with the number of links.
The need for differential or noncoherent modulation techniques
to circumvent channel estimation in multiantenna systems has
been well recognized (e.g., [11]). It is imperative to develop
these techniques for cooperative multinode wireless systems
since their burden of channel estimation is even more severe
than multiantenna systems. Specifically, a multiantenna system
with transmit and one receive antennas involves wireless
channels. In contrast, a cooperative system with one source,

relays, and one destination node has a total of
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Fig. 1. Cooperative wireless relay system.

fading channels that connect the source to the destination and
relays, respectively, and the relays to the destination.

Following the preliminary investigation in [12], we provide in
this paper a more comprehensive study on differential modula-
tion for cooperative wireless systems. We consider an uncoded
system with one source , one relay , and one destination ,
as depicted in Fig. 1. A summary of our contributions are the
following.

1) We consider two differential modulation based cooper-
ative schemes, namely differential amplify-and-forward
(DAF) and differential decode-and-forward (DDF), which
are amenable to differential detection in fading channels.

2) For the DAF scheme, we derive linear combiners for com-
bining at the destination. Assuming Rayleigh fading chan-
nels, we compute a closed-form expression for the proba-
bility density function (PDF) of the instantaneous SNR of
the relay link (viz., link), and obtain a closed-form
expression of the average BER when only the relay link is
used for detection, which would be of interest in scenarios
where cannot reach directly due to power limitation.
When both the relay link and direct link (viz., link)
are combined for detection, we derive a good approxima-
tion of the average BER. We also find the outage proba-
bility of the DAF scheme in Rayleigh fading.

3) For the DDF scheme, the ML detector is shown to take a
nonlinear form due to possible decision errors occurred at

. The nonlinearity complicates the implementation of the
ML detector, while making analysis intractable. Using a
piecewise-linear (PL) approximation of the nonlinear de-
cision function first observed in [6], we obtain a PL de-
tector which is shown to closely match the ML detector.
Average BER analysis for the PL detector is pursued in two
approaches. The first yields an exact expression of the av-
erage BER expressed in series expansion. The second leads
to an approximate expression of the average BER obtained
by high SNR approximation. Both are found to be accurate
predictions of average BER over a wide range of SNR. The
outage probability pertaining to the DDF is computed in
closed-form.

4) We study the diversity of DAF and DDF by examining
the asymptotic behaviors of their average BER and outage
probability. It is found that both yield full diversity as the
SNR increases without bound.

The rest of this paper is organized as follows. Section II de-
scribes the system model. The proposed DAF and DDF schemes
along with their differential detection techniques are detailed
in Section III. Analytical results are presented in Section IV.
Section V contains simulation results. Finally, we provide con-
cluding remarks in Section VI.

II. SYSTEM MODEL

Consider a wireless relay network depicted in Fig. 1 that is
composed of one source , one relay and one destination
node, where a sequence of symbols are to be transmitted from

to . To eliminate mutual interference, and use orthog-
onal channels for transmission, either by time-, frequency-, or
code-division multiplexing. For ease of presentation, we assume
time-division multiplexing by which the transmission is divided
into two distinct phases as in [5]. During phase-I transmission,

transmits a frame of information bits, while and listen.
During phase-II transmission, is silent, while amplifies or
decodes the received signal, and retransmits it to .

For phase-I transmission, considering binary phase shift
keying (BPSK) constellation, the information bits
at are differentially encoded

(1)

where denotes the signal transmitted from , is
the initial reference bit, and is the number of bits within one
frame. The baseband signals received at and , respectively,
are

(2)

(3)

where and denote the corresponding fading coeffi-
cients, while and denote the channel noise.

For phase-II transmission, relay amplifies or decodes (see
Section III for details) the received signal , and generates
a unit-variance signal that is transmitted to destination .
The signal received at is given by1

(4)

where and denotes the fading and channel noise,
respectively.

