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Abstract— We consider the problem of downlink chan-
nel estimation for millimeter wave (mmWave) MIMO-OFDM
systems, where both the base station (BS) and the mobile
station (MS) employ large antenna arrays for directional pre-
coding/beamforming. Hybrid analog and digital beamforming
structures are employed in order to offer a compromise between
hardware complexity and system performance. Different from
most existing studies that are concerned with narrowband chan-
nels, we consider estimation of wideband mmWave channels with
frequency selectivity, which is more appropriate for mmWave
MIMO-OFDM systems. By exploiting the sparse scattering
nature of mmWave channels, we propose a CANDECOMP/
PARAFAC (CP) decomposition-based method for channel para-
meter estimation (including angles of arrival/departure, time
delays, and fading coefficients). In our proposed method, the
received signal at the MS is expressed as a third-order tensor.
We show that the tensor has the form of a low-rank CP, and
the channel parameters can be estimated from the associated
factor matrices. Our analysis reveals that the uniqueness of the
CP decomposition can be guaranteed even when the size of the
tensor is small. Hence the proposed method has the potential to
achieve substantial training overhead reduction. We also develop
Cramér-Rao bound (CRB) results for channel parameters and
compare our proposed method with a compressed sensing-based
method. Simulation results show that the proposed method
attains mean square errors that are very close to their associated
CRBs and present a clear advantage over the compressed sensing-
based method.

Index Terms— MmWave MIMO-OFDM systems, channel esti-
mation, CANDECOMP/PARAFAC (CP) decomposition, Cramér-
Rao bound (CRB).
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I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) communication is
a promising technology for future cellular net-

works [1]–[4]. The large bandwidth available in mmWave
bands can offer gigabit-per-second communication data rates.
However, high signal attenuation at such high frequency
presents a major challenge for system design [5]. To com-
pensate for the significant path loss, large antenna arrays
should be used at both the base station (BS) and the mobile
station (MS) to provide sufficient beamforming gain for
mmWave communications [6], [7]. This requires accurate
channel estimation which is essential for the proper operation
of directional precoding/beamforming in mmWave systems.
Note that the high directivity makes mmWave communications
vulnerable to blockage events, which can be frequent in indoor
environments. To address this issue, multiple relays can be
employed and a path selection technique was proposed in [8]
to select the optimal path that maximizes the throughput.

Channel estimation in mmWave systems is challenging
due to hybrid precoding structures and the large number
of antennas. A primary challenge is that hybrid precoding
structures [9]–[13] employed in mmWave systems prevent the
digital baseband from directly accessing the entire channel
dimension. This is also referred to as the channel subspace
sampling limitation [14], [15], which makes it difficult to
acquire useful channel state information (CSI) during a prac-
tical channel coherence time. To address this issue, fast beam
scanning and searching techniques have been extensively stud-
ied, e.g. [14], [16], [17]. The objective of beam scanning is
to search for the best beamformer-combiner pair by letting
the transmitter and receiver scan the adaptive sounding beams
or coded beams chosen from pre-determined sounding beam
codebooks. Nevertheless, as the number of antennas increases,
the size of the codebook should be enlarged accordingly, which
in turn results in an increase in the sounding/training overhead.

Unlike beam scanning techniques whose objective is to find
the best beam pair, another approach is to directly estimate
the mmWave channel or its associated parameters, e.g. [15],
[18]–[21]. In particular, by exploiting the sparse scattering
nature of the mmWave channels, mmWave channel estima-
tion can be formulated as a sparse signal recovery problem,
and it has been shown [18], [19] that substantial reduc-
tion in training overhead can be achieved via compressed
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sensing methods. In [19], an adaptive compressed sensing
method was developed for mmWave channel estimation based
on a hierarchical multi-resolution beamforming codebook.
Compared to the standard compressed sensing method, the
adaptive method is more efficient as the training precoding is
adaptively adjusted according to the outputs of earlier stages.
Nevertheless, this improved efficiency comes at the expense
of requiring feedback from the MS to the BS. Other com-
pressed sensing-based mmWave channel estimation methods
include [22]–[28]. Most of the above existing methods are
concerned with estimation of narrowband channels. MmWave
systems, however, are very likely to operate on wideband
channels with frequency selectivity [29]. In [30], the authors
considered the problem of multi-user uplink channel esti-
mation in mmWave MIMO-OFDM systems and proposed a
distributed compressed sensing-based scheme by exploiting
the angular domain structured sparsity of mmWave wideband
frequency-selective fading channels. Precoding design, with
limited feedback for frequency selective wideband mmWave
channels, was studied in [29].

In this paper, we study the problem of downlink chan-
nel estimation for mmWave MIMO-OFDM systems, where
wideband frequency-selective fading channels are considered.
We propose a CANDECOMP/PARAFAC (CP) decomposition-
based method for downlink channel estimation. The proposed
method is based on the following three key observations. First,
by adopting a simple setup at the transmitter, the received
signal can be organized into a third-order tensor which admits
a CP decomposition. Second, due to the sparse scattering
nature of mmWave channels, the tensor has an intrinsic low
CP rank that guarantees the uniqueness of the CP decom-
position. Third, the channel parameters, including angles of
arrival/departure, time delays, and fading coefficients, can be
easily extracted based on the decomposed factor matrices.
We conduct a rigorous analysis on the uniqueness of the
CP decomposition. Analyses show that the uniqueness of the
CP decomposition can be guaranteed even when the size of
the tensor is small. This result implies that our proposed
method can achieve a substantial training overhead reduction.
The Cramér-Rao bound (CRB) results for channel parameters
are also developed, which provides a benchmark for the
performance of our proposed method, and also describes the
best asymptotically achievable performance. Our experiments
show that the mean square errors attained by the proposed
method are close to their corresponding CRBs.

Our proposed CP decomposition-based method enjoys
the following advantages as compared with the compressed
sensing-based method. Firstly, unlike compressed sensing
techniques which require to discretize the continuous parame-
ter space into a finite set of grid points, our proposed method is
essentially a gridless approach and therefore is free of the grid
discretization errors. Secondly, the proposed method captures
the intrinsic multi-dimensional structure of the multiway data,
which helps achieve a performance improvement. Thirdly,
the use of tensors for data representation and processing
leads to a very low computational complexity, whereas most
compressed sensing methods are usually plagued by high
computational complexity. Our simulation results show that

our proposed method has a computational complexity as low
as the simplest compressed sensing method, i.e. the orthogonal
matching pursuit (OMP) method [31], [32], while achieving
a much higher estimation accuracy than the OMP. Lastly,
the conditions for the uniqueness of the CP decomposition
are easy to analyze, and can be employed to determine
the exact amount of training overhead required for unique
decomposition. In contrast, it is usually difficult to analyze and
check the exact recovery condition for generic dictionaries for
compressed sensing techniques.

We would like to emphasize the difference between the
current work and our previous work [21]. Although both
works employ the CP decomposition for mmWave channel
estimation, their formulations are quite different. Specifically,
our previous work [21] considered the estimation of multi-
user uplink narrowband mmWave channels, which requires a
delicate layered transmission scheme such that the received
signal can be expressed as a tensor that admits a CP decom-
position. In contrast, our current work considers the estimation
of downlink wideband frequency-selective mmWave channels.
Subcarriers in the OFDM systems provide an additional mode
that naturally leads to a tensor representation of the data.
In the current paper, we also provide CRB results for channel
parameters, which is not available in our previous work.