For differential detection, the fading channels are assumed
(approximately) static over two bit intervals. The dependence of
the channels on time is dropped for brevity since the detection
schemes to be discussed in Section III involve signals received
over two adjacent bits. The channels are Rayleigh fading, i.e.,

, , where
denotes a complex Gaussian random variable with

mean and variance . The channel noise , , and
are assumed independent random variables.

The instantaneous SNR between nodes and , denoted by
, is exponentially distributed with PDF

(5)

1With some notation abuse, n denotes the time index for both phase-I and
phase-II transmissions.
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where denotes the average SNR between nodes
and . Finally, the channel fading coefficients are assumed

independent of one another and also of the channel noise.

III. PROPOSED SCHEMES

A. DAF Scheme

1) DAF Transmission at : For phase-II transmission, the
signal received at in phase-I is amplified or scaled to meet an
average power constraint

(6)

Clearly, has unit average power. Note that our DAF
scheme (6) differs from the AF scheme in [5] for coherent
modulation

(7)

Specifically, (7) requires the magnitude of the instantaneous
channel , which is difficult to obtain in time-selective fading
channels. Meanwhile, in (6) can be conveniently
estimated by time-averaging over a frame of received signals.
Hence, (6) is more suitable for differential modulation, while
(7) is more appropriate for coherent modulation.

2) Differential Detection at : Substituting (2) and (6) into
(4) yields

(8)

where is the effective channel gain of the relay link

(9)

while is the effective channel noise

(10)

whose conditional distribution is

given .
Differential detection using only (3) in the direct link

or only (8) in the relay link is standard. Of more in-
terest is to use both links to seek additional diversity gain. From
(1) and (3), can be rewritten as

(11)

where . Clearly, we have
conditioned on the infor-

mation bit and the previous received signal .
Likewise, using (1) and (8), we have

(12)

where , which indicates that

given , , and .
Equations (11) and (12) are the fundamental differential equa-

tions for DAF, which relate the outputs of the direct and relay
links to the input without explicit dependence on the un-
known channels. Note that and are independent and
conditional Gaussian random variables. We can follow a max-
imum likelihood approach by using the joint PDF of and

, which yields the following linear combiner:

(13)

where denotes complex conjugation. The above combiner,
which applies different weights for the two branches, differs
from the standard linear combiner [13, (14.4-23)] for multi-
channel differential communications because the noise power
for the two branches is different. Since (13) requires knowledge
of instantaneous SNR , it is not suitable for differential de-
tection. A differential combiner can be obtained by replacing

with its average

(14)
Simulation results in Section V show that (13) and (14) yield
similar BER performance. Finally, the information bits are de-
tected as follows:

(15)

where denotes the real part of the argument.

B. DDF Scheme

1) DDF Transmission at : At relay , the received signal is
first differentially decoded as follows:

(16)

Next, the decoded bits are re-encoded via a differential encoder

(17)

with . Finally, is transmitted to destination
during phase-II.

2) Differential Detection at : Substituting (17) into (4), we
have

(18)

where whose conditional dis-
tribution is . Since relay makes hard decoding in
(16), either a correct or wrong decision may occur. As a result,
the conditional PDF of takes the form of Gaussian mix-
ture

(19)

where denotes the PDF of a complex Gaussian
random variable with mean and variance , and is the av-
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erage BER of differential BPSK in Rayleigh fading channels
[13, (14.3-10)]

(20)

which is also the average probability with which relay makes
an error in each decision.

The fundamental differential equations for DDF are (11) and
(18). Note that and are independent. Due to the
mixture distribution shown in (19), the ML detector takes a non-
linear form. Specifically, by using the joint PDF of and

and following a similar procedure as in [6], we have the
following ML detector for DDF

(21)

where

(22)

(23)

(24)

The nonlinear function effectively “clips” large inputs
to and is approximately linear in between [6].
In particular, it was shown there that can be approximated
by a piecewise-linear (PL) function

(25)

where assuming . This leads to the
following PL detector:

(26)

which is easier to implement than the ML detector (22). The PL
detector achieves similar performance to that of the ML detector
(see Section V) and admits tractable analysis (see Section IV).