The rest of the paper is organized as follows. In Section II,
we provide notations and basics on the CP decomposi-
tion. The system model and the channel estimation problem
are discussed in Section III. In Section IV, we propose a
CP decomposition-based method for mmWave channel estima-
tion. The uniqueness of the CP decomposition is also analyzed.
Section V develops CRB results for the estimation of channel
parameters. A compressed sensing-based channel estimation
method is discussed in Section VI. Computational complexity
of the proposed method and the compressed sensing-based
method is analyzed in Section VII. Simulation results are
provided in Section VIII, followed by concluding remarks in
Section IX.

II. PRELIMINARIES

To make the paper self-contained, we provide a brief
review on tensors and the CP decomposition. More details
regarding the notations and basics on tensors can be found
in [33]–[36]. Simply speaking, a tensor is a generalization of
a matrix to higher-order dimensions, also known as ways or
modes. Vectors and matrices can be viewed as special cases of
tensors with one and two modes, respectively. Throughout this
paper, we use symbols ⊗ , ◦ , and � to denote the Kronecker,
outer, and Khatri-Rao product, respectively.

Let XXX ∈ CI1×I2×···×IN denote an N th-order tensor with
its (i1, . . . , iN )th entry denoted by Xi1 ···iN . Here the order
N of a tensor is the number of dimensions. Fibers are a
higher-order analogue of matrix rows and columns. The mode-
n fibers of XXX are In-dimensional vectors obtained by fixing
every index but in . Slices are two-dimensional sections of a
tensor, defined by fixing all but two indices. Unfolding or
matricization is an operation that turns a tensor into a matrix.
The mode-n unfolding of a tensor XXX , denoted as X(n), arranges
the mode-n fibers to be the columns of the resulting matrix.
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Fig. 1. Schematic of CP decomposition.

The CP decomposition decomposes a tensor into a sum of
rank-one component tensors (see Fig. 1), i.e.

XXX =
R∑

r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r (1)

where a(n)
r ∈ CIn , the minimum achievable R is referred to as

the rank of the tensor, and A(n) � [a(n)
1 . . . a(n)

R ] ∈ CIn×R

denotes the factor matrix along the n-th mode. Elementwise,
we have

Xi1 i2 ···iN =
R∑

r=1

λr a(1)
i1r a(2)

i2r · · · a(N)
iN r (2)

The mode-n unfolding of XXX can be expressed as

X (n) = A(n)�
(

A(N) � · · · A(n+1) � A(n−1) � · · · A(1)
)T

(3)

where � � diag(λ1, . . . , λR).

III. SYSTEM MODEL

Consider a mmWave massive MIMO-OFDM system con-
sisting of a base station (BS) and multiple mobile sta-
tions (MSs). To facilitate the hardware implementation, hybrid
analog and digital beamforming structures are employed
by both the BS and the MS (see Fig. 2). We assume
that the BS is equipped with NBS antennas and MBS
RF chains, and the MS is equipped with NMS anten-
nas and MMS RF chains. The number of RF chains is
less than the number of antennas, i.e. MBS < NBS and
MMS < NMS. In particular, we assume MMS = 1,
i.e. each MS has only one RF chain. The total number
of OFDM tones (subcarriers) is assumed to be K̄ , among
which K subcarriers are selected for training. For simplicity,
here we assume subcarriers {1, 2, . . . , K } are assigned for
training. Nevertheless, our formulation and method can be
easily extended to other subset choices. In the downlink
scenario, we only need to consider a single user system
because the channel estimation is conducted by each user
individually [37]. To simplify our problem, we ignore the
inter-cell interference resulting from frequency reuse from
neighboring cells. To mitigate inter-cell interference, many
useful techniques such as the coordinated transmission scheme
with large-scale CSI at the transmitter [38] and the cognitive
transmission scheme [39] were recently developed.

We adopt a downlink training scheme similar to [18], [19].
For each subcarrier, the BS employs T different beamforming
vectors at T successive time frames. Each time frame is
divided into M sub-frames, and at each sub-frame, the MS uses
an individual combining vector to detect the transmitted signal.

The beamforming vector associated with the kth subcarrier at
the t th time frame can be expressed as

xk(t) = FRF(t)Fk(t)sk(t) ∀k = 1, . . . , K (4)

where sk(t) ∈ Cr denotes the pilot symbol vector, Fk(t) ∈
CMBS×r denotes the digital precoding matrix for the kth
subcarrier, and FRF(t) ∈ CNBS×MBS is a common RF precoder
for all subcarriers. The procedure to generate the beamforming
vector (4) is elaborated as follows. The pilot symbol vector
sk(t) at each subcarrier is first precoded using a digital
precoding matrix Fk(t). The symbol blocks are transformed
to the time-domain using K̄ -point inverse discrete Fourier
transform (IDFT). A cyclic prefix is then added to the symbol
blocks, finally a common RF precoder FRF(t) is applied to
all subcarriers.

At each time frame, the MS successively employs M
RF combining vectors {qm} to detect the transmitted signal.
Note that these combining vectors are common to all subcarri-
ers. At each sub-frame, the received signal is first combined in
the RF domain. Then, the cyclic prefix is removed and symbols
are converted back to the frequency domain by performing
a discrete Fourier transform (DFT). After processing, the
received signal associated with the kth subcarrier at the mth
sub-frame can be expressed as [29]

yk,m(t) = qT
m Hk xk(t) + wk,m(t) (5)

where qm ∈ C
NMS denotes the combining vector used at

the mth sub-frame, Hk ∈ CNMS×NBS is the channel matrix
associated with the kth subcarrier, and wk,m(t) denotes the
additive Gaussian noise. Collecting the M received signals
{yk,m(t)}M

m=1 at each time frame, we have

yk(t) = QT Hk xk(t) + wk(t)

= QT Hk FRF(t)Fk(t)sk(t) + wk(t) (6)

where

yk(t) � [yk,1(t) . . . yk,M (t)]T

wk(t) � [wk,1(t) . . . wk,M (t)]T

Q � [q1 . . . qM ] (7)

Measurement campaigns in dense-urban NLOS environ-
ments reveal that mmWave channels typically exhibit limited
scattering characteristics [40]. Also, considering the wideband
nature of mmWave channels, we adopt a geometric wideband
mmWave channel model with L scatterers between the MS and
the BS. Each scatterer is characterized by a time delay τl ,
angles of arrival and departure (AoA/AoD), θl , φl ∈ [0, 2π].
With these parameters, the channel matrix in the delay domain
can be written as [29], [30]

H(τ ) =
L∑

l=1

αl aMS(θl)aT
BS(φl)δ(τ − τl) (8)

where αl is the complex path gain associated with the lth path,
aMS(θl) and aBS(φl) are the antenna array response vectors
of the MS and BS, respectively, and δ(·) represents the delta
function. Throughout this paper, we assume
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Fig. 2. A block diagram of the MIMO-OFDM transceiver that employs hybrid analog/digital precoding.

A1 Different scatterers have different angles of arrival, angles
of departure as well as time delays, i.e. θi �= θ j , φi �= φ j ,
τi �= τ j for i �= j .