IV. PERFORMANCE ANALYSIS

A. Average BER of DAF

Let denote the equivalent instantaneous SNR of the
relay link , which is given by [see (8)–(10)]

(27)

Note the above expression is different from the instantaneous
SNR in [8] that uses (7) for amplification. The PDF of is
derived in Appendix I

(28)

where , denotes the zeroth-
order modified Bessel function of the second kind, and

denotes the first-order modified Bessel function of the second
kind.

As a by product, we first determine the average BER of using
only the signal received via the relay link. Although this is not
the main interest of this paper, the result will be useful when
source cannot reach destination directly due to power limi-
tation. In this case, the average BER is given by

(29)

After changing the variable and some algebraic manip-
ulations, we have with the aid of [14, (6.631.3)]

(30)

where is the Whittaker function.
Exact performance analysis of the differential detector (14) is

involved. Computer simulation suggests that the two detectors
(13) and (14) have similar BER performance. An analysis of
(14) is provided next. The conditional BER of differential BPSK
using two independent channels is given by [13, (12.1-13)]

(31)

where denotes the sum of the SNR of the relay link
and of the direct link

(32)

Averaging the conditional BER with respect to the PDF of
and , we have (see [14, (6.631.3)])

(33)

B. Outage Probability of DAF

An outage is an event when the instantaneous SNR drops
below a predetermined SNR threshold (see, e.g., [15]). The
outage probability for DAF can be defined as

(34)
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where is a predetermined SNR threshold. We note that is
the sum of two independent random variables [cf. (32)]. Hence,
the PDF of is the convolution of the PDFs of and
(e.g., [16])

(35)

where , and we changed the vari-

able . Further simplification of (35) is difficult. How-
ever, for the symmetric case of , (35) can be simpli-
fied and has a closed-form expression [14, (6.561.8)]

(36)

Equation (34) can be evaluated using numerical integration
methods.

C. Average BER of DDF

BER analysis of the ML detector (21) is prohibitively com-
plex due to its nonlinear nature. Instead, we derive the average
BER of the PL detector (26) which not only is simpler to im-
plement but also closely matches the performance of the ML
detector. DDF is difficult to analyze partly because of deci-
sion errors made by relay . Such relay-induced errors lead to a
mixture distribution of the received signal [cf. (19)]. The anal-
ysis is further complicated by a decision statistic that involves
quadratic forms in Gaussian and Gaussian mixture variates [see
(23)–(24)]. Closed-form expressions of the distributions of such
quadratic forms, in general, are known only via series expansion
[17].

We can assume without loss of generality that is
transmitted from source . The error events of the PL detector
can be represented using three mutually exclusive ones. Specif-
ically, the conditional BER (conditioned on the channels) of the
PL detector is

(37)

In Appendix II, we show that the conditional BER can be written
as

(38)

where

(39)

(40)

(41)

(42)

(43)

(44)

and the upper and lower incomplete Gamma function are de-
fined as and ,
respectively. Notice that the conditional BER only depends on
the instantaneous SNRs and , and the error probability

at .
The average BER for DDF is obtained by averaging (38)

using the distribution of and

(45)

A close examination of (39)–(44) reveals that the 2-D integra-
tion in (45) is separable. Using [14, (3.351.3)], we arrive at the
following closed-form expression of the average BER for DDF:

(46)
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where

(47)

(48)

(49)

(50)

(51)

[see (52), shown at the bottom of the page].

D. Alternative Average BER of DDF: Approximation

Since convergence rate could be slow with a series expansion
approach, we provide next an alternative BER expression for the
DDF scheme by approximations valid in the high SNR regime.
However, it is shown in Section V that the approximate BER
obtained here is very close to the exact BER over a wide range
of SNR of practical interest.