Since scatterers are randomly distributed in space, this assump-
tion is usually valid in practice.

Given the delay-domain channel model, the frequency-
domain channel matrix Hk associated with the kth subcarrier
can be obtained as

Hk =
L∑

l=1

αl exp(− j2πτl fsk/K̄ )aMS(θl)aT
BS(φl) (9)

where fs denotes the sampling rate. Our objective is to
estimate the channel matrices {Hk}K̄

k=1 from the received
signals yk(t),∀k = 1, . . . , K ,∀t = 1, . . . , T . In particular,
we wish to provide a reliable channel estimate by using
as few measurements as possible because the number of
measurements is linearly proportional to the number of time
frames and the number of sub-frames, both of which are
expected to be minimized. To facilitate our algorithm develop-
ment, we assume that the digital precoding matrices and the
pilot symbols remain the same for different subcarriers, i.e.
Fk(t) = F(t), sk(t) = s(t),∀k = 1, . . . , K . As will be shown
later, this simplification enables us to develop an efficient
tensor factorization-based method to extract the channel state
information from very few number of measurements.

IV. PROPOSED CP DECOMPOSITION-BASED METHOD

Suppose Fk(t) = F(t) and sk(t) = s(t),∀k = 1, . . . , K .
Let S � [s(1) . . . s(T )]. The received signal at the kth
subcarrier can be written as

Y k = QT Hk P + Wk k = 1, . . . , K (10)

where

Y k � [ yk(1) . . . yk(T )]
Wk � [wk(1) . . . wk(T )]

P � [ p(1) . . . p(T )] (11)

in which p(t) � FRF(t)F(t)s(t).
Since signals from multiple subcarriers are available at the

MS, the received signal can be expressed by a third-order
tensor YYY ∈ CM×T ×K whose three modes respectively stand
for the sub-frame, the time frame, and the subcarrier, and its

(m, t, k)th entry is given by yk,m(t). Substituting (9) into (10),
we obtain

Y k =
L∑

l=1

α̃l,k QT aMS(θl)aT
BS(φl)P + Wk

=
L∑

l=1

α̃l,k ãMS(θl)ãT
BS(φl) + Wk (12)

where α̃l,k � αl exp(− j2πτl fsk/K̄ ), ãMS(θl) � QT aMS(θl),
and ãBS(φl) � PT aBS(φl). We see that each slice of the tensor
YYY , Y k , is a weighted sum of a common set of rank-one outer
products. The tensor YYY thus admits the following CANDE-
COMP/PARAFAC (CP) decomposition which decomposes a
tensor into a sum of rank-one component tensors, i.e.

YYY =
L∑

l=1

ãMS(θl) ◦ ãBS(φl) ◦ (αl g(τl)) + WWW (13)

in which

g(τl) � [exp(− j2πτl fs(1/K̄ )) . . . exp(− j2πτl fs(K/K̄ ))]T

(14)

Due to the sparse scattering nature of the mmWave channel,
the number of paths, L, is usually small relative to the
dimensions of the tensor. Hence the tensor YYY has an intrinsic
low-rank structure. As will be discussed later, this low-rank
structure ensures that the CP decomposition of YYY is unique up
to scaling and permutation ambiguities. Therefore an estimate
of the parameters {αl , φl , θl , τl} can be obtained by performing
a CP decomposition of the received signal YYY . Define

A � [ãMS(θ1) . . . ãMS(θL)] (15)

B � [ãBS(φ1) . . . ãBS(φL)] (16)

C � [α1 g(τ1) . . . αL g(τL)] (17)

These three matrices {A, B, C} are factor matrices associated
with a noiseless version of YYY .

A. CP Decomposition

If the number of paths, L, is known or estimated a priori,
the CP decomposition of YYY can be accomplished by solving

min
Â,B̂,Ĉ

‖YYY −
L∑

l=1

âl ◦ b̂l ◦ ĉl‖2
F (18)
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where we let Â = [â1 . . . âL], B̂ = [b̂1 . . . b̂L ], and
Ĉ = [ĉ1 . . . ĉL ]. The above optimization can be efficiently
solved by an alternating least squares (ALS) procedure which
alternatively minimizes the data fitting error with respect to
one of the factor matrices, with the other two factor matrices
fixed

Â
(t+1) = arg min

Â

∥∥∥Y T
(1) − (Ĉ

(t) � B̂
(t)

) Â
T
∥∥∥

2

F
(19)

B̂
(t+1) = arg min

B̂

∥∥∥Y T
(2) − (Ĉ

(t) � Â
(t+1)

)B̂
T
∥∥∥

2

F
(20)

Ĉ
(t+1) = arg min

Ĉ

∥∥∥Y T
(3) − (B̂

(t+1) � Â
(t+1)

)Ĉ
T
∥∥∥

2

F
(21)

Note that (19)–(21) are least squares problems whose solutions
can be easily obtained.

If the knowledge of the number of paths L is unavail-
able, more sophisticated CP decomposition techniques
(e.g. [41]–[43]) can be employed to jointly estimate the
model order and the factor matrices. The basic idea of these
CP decomposition techniques is to use sparsity-promoting
priors or functions to find a low-rank representation of the
observed tensor. Specifically, let L̂ 	 L denote an overesti-
mated CP rank, the following optimization can be employed
for CP decomposition [41]

min
Â,B̂,Ĉ

‖YYY − XXX‖2
F + μ

(
tr( Â Â

H
) + tr(B̂ B̂

H
) + tr(Ĉ Ĉ

H
)
)

s.t. XXX =
L̂∑

l=1

âl ◦ b̂l ◦ ĉl (22)

where μ is a regularization parameter to control the
tradeoff between low-rankness and the data fitting error,
Â = [â1 . . . â L̂], B̂ = [b̂1 . . . b̂L̂ ], and Ĉ = [ĉ1 . . . ĉL̂ ].
The above optimization (22) can still be solved by an ALS pro-
cedure as follows

Â
(t+1) = arg min

Â

∥∥∥∥∥

[
Y T

(1)

0

]
−

[
Ĉ

(t) � B̂
(t)

√
μI

]
Â

T
∥∥∥∥∥

2

F

B̂
(t+1) = arg min

B̂

∥∥∥∥∥

[
Y T

(2)

0

]
−

[
Ĉ

(t) � Â
(t+1)

√
μI

]
B̂

T

∥∥∥∥∥

2

F

Ĉ
(t+1) = arg min

Ĉ

∥∥∥∥∥

[
Y T

(3)

0

]
−

[
B̂

(t+1) � Â
(t+1)

√
μI

]
Ĉ

T
∥∥∥∥∥

2

F

The true CP rank of the tensor, L, can be estimated by
removing those negligible rank-one tensor components after
convergence.