First, note that in (24) is a quadratic form of Gaussian
variates and . At the high SNR regime, we
may ignore the cross term of the Gaussian noise components of

and (see [13, p. 273] for details) and approxi-
mate the conditional distribution of as ,
where denotes a real Gaussian random variable with
mean and variance . Likewise, in (23) is a quadratic form
of Gaussian mixture variate and . At high SNR,
we can ignore the cross noise term in and approximate its dis-
tribution as a Gaussian mixture

(53)

where denotes the PDF of a real Gaussian random
variable with mean and variance . Based on the above ap-
proximations, the conditional BER (37) can be expressed as

(54)

where denotes the standard Gaussian function. Aver-
aging the conditional BER across channel statistics yields the
approximate average BER, which has the same form of (45).

A discussion on the computational aspect of the results in this
and previous section follows. The integrals in (54) and (45) can
be computed using standard numerical integration techniques,
such as the Gaussian quadrature method [18]. On the other hand,
the infinite series in (48)–(52) are truncated to a finite number
of terms for practical implementation. The upper and lower in-
complete Gamma functions used there can be calculated by

(55)

(56)

As an example of comparison, we consider the case of trun-
cating the infinite series to 600 terms, and it takes about 614 s of
CPU time measured by Matlab on a 3-GHz Pentium PC to get
the average BER using (46)–(52). Meanwhile, using (54) and
(45) with the Gaussian quadrature method takes only 19 s, which
yields a numerically identical BER result and is significantly
more efficient. These numbers are only for illustration purpose,
and our Matlab codes are not streamlined to achieve the best
computational efficiency. The complexity of using (46)–(52) is
reduced by keeping fewer terms after truncation, but this may
affect the accuracy of the result, especially at high SNR.

E. Outage Probability of DDF

For DDF, we cannot employ a single instantaneous SNR at
destination as an indicator of outage due to decision errors at
relay . In fact, the outage for decode-based schemes (including

(52)
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DDF) is not unanimously established. From an information-the-
oretic perspective, outage capacity is used in [5], which is suit-
able for coded DF schemes. For the uncoded case, we can define
that an outage of the cooperative system occurs when both the
direct and relay links experience outage. A similar definition of
the outage for the relay link was used in [7]. Hence, the outage
probability for DDF is given by

(57)

where and denote the outage probability of the direct
and relay link, respectively. Specifically, is the probability
with which drops below threshold

(58)

while is the probability with which either or
drops below

(59)

F. Asymptotic Analysis and Diversity Order

To gain additional insight into the above BER and outage
analysis, we examine in this section the asymptotic performance
at high SNR and diversity gain of the proposed DAF and DDF
schemes.

First, consider DAF whose average BER is given by (33).
To simplify our analysis, we consider the symmetric case with

and let . For large , (33) can
be approximated as

(60)

where we used the result [19, (13.1.33)]

(61)

and is the confluent hypergeometric function of the
second kind. and behave like
for large [19, (13.5.7)], while and
behave like for large [19, (3.5.9)]. Using these facts in (60)
yields

for large (62)

where is a constant. Noting that ,
, we conclude that the diversity gain of the DAF is 2 as
.

Next, we consider the DDF scheme. Although we may find
the diversity gain from the average BER in (45) or (46) by let-
ting the SNR approach infinity, this turns out a tedious process.

Instead, we will use the outage probability to determine its di-
versity gain. It has been shown that using either the outage prob-
ability or average BER leads to identical results pertaining to the
diversity gain of a wireless communication system [20]. Again,
we consider the symmetric case with
and let . A second-order Taylor expansion of (58) and
(59), followed by a substitution back into (57), yields

for large (63)

where is a constant. Hence, the DDF has a diversity order
of 2. Note that DDF does not have the term in (63), which
suggests that DDF may enjoy a steeper slope than DAF for finite

.