B. Channel Estimation

We discuss how to estimate the mmWave channels based
on the estimated factor matrices { Â, B̂, Ĉ}. As shown in the
next subsection, the CP decomposition is unique up to scaling
and permutation ambiguities under a mild condition. More
precisely, the estimated factor matrices and the true factor

matrices are related as

Â = A�1� + E1 (23)

B̂ = B�2� + E2 (24)

Ĉ = C�3� + E3 (25)

where {�1,�2,�3} are unknown nonsingular diagonal matri-
ces which satisfy �1�2�3 = I ; � is an unknown permutation
matrix; and E1, E2, and E3 denote the estimation errors
associated with the three estimated factor matrices, respec-
tively. The permutation matrix � can be ignored because it is
common to all three factor matrices. Note that each column
of A is characterized by the associated angle of arrival θl .
Hence the angle of arrival θl can be estimated via a simple
correlation-based scheme

θ̂l = arg max
θl

|âH
l ãMS(θl)|

‖âl‖2‖ãMS(θl)‖2
(26)

where âl denotes the lth column of Â. It can be shown in
Appendix A that this simple correlation-based scheme is a
maximum likelihood (ML) estimator, provided that entries in
the estimation error matrix, E1, follow an i.i.d. circularly
symmetric Gaussian distribution. The angle of departure φl

can be obtained similarly as

φ̂l = arg max
φl

|b̂H
l ãBS(φl)|

‖b̂l‖2‖ãBS(φl)‖2

(27)

where b̂l denotes the lth column of B̂. We now discuss how to
estimate the time delay τl from the estimated factor matrix Ĉ .
Note that the lth column of C is given by αl g(τl). Therefore
the time delay τl can be estimated via

τ̂l = arg min
τl

|ĉH
l g(τl)|

‖ĉl‖2‖g(τl)‖2
(28)

where ĉl denotes the lth column of Ĉ . The maximization
problems (26)–(28) involve one-dimensional search which can
be efficiently performed by first employing a coarse grid and
then gradually refining the search in the vicinity of possible
grid points. Substituting the estimated {θl} and {φl} back into
(23) and (24), an estimate of the nonsingular diagonal matrices
�1 and �2 can be obtained. An estimate of �3 can then be
calculated from the equality �1�2�3 = I . Finally, the fading
coefficients {αl} can be estimated from (25). The channel
matrices {Hk} can now be recovered from the estimated
parameters {θ̂l, φ̂l , τ̂l , α̂l }.

C. Uniqueness

We discuss the uniqueness of the CP decomposition. It is
well known that the essential uniqueness of CP decomposition
can be guaranteed by Kruskal’s condition [44]. Let kX denote
the k-rank of a matrix X , which is defined as the largest value
of kX such that every subset of kX columns of the matrix X
is linearly independent. We have the following theorem.

Theorem 1: Let (X, Y , Z) be a CP solution which decom-
poses a third-order tensor XXX ∈ CM×N×K into R rank-one
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arrays, where X ∈ CM×R , Y ∈ CN×R , and Z ∈ CK×R .
Suppose the following Kruskal’s condition

kX + kY + kZ ≥ 2R + 2 (29)

holds and there is an alternative CP solution (X̄, Ȳ , Z̄) which
also decomposes XXX into R rank-one arrays. Then we have
X̄ = X��a , Ȳ = Y��b, and Z̄ = Z��c, where � is a
unique permutation matrix and �a , �b, and �c are unique
diagonal matrices such that �a�b�c = I .

Proof: A rigorous proof can be found in [45].
Note that Kruskal’s condition cannot hold when R = 1.

However, in that case the uniqueness has been proven by
Harshman [46]. Kruskal’s sufficient condition is also necessary
for R = 2 and R = 3, but not for R > 3 [45].

From the above theorem, we know that if

kA + kB + kC ≥ 2L + 2 (30)

then the CP decomposition of YYY is essentially unique.
We first examine the k-rank of A. Note that

A = QT [aMS(θ1) . . . aMS(θL)] � QT AMS (31)

where AMS ∈ CNMS×L is a Vandermonte matrix when a
uniform linear array is employed. Suppose assumption A1
holds valid. For a randomly generated Q whose entries are
chosen uniformly from a unit circle, we can show that the
k-rank of A is equal to (details can be found in Appendix B)

k A = min(M, L) (32)

with probability one. Consider the k-rank of B. We have

B = PT [aBS(φ1) . . . aBS(φL)] � PT ABS (33)

Similarly, for a randomly generated P whose entries are
uniformly chosen from a unit circle, we can deduce that the
k-rank of B is equal to

kB = min(T, L) (34)

with probability one. Now let us examine the k-rank of C .
Recall that C can be expressed as

C = [g(τ1) . . . g(τL)]Dα (35)

where Dα � diag(α1, . . . , αL), and g(τl) is defined in (14).
We see that C is a columnwise-scaled Vandermonte matrix.
Therefore the k-rank of C is

kC = min(K , L) (36)

Since L is usually small, it is reasonable to assume that
the number of subcarriers used for training is greater than L,
i.e. K ≥ L. Hence we have kC = L. To meet Kruskal’s
condition (30), we only need k A + kB ≥ L + 2. Recalling
(32)–(34), we can either choose {T = L, M = 2} or
{M = L, T = 2} to satisfy Kruskal’s condition. In summary,
for randomly generated beamforming matrix P and combining
matrix Q whose entries are chosen uniformly from a unit
circle, our proposed method only needs T = L (or T = 2) time
frames and M = 2 (or M = L) sub-frames to enable reliable
estimation of channel parameters, thus achieving a substantial
training overhead reduction. In practice, due to the observation

noise and estimation errors, we may need a slightly larger
T and M to yield an accurate channel estimate.

Note that although we assume entries of P are chosen from
a unit circle, the hybrid precoder P can be otherwise devised,
as long as Kruskal’s condition is satisfied. Moreover, besides
random coding, coded beams [17] which steer the antenna
array towards multiple beam directions simultaneously can
also be used to serve as the beamforming and combining
vectors { pt } and {qm}. The k-ranks of A and B may still
obey (32) and (34) if P and Q are carefully designed. This
is an important issue and will be explored in our future work.

V. CRB

In this section, we develop Cramér-Rao bound (CRB) results
for the channel parameter (i.e. {θ̂l, φ̂l , τ̂l , α̂l }) estimation prob-
lem considered in (13). Details of the derivation can be found
in Appendix C. Throughout our analysis, the observation
noise in (13) is assumed to be complex circularly symmetric
i.i.d. Gaussian noise. As is well known, the CRB is a lower
bound on the variance of any unbiased estimator [47]. It pro-
vides a benchmark for evaluating the performance of our
proposed method. In addition, the CRB results illustrate the
behavior of the resulting bounds, which helps understand the
effect of different system parameters, including the beamform-
ing and combining matrices, on the estimation performance.

Note that our proposed method involves two steps: the first
step employs an ALS algorithm to perform the CP decom-
position, and based on the decomposed factor matrices, the
second step uses a simple correlation-based method to estimate
the channel parameters. For zero-mean i.i.d. Gaussian noise,
the ALS yields maximum likelihood estimates [48], provided
that the global minimum is reached. Also, it can be proved
that the correlation-based method used in the second step
is a maximum likelihood estimator if the estimation errors
associated with the factor matrices are i.i.d. Gaussian random
variables. Therefore our proposed method can be deemed
as a quasi-maximum likelihood estimator for the channel
parameters. Under mild regularity conditions, the maximum
likelihood estimator is asymptotically (in terms of the sample
size) unbiased and asymptotically achieves the CRB. It there-
fore makes sense to compare our proposed CP-decomposition-
based method with the CRB results.

VI. COMPRESSED SENSING-BASED

CHANNEL ESTIMATION

By exploiting the sparse scattering nature, the downlink
channel estimation problem considered in this paper can also
be formulated as a sparse signal recovery problem. In the
following, we briefly discuss the compressed sensing-based
channel estimation method.

Taking the mode-3 unfolding of YYY (c.f. (13)), we have

Y (3) = C(B � A)T + W (3)

= G Dα�T (PT ⊗ QT )T + W (3) (37)

where

G � [g(τ1) . . . g(τL)], Dα � diag(α1, . . . , αL),

� � [aBS(φ1) ⊗ aMS(θ1) · · · aBS(φL) ⊗ aMS(θL)]
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Taking the transpose of Y (3), we have

Y T
(3) = (PT ⊗ QT )� Dα GT + W T

(3) (38)

We see that both � and G are characterized by unknown
parameters which need to be estimated. To convert the esti-
mation problem into a sparse signal recovery problem, we
discretize the AoA-AoD space into an N1 × N2 grid, in which
each grid point is given by {θ̄i , φ̄ j } for i = 1, ..., N1 and
j = 1, ..., N2, where N1 	 L, and N2 	 L. The true
angles of arrival/departure are assumed to lie on the grid.
Also, we discretize the time-delay domain into a finite set
of grid points {τ̄l}N3

l=1 (N3 	 L), and assume that the true
time-delays {τl} lie on the discretized grid. Thus (38) can be
re-expressed as

Y T
(3) = (PT ⊗ QT )�̄ D̄α Ḡ

T + W T
(3) (39)

where �̄ ∈ CNMS NBS×N1 N2 is an overcomplete dictionary
consisting of N1 N2 columns, with its (i + ( j − 1)N1)th
column given by aBS(φ̄ j ) ⊗ aMS(θ̄i), and Ḡ ∈ CK×N3 is an
overcomplete dictionary, with its nth column given by g(τ̄n).
D̄α is a sparse matrix obtained by augmenting Dα with zero
rows and columns. Let y � vec(Y T

(3)), (39) can be formulated
as a conventional sparse signal recovery problem

y = Ḡ ⊗ ((PT ⊗ QT )�̄)d + w (40)

where d � vec( D̄α) is an unknown sparse vector. Many
efficient algorithms such as the orthogonal matching pur-
suit (OMP) [31] or the fast iterative shrinkage-thresholding
algorithm (FISTA) [49] can be employed to solve the above
sparse signal recovery problem.

Although all channel parameters can be jointly estimated
via (40), this formulation involves a very large dictionary
which in turn results in a high computational complexity.
In fact, a more efficient compressed sensing scheme can be
developed by dealing with the AoAs, AoDs and time delays
separately. For example, to estimate the time delay parameters,
we rewrite (37) as

Y (3) = Ḡ Dτ + W (3) (41)

where Dτ � D̃α�T (PT ⊗ QT )T , D̃α is a row-sparse matrix,
i.e. it has only a few nonzero rows, and the time delays can
be estimated from the indices of its nonzero rows. Note that
D̃α and Dτ share the same row sparsity pattern. Therefore
the problem reduces to estimating Dτ , which is a multiple
measurement vector (MMV) compressed sensing problem that
can be solve by the simultaneous-OMP (S-OMP) method [32],
an extension of the OMP to the MMV framework. Similarly,
we can estimate the AoAs and the AoDs from Y (2) and Y (1),
respectively.

VII. COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed
CP decomposition-based method and the compressed sensing
method discussed in the previous section. The major computa-
tional task of our proposed method involves solving the three
least squares problems (19)–(21) at each iteration. Considering
the calculation of Â, we have

Â
(t+1) = Y (1)V ∗(V T V∗)−1 (42)

where V � Ĉ
(t) � B̂

(t) ∈ CT K×L is a tall matrix since
we usually have T K > L. Noting that Y (1) ∈ M × T K ,

the number of flops required to compute Â
(t+1)

is of order
O(MT K L + M K L2 + L3). When L is small, the dominant
term has a computational complexity of order O(MT K ),
which scales linearly with the size of the observed tensor YYY .
It can also be shown that solving the other two least squares
problems requires flops of order O(MT K ) as well.

Now consider the computational complexity of the com-
pressed sensing method. The joint compressed sensing method
involves finding a sparse solution to the linear equation (40).
It can be easily verified that to solve (40), the computational
complexity of the OMP is of order O(MT K + N1 N2 N3). For
the FISTA [49], the main computational task at each iteration
is to evaluate the proximal operator whose computational
complexity is of the order O(n2), where n denotes the number
of columns of the overcomplete dictionary. For the problem
(40), we have n = N1 N2 N3. Thus the required number of
flops at each iteration is of order O(N2

1 N2
2 N2

3 ), which scales
quadratically with N1 N2 N3. In order to achieve a substantial
overhead reduction, the parameters {M, T, K } are usually
chosen such that the number of measurements is far less than
the dimension of the sparse signal, i.e., MT K 
 N1 N2 N3.
Therefore this joint compressed sensing method has a higher
computational complexity than our proposed method.

For the separate compressed sensing scheme, it involves
solving (41) to obtain an estimate of time delays. Since
Y (3) ∈ CK×MT and Ḡ ∈ CK×N3 , the number of flops
required to solve (41) using S-OMP is of order O(MT K N3).
Similarly, we can arrive at the numbers of flops required
to estimate AoAs and AoDs are of orders O(MT K N1) and
O(MT K N2), respectively. Thus the total computational com-
plexity for S-OMP is of order O(MT K (N1 + N2 + N3)).
Therefore the separate compressed sensing scheme which uses
S-OMP has a computational complexity similar to our pro-
posed method.

VIII. SIMULATION RESULTS

We present simulation results to illustrate the performance
of our proposed CP decomposition-based method (referred
to as CP). We consider a scenario where the BS employs
a uniform linear array with NBS = 64 antennas and the
MS employs a uniform linear array with NMS = 32 anten-
nas. The distance between neighboring antenna elements is
assumed to be half the wavelength of the signal. In our
simulations, the mmWave channel is generated according to
the wideband geometric channel model, in which the AoAs
and AoDs are randomly distributed in [0, 2π], the number of
paths is set equal to L = 4, the delay spread τl for each path is
uniformly distributed between 0 and 100 nanoseconds, and the
complex gain αl is a random variable following a circularly-
symmetric Gaussian distribution αu,l ∼ CN (0, 1/ρ). Here ρ is
given by ρ = (4π D fc/c)2, where c represents the speed of
light, D denotes the distance between the MS and the BS, and
fc is the carrier frequency. We set D = 30m, fc = 28GHz.
The total number of subcarriers is set to K̄ = 128, out of
which K subcarriers are selected for training. The sampling
rate is set to fs = 0.32GHz. Also, in our experiments, the
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Fig. 3. MSEs and CRBs associated with different sets of parameters vs. the
number of subcarriers, K .

beamforming matrix P and the combining matrix Q are
randomly generated with their entries uniformly chosen from
a unit circle. We assume that the number of paths, L, is known
a priori in our simulations because the OMP algorithm used
for comparison requires the knowledge of L to decide when
to terminate the greedy process. As discussed in Section IV,
our proposed method can also deal with the case where L is
unknown. The signal-to-noise ratio (SNR) is defined as the
ratio of the signal component to the noise component, i.e.