V. NUMERICAL RESULTS

We consider the cooperative wireless system shown in Fig. 1
with Rayleigh fading channels, and verify our analytical results
with simulation. Unless specified otherwise, we consider a sym-
metric scenario where the average SNRs of all hops are iden-
tical: . We compare our cooperative system to
a conventional noncooperative system that involves direct trans-
mission from to with differential BPSK (DBPSK). For fair
comparison, we set , so that the
sum of the transmitted energy from both and for the coop-
erative system is identical to that of the noncooperative system.

Fig. 2 shows the average BER of DAF using either (13) or
(14), the average BER of DDF with ML (21) or PL (26) de-
tection (dubbed as DDF-ML and DDF-PL, respectively), and
the average BER of the noncooperative differential BPSK (20).
We first note that in the current case, using (13) or (14) yields
nearly identical simulation results, which also match the analyt-
ical results obtained in (33). For the analytical results regarding
the average BER of DDF-PL, both the exact expression and
the approximate expression are shown in Fig. 2, where we see
that they are visually identical over all SNRs under considera-
tion. Overall, it is seen that our analytical results are matched
by the simulation results. DDF-PL is only slightly worse than
DDF-ML, and our cooperative schemes achieve cooperative di-
versity and outperform the noncooperative DBPSK. For com-
parison, we also plot in Fig. 2 the average BERs of AF and
DF schemes applying coherent detection (with perfect CSI). It
is observed that the coherent AF outperforms DAF by about
5 dB at BER ; DDF-ML and DDF-PL incur a SNR penalty
of about 1.7 and 2 dB, respectively, compared with coherent
DF-PL scheme at BER .

For asymmetric setups, (13) and (14) are still found to yield
similar BER performance as long as the per-hop average SNRs
are not significantly different. We next consider a more asym-
metric case with , and

. That is, is 10 dB stronger than and
. This also corresponds to the case where is close to , but

both are far away from . In addition to the unequal gain com-
biners (13) and (14), we also consider the standard equal gain
combiner (EGC), which instead uses the following :

(64)
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Fig. 2. Average BER in Rayleigh fading channels.

Fig. 3. Comparison of different combiners for DAF in an asymmetric scenario.

The average BERs of the three combiners are shown in Fig. 3.
It is seen that (14) is about 0.7 dB worse than the clairvoyant
combiner (13) at BER , but outperforms the EGC by more
than 2 dB. Hence, it is beneficial to use our unequal gain com-
biner (14) which takes into account the unequal average SNRs
of the direct link and relay link. We reiterate that the clairvoyant
combiner (13) requires CSI and is not suitable for differential
demodulation.

Fig. 4 illustrates the outage probabilities for the proposed and
the noncooperative schemes, where we let

, and the threshold dB. The horizontal axis
in Fig. 4 is the average SNR normalized by . DAF and DDF
are again seen to yield diversity gain over the noncooperative
scheme. It is also seen that DDF has a slightly steeper slope
than DAF, confirming the earlier conjecture.

Assuming equal distance between , , and , the symmetric
case considered in Figs. 2 and 4 corresponds to allocating equal
power to and . To examine the impact of different power al-
location schemes, we introduce a power allocation factor

that controls power allocation as follows:
and . In effect, means

Fig. 4. Outage probability in Rayleigh fading channels.

Fig. 5. Average BER of the DAF and DDF schemes as a function of the power
allocation factor r for E =N = 5; 10; . . . ; 35 dB (SNR increases from top to
bottom) in Rayleigh fading channels.

more power allocated to than to , and vice versa. Fig. 5 de-
picts the average BER of DAF and DDF-PL as a function of
(horizontal axis) for dB. For the range
of SNRs in Fig. 5, DAF appears to favor equal power alloca-
tion , while DDF seems to yield the lowest BER when

, viz., when the power allocated to is approximately
three times that allocated to .