SNR �
‖YYY − WWW ‖2

F

‖WWW ‖2
F

(43)

where YYY and WWW represent the received signal and the additive
noise in (13), respectively. In our simulations, we assume
a reasonably large SNR (0dB-30dB) at the receiver. Due to
the significant path loss, the SNR could drop below 0dB,
particularly if the distance between the MS and the BS, D,
is large. To cope with this issue, the beamforming matrix P
and the combining matrix Q can be devised to form directional
beams to compensate for the path loss.

We first examine the estimation accuracy of the channel
parameters {θl , φl , τl , αl}. Mean square errors (MSEs) are
calculated separately for each set of parameters, i.e.

MSE(θ) = ‖θ − θ̂‖2
2 MSE(φ) = ‖φ − φ̂‖2

2

MSE(τ ) = ‖τ − τ̂‖2
2 MSE(α) = ‖α − α̂‖2

2

where θ � [θ1 . . . θL]T , φ � [φ1 . . . φL ]T , τ �
[τ1 . . . τL ]T , and α � [α1 . . . αL ]T . Fig. 3 plots the MSEs
of our proposed method as a function of the number of sub-
carriers used for training, K , where we set M = 6, T = 6, and
SNR = 10dB. The CRB results for different sets of parameters
are also included for comparison. We see that our proposed
method yields accurate estimates of the channel parameters
even for small values of M , T , and K . This result indicates that
our proposed method is able to achieve a substantial training
overhead reduction. We also notice that the MSEs attained

Fig. 4. MSEs and CRBs associated with different sets of parameters vs. SNR.

by our proposed method are very close to their corresponding
CRBs, particularly for the AoA, AoD, and the time delay para-
meters. This result corroborates the optimality of the proposed
method. As indicated earlier, the optimality of the proposed
method comes from the fact that the ASL and the correlation-
based scheme used in our proposed method are all maximum
likelihood estimators under mild conditions. Specifically, it has
been shown in [48] that the ALS yields maximum likelihood
estimates and achieves its associated CRB in the presence
of zero-mean i.i.d. Gaussian noise. We also proved that the
simple correlation-based scheme employed in the second stage
of our proposed method is a maximum likelihood estimator,
provided that the estimator errors of the factor matrices are
i.i.d. Gaussian random variables. Although the estimator errors
may not strictly follow an i.i.d. Gaussian distribution, the
correlation-based scheme is still an effective estimator that
achieves near-optimality. Lastly, we observe that our proposed
method fails when the number of subcarriers K ≤ 2. This is
because, for the case where T = 6 > L and M = 6 > L,
Kruskal’s condition is satisfied only if K ≥ 2. Thus our result
roughly coincides with our previous analysis regarding the
uniqueness of the CP decomposition. Fig. 4 depicts the MSEs
and CRBs vs. SNR, where we set T = 6, M = 6, and K = 6.
From Fig. 4, we see that the CRBs decrease exponentially
with increasing SNR, and the estimation accuracy achieved
by our proposed method has similar tendency as the CRBs.
The MSEs attained by our proposed method, again, are close
to their corresponding CRBs, except in the low SNR regime.

We now examine the channel estimation performance of
our proposed method and its comparison with the compressed
sensing method discussed in Section VI. The joint compressed
sensing scheme is considered and an orthogonal matching
pursuit (OMP) algorithm is employed to solve the sparse signal
recovery problem (40). The separate estimation scheme (41)
yields performance worse than (40), and thus is not included.
Note that the dimension of the signal to be recovered in (40)
is equal to N1 N2 N3, where N1, N2, and N3 denote the number
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Fig. 5. NMSEs of respective algorithms vs. SNR, M = 6, T = 6, K = 6.

Fig. 6. NMSEs of respective algorithms vs. the number of sub-frames M,
T = 6, K = 6.

of grid points used to discretize the AoA, AoD, and time
delay domain, respectively. For a typical choice of N1 = 32,
N2 = 64 and N3 = 32, the dimension of the signal is of
order O(104). In this case, more sophisticated sparse recovery
algorithms such as the fast iterative shrinkage-thresholding
algorithm (FISTA) have a prohibitive computational complex-
ity and thus are not included. Also, for the OMP, we employ
two different grids to discretize the continuous parameter
space: the first grid (referred to as Grid-I) discretizes the
AoA-AoD-time delay space into 64 × 128 × 256 grid points,
and the second grid (referred to as Grid-II) discretizes the
AoA-AoD-time delay space into 128 × 256 × 512 grid points.

In Fig. 5, we show the NMSE results for our proposed
method and the OMP algorithm as a function of SNR, where
we set M = 6, T = 6, and K = 6. Here the NMSE is
calculated as

NMSE =
∑K

k=1 ‖Hk − Ĥk‖2
F∑K

k=1 ‖Hk‖2
F

(44)

where Hk denotes the frequency-domain channel matrix
associated with the kth subcarrier, and Ĥk is its estimate.
We see that our proposed method achieves a substantial
performance improvement over the compressed sensing algo-
rithm. The performance gain is primarily due to the following
two reasons. First, unlike compressed sensing techniques,

Fig. 7. NMSEs of respective algorithms vs. the number of frames T , M = 6,
K = 6.

Fig. 8. NMSEs of respective algorithms vs. the number of subcarriers for
training K , M = 6, T = 6.

our proposed CP decomposition-based method is essentially
a gridless approach which is free from grid discretization
errors. Second, the CP decomposition-based method captures
the intrinsic multi-dimensional structure of the multiway data,
which helps lead to a performance improvement. From Fig. 6
to Fig. 8, we plot the NMSEs of respective methods vs. M ,
T , and K , respectively, where the SNR is set to 20dB. These
results, again, demonstrate the superiority of the proposed
method over the compressed sensing method. We also observe
that these results corroborate our theoretical analysis concern-
ing the uniqueness of the CP decomposition. For example,
in Fig. 6, since we have T = 6 > L and K = 6 > L, we only
need M ≥ 2 to satisfy Kruskal’s condition. We see that our
proposed method achieves an accurate channel estimate only
when M > 2, which roughly coincides with our analysis.

Table I shows the average run times of our proposed
method and the OMP method. To provide a glimpse of other
more sophisticated compressed sensing method’s computa-
tional complexity, the average run times of the FISTA are also
included, from which we can see that sophisticated compressed
sensing methods have a prohibitive computational complexity,
and thus are not suitable for our channel estimation problem.
We also see that our proposed method has a computational
complexity as low as the OMP method. It takes similar run
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TABLE I

AVERAGE RUN TIMES OF RESPECTIVE ALGORITHMS:
T = 6, M = 6, K = 6, AND SNR = 20dB

times as the OMP method which employs the coarser grid of
the two choices, meanwhile achieving a much higher estima-
tion accuracy than the OMP method that uses the finer grid.

IX. CONCLUSIONS

We proposed a CP decomposition-based method for down-
link channel estimation in mm-Wave MIMO-OFDM systems,
where wideband mmWave channels with frequency selectivity
were considered. The proposed method exploited the intrinsic
multi-dimensional structure of the multiway data received
at the BS. Specifically, the received signal at the BS was
expressed as a third-order tensor. We showed that the tensor
has a form of a low-rank CP decomposition, and the channel
parameters can be easily extracted from the decomposed
factor matrices. The uniqueness of the CP decomposition
was investigated, which revealed that the uniqueness of the
CP decomposition can be guaranteed even with a small number
of measurements. Thus the proposed method is able to achieve
a substantial training overhead reduction. CRB results for
channel parameters were also developed. We compared our
proposed method with a compressed sensing-based channel
estimation method. Simulation results showed that our pro-
posed method presents a clear performance advantage over
the compressed sensing method in terms of both estimation
accuracy and computational complexity.

APPENDIX A

In (23), for the lth column, we have

âl = λl ãMS(θl) + el (45)

where θl and λl are unknown parameters. We assume el satis-
fies circularly symmetric complex Gaussian distribution with
zero mean and covariance matrix ε2 I . Thus the log-likelihood
function is given by

L(θl, λl ) = −M ln(πε2) − 1

ε2

∥∥âl − λl ãMS(θl)
∥∥2

F

∝ − ∥∥âl − λl ãMS(θl)
∥∥2

2

Given a fixed θl , the optimal λl can be obtained by taking the
partial derivative of the log-likelihood function with respect
to λl and setting the partial derivative equal to zero, i.e.

∂L(θl , λl)

∂λ∗
l

= (âl − λl ãMS(θl))
T ã∗

MS(θl) = 0

which leads to

λ�
l = âl

T ã∗
MS(θl)∥∥ãMS(θl)

∥∥2

Note that (45) can be rewritten as
∥∥âl

∥∥2 = λl â
H
l ãMS(θl) + âH

l el

Then the log-likelihood function becomes

L(θl , λl ) ∝ −
∥∥∥
∥∥âl

∥∥2 − λl â
H
l ãMS(θl)

∥∥∥
2

(46)

Substituting λ�
l into the above log-likelihood function, we

arrive at

L(θl , λ
�
l ) ∝ −

∥∥∥∥∥∥∥

∥∥âl
∥∥2 −

∣∣∣âH
l ãMS(θl)

∣∣∣
2

∥∥ãMS(θl)
∥∥2

∥∥∥∥∥∥∥

2

(47)

∝ −

∥∥∥∥∥∥∥
1 −

∣∣∣âH
l ãMS(θl)

∣∣∣
2

∥∥ãMS(θl)
∥∥2∥∥âl

∥∥2

∥∥∥∥∥∥∥

2

(48)

Due to the Cauchy-Schwarz inequality, we have

0 ≤
∣∣∣âH

l ãMS(θl)
∣∣∣
2

∥∥ãMS(θl)
∥∥2∥∥âl

∥∥2 ≤ 1

Therefore maximizing the log-likelihood with respect to θl is
equivalent to

θ�
l = arg max

θl

L(θl , λ
�
l ) = arg max

θl

∣∣∣âH
l ãMS(θl)

∣∣∣
2

∥∥âl
∥∥2∥∥ãMS(θl)

∥∥2 (49)

The proof is completed here.

APPENDIX B

For a uniform linear array, the steering vector aMS(θi ) can
be written as

aMS(θi ) � [1 e j (2π/λ)dsin(θi ) . . . e j (NMS−1)(2π/λ)dsin(θi )]T

where λ is the signal wavelength, and d denotes the distance
between neighboring antenna elements. We assume each entry
of Q ∈ C

NMS×M is chosen uniformly from a unit circle
scaled by a constant 1/NMS, i.e. qm,n = (1/NMS)e jϑm,n ,
where ϑm,n ∈ [−π, π] follows a uniform distribution. Let
am,i � qT

m aMS(θi ) denote the (m, i)th entry of A, in which
qm denotes the mth column of Q. It can be readily verified
that E[am,i ] = 0,∀m, i and

E[am,i a
∗
n, j ] =

⎧
⎨

⎩

0 m �= n
1

N2
MS

aH
MS(θ j )aMS(θi ) m = n

(50)

When the number of antennas at the MS is sufficiently
large, the steering vectors {aMS(θi )} become mutually quasi-
orthogonal, i.e. (1/NMS)aH

MS(θ j )aMS(θ j ) → δ(θi −θ j ), which
implies that the entries of A are uncorrelated with each
other. On the other hand, according to the central limit
theorem, we know that each entry am,i approximately follows
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a Gaussian distribution. Therefore entries of A can be consid-
ered as i.i.d. Gaussian variables with zero mean and variance
1/NMS. Thus we can reach that the k-rank of A is equivalent
to the number of columns or the number of rows, whichever
is smaller, with probability one.

APPENDIX C
DERIVATION OF CRAMÉR RAO LOWER BOUND

Consider the M × T × K observation tensor YYY in (13)

YYY =
L∑

l=1

αl ãMS(θl) ◦ ãBS(φl) ◦ g(τl) + WWW (51)

where {αl , θl , φl , τl} are the unknown channel parameters to
be estimated. We assume that entries of WWW are i.i.d zero
mean, circular symmetric Gaussian random variables with
variance σ 2. For ease of exposition, let θ � [θ1 · · · θL ]T ,
φ � [φ1 · · · φL ]T , τ � [τ1 · · · τL]T , α � [α1 · · · αL ]T ,
and p � [θT φT τ T αT ]. Thus, the log-likelihood function
of p can be expressed as

L( p) = f (YYY ; A, B, C) (52)

where A, B and C , defined in (15), (16) and (17) respectively,
are functions of the parameter vector p, and f (YYY ; A, B, C)
is given by

f (YYY ; A, B, C)

= −MT K ln(πσ 2) − 1

σ 2

∥∥∥Y T
(1) − (C � B)AT

∥∥∥
2

F

= −MT K ln(πσ 2) − 1

σ 2

∥∥∥Y T
(2) − (C � A)BT

∥∥∥
2

F

= −MT K ln(πσ 2) − 1

σ 2

∥∥∥Y T
(3) − (B � A)CT

∥∥∥
2

F

The complex Fisher information matrix (FIM) for p is given
by [47], [48]

	( p) = E

{(
∂L( p)

∂ p

)H (
∂L( p)

∂ p

)}
. (53)

In the next, to calculate 	( p), we first compute the partial
derivative of L( p) with respect to p and then calculate the
expectation with respect to p(YYY ; p).

A. Partial Derivative of L( p) W.R.T p

The partial derivative of L( p) with respect to θl can be
computed as

∂L( p)

∂θl
= tr

{(
∂L( p)

∂ A

)T ∂ A
∂θl

+
(

∂L( p)

∂ A∗
)T ∂ A∗

∂θl

}
(54)

where

∂L( p)

∂ A
= 1

σ 2 (Y T
(1) − (C � B)AT )H (C � B)

∂L( p)

∂ A∗ =
(

∂L( p)

∂ A

)∗

∂ A
∂θl

= [
0 · · · ãl · · · 0

]
(55)

For a uniform linear array with the element spacing equal to
half of the signal wavelength, we have ãl � j QT Da aMS(θl),
and

Da � π cos(θl)diag(0, 1, · · · , NMS − 1) (56)

Therefore, we have

∂L( p)

∂θl
= eT

l
1

σ 2 (C � B)T (Y T
(1) − (C � B)AT )∗ ãl

+ eT
l

1

σ 2 (C � B)H (Y T
(1) − (C � B)AT )ã∗

l

= 2Re{eT
l

1

σ 2 (C � B)T (Y T
(1) − (C � B)AT )∗ ãl}

= 2Re{eT
l

1

σ 2 (C � B)T (Y T
(1) − (C � B)AT )∗ Ãel}

(57)

where Re{·} is an operator which takes the real part of a
complex number, el ∈ C

L×1 is the canonical vector whose
non-zero entry is indexed as l, and

Ã �
[

ã1 ã2 · · · ãL
]