Consider a different scenario in which and are provided
with identical transmission power, but the inter-node distance
between , , and are different. The question now becomes
where we shall place to achieve the best performance. Our
observation in Fig. 5 implies that for DAF to yield the best per-
formance, shall be approximately located in the mid-point be-
tween and . This observation, along with those in [9] and
[10], suggests that the optimal position of relay may be inde-
pendent of specific modulation scheme for AF based strategies.
Meanwhile for DDF, shall be closer to than to . The result
pertaining to DDF is intuitive since as is further away from ,
the former is expected to incur more decision errors, making the
relay link increasingly less useful.
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Fig. 6. Outage probability of the DAF and DDF schemes as a function of the
power allocation factor r for E =N = 10; 15; . . . ; 35 dB (SNR increases
from top to bottom) in Rayleigh fading channels.

Fig. 6 depicts the outage probability versus the power alloca-
tion factor for DAF and DDF. We set the threshold dB,
and dB. The same pattern is observed
as in Fig. 5.

VI. CONCLUSION

We have examined two binary differential modulation
schemes, namely DAF and DDF, along with their corre-
sponding combining/detection techniques, for cooperative
wireless networks. We have presented a framework of analyt-
ical results for the DAF and DDF schemes, including the PDF
of the instantaneous SNR, average BER, and outage probability
in Rayleigh fading channels. These results attest that DAF and
DDF achieve cooperative diversity and outperform conven-
tional noncooperative techniques.

APPENDIX I
PDF OF

Let and . The PDF of
is determined as follows (e.g., [16]):

(65)

where denotes the joint PDF of
and . The marginal PDF of is given by

(66)

The conditional PDF of is given by

(67)

Substituting (66) and (67) into (65), after some manipulations,
we have

(68)

where , . With the aid of
[14, (3.478.4)], (68) can be written as (28).

APPENDIX II
CONDITIONAL BER FOR PL DETECTOR

The decision statistics and in (37) are quadratic forms
[cf. (23)–(24)] of Gaussian and, respectively, Gaussian mixture
variates. To carry out the calculation in (37), we need distri-
butions of these quadratic forms. Quadratic forms in Gaussian
variates have been extensively studied (e.g., [17] and references
therein). Generally, closed-form expressions of the distributions
of quadratic forms in Gaussian variates exist only in series ex-
pansion. In the sequel, we will employ the series expansion re-
sults in [21] pertaining to distributions of indefinite quadratic
forms in complex Gaussian variables. Although distributions of
general quadratic forms in Gaussian mixture variables are not
available, the related events in (37) can be dealt with by con-
ditioning on possible decisions made at the relay, which reduces
the problem to one involving only quadratic forms of Gaussian
variates. This will become clear shortly.

Since and are mutually independent, we have

(69)

(70)

Applying the results regarding distributions of quadratic forms
in Gaussian variates in [21], we can verify that the conditional
cumulative distribution function (CDF) of , conditioned on

and the channels, is given by [see (24)]

(71)
Equations (39) and (42) follow immediately from (71).
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For the probabilities related to , the error events can
be grouped into two mutually exclusive subevents: one cor-
responding to when an error is made at the relay, and one
otherwise. Therefore

(72)

(73)

where

(74)

(75)

(76)

(77)

Note that conditioned on , becomes a quadratic form
in Gaussian random variates. Hence, the distribution results in
[21] are applicable. Following the same steps that were used to
obtain (39) and (42), we get (40) and (41). Note that we have

and because of
the symmetry of the PL function .

The last term in (37) can be written as

(78)

where

(79)

(80)

and can be found by integrating the joint PDF of and
, which are independent, over the constrained region

(81)

Given , is a quadratic form in Gaussian variates
and its conditional PDF (conditioned on and
channels) is obtained from [21]

(82)

Substituting (71) and (82) into (81), followed by some manipu-
lations, yields (43), where we also used [14, (3.381.1)] and the
fact that

(83)

Given , and the channels, the PDF of
is given by [21]

.

(84)
Substituting (71) and (84) into (81), after some manipulations
and with the help of [14, (3.381.1)], we reach (44).
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