(58)

Similarly, we can obtain the partial derivatives with respect to
other parameters as follows

∂L( p)

∂φl
= 2Re{eT

l
1

σ 2 (C � A)T (Y T
(2) − (C � A)BT )∗ B̃el}

∂L( p)

∂τl
= 2Re{eT

l
1

σ 2 (B � A)T (Y T
(3) − (B � A)CT )∗C̃el}

∂L( p)

∂αl
= eT

l
1

σ 2 (B � A)T (Y T
(3) − (B � A)CT )∗Gel

where

B̃ �
[

b̃1 b̃2 · · · b̃L

]
(59)

C̃ �
[

c̃1 c̃2 · · · c̃L
]

(60)

G �
[

g1 g2 · · · gL
]

(61)

in which b̃l � j PT DbaBS(φl), c̃l � j Dccl , and

Db � π cos(φl)diag(0, 1, · · · , NBS − 1) (62)

Dc � −2πdiag(0, fs/K̄ , · · · , (K − 1) fs/K̄ ) (63)

B. Calculation of Fisher Information Matrix

We first calculate the entries in the principal minors
of 	( p). For instance, the (l1, l2)th entry of

E

{(
∂L( p)

∂θ

)H (
∂L( p)

∂θ

)}
.

is given by

E

{(
∂L( p)

∂θl1

)∗ (
∂L( p)

∂θl2

)}

= 4E

[
Re{eT

l1 Na el1}Re{eT
l2 Na el2}

]

= E
[(

Na(l1, l1) + Na(l1, l1)
∗) (

Na(l2, l2) + Na(l2, l2)
∗)]
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where Na(l1, l1) stands for the (l1, l1)th entry of Na ∈ CL×L

and

Na � 1

σ 2 (C � B)T (Y T
(1) − (C � B)AT )∗ Ã

= 1

σ 2 (C � B)T (W T
(1))

∗ Ã.

Letting na � vec(Na), we have

na =
(

Ã
T ⊗ (C � B)T

)
vec(W H

(1)). (64)

where W (1) is the mode-1 unfolding of WWW , thus vec(W H
(1))

is a zero mean circularly symmetric complex Gaussian vector
whose covariance matrix is given by σ 2 I . Since na is the
linear transformation of vec(W H

(1)), na also follows a circu-
larly symmetric complex Gaussian distribution. Its covariance
matrix Cna ∈ CL2×L2

and second-order moments Mna ∈
CL2×L2

are respectively given by

Cna = E

[
(na)(na)H

]

= 1

σ 2

(
Ã

T ⊗ (C � B)T
) (

Ã
∗ ⊗ (C � B)∗

)

= 1

σ 2

(
Ã

T
Ã

∗) ⊗
(
(C � B)T (C � B)∗

)
(65)

and

Mna = E

[
(na)(na)T

]
= 0 (66)

Therefore, we have

E

{(
∂L( p)

∂θl1

)∗ (
∂L( p)

∂θl2

)}
= 2Re{Cna (m, n)} (67)

where m � L(l1 − 1) + l1 and n � L(l2 − 1) + l2. Similarly,
we can arrive at

E

{(
∂L( p)

∂φl1

)∗ (
∂L( p)

∂φl2

)}
= 2Re{Cnb(m, n)}

E

{(
∂L( p)

∂τl1

)∗ (
∂L( p)

∂τl2

)}
= 2Re{Cnc(m, n)}

E

{(
∂L( p)

∂αl1

)∗ (
∂L( p)

∂αl2

)}
= Cñc(m, n)∗,

in which

Cnb � 1

σ 2

(
B̃

T
B̃

∗) ⊗
(
(C � A)T (C � A)∗

)
(68)

Cnc � 1

σ 2

(
C̃

T
C̃

∗) ⊗
(
(B � A)T (B � A)∗

)
(69)

Cñc � 1

σ 2

(
GT G∗) ⊗

(
(B � A)T (B � A)∗

)
(70)

For the elements in the off-principal minors of 	( p), such as
the (l1, l2)th entry of

E

{(
∂L( p)

∂θ

)H (
∂L( p)

∂φ

)}
.

is given by

E

{(
∂L( p)

∂θl1

)∗ (
∂L( p)

∂φl2

)}

= 4E

[
Re

{
eT

l1 Nael1

}
Re{eT

l2 Nbel2}
]

= E

[
(Na(l1, l1) + Na(l1, l1)

∗)(Nb(l2, l2) + Nb(l2, l2)
∗)

]

= 2Re
{
Cna,nb(m, n)

}

where

Cna ,nb � E

[
(na)(nb)H

]

= 1

σ 4 ( Ã ⊗ (C � B))T Cw1,w2(B̃
∗ ⊗ (C � A)∗) (71)

in which

Cw1,w2 � E{vec(W H
(1))vec(W T

(2))
T } (72)

Similarly, we can obtain

E

{(
∂ f ( p)

∂θl1

)∗ (
∂ f ( p)

∂τl2

)}
= 2Re{Cna,nc(m, n)}

E

{(
∂ f ( p)

∂θl1

)∗ (
∂ f ( p)

∂αl2

)}
= Cna ,ñc (m, n)∗

E

{(
∂ f ( p)

∂φl1

)∗ (
∂ f ( p)

∂τl2

)}
= 2Re{Cnb,nc(m, n)}

E

{(
∂ f ( p)

∂φl1

)∗ (
∂ f ( p)

∂αl2

)}
= Cnb,ñc (m, n)∗

E

{(
∂ f ( p)

∂τl1

)∗ (
∂ f ( p)

∂αl2

)}
= Cnc,ñc (m, n)∗

where

Cna,nc � 1

σ 4 ( Ã ⊗ (C � B))T Cw1,w3(C̃
∗ ⊗ (B � A)∗)

Cna,ñc � 1

σ 4 ( Ã ⊗ (C � B))T Cw1,w3(G∗ ⊗ (B � A)∗)

Cnb,nc � 1

σ 4 (B̃ ⊗ (C � A))T Cw2,w3(C̃
∗ ⊗ (B � A)∗)

Cnb,ñc � 1

σ 4 (B̃ ⊗ (C � A))T Cw2,w3(G∗ ⊗ (B � A)∗)

Cnc,ñc � 1

σ 2 (C̃ ⊗ (B � A))T (G∗ ⊗ (B � A)∗)

in which

Cw1,w3 � E{vec(W H
(1))vec(W T

(3))
T }

Cw2,w3 � E{vec(W H
(2))vec(W T

(3))
T }.

The computation of Cw1,w2 is elaborated as follows. Note
that the (m, t, k)th entry in WWW ∈ CM×T ×K corresponds to
the (m, t + (k − 1)T )th entry of W (1) and also corresponds
to the (t, m + (k − 1)M)th entry of W (2). Furthermore,
the (m, t + (k − 1)T )th entry of W (1) corresponds to the
(t + (k − 1)T + (m − 1)T K )th entry of vec(W H

(1)) and
the (t, m + (k − 1)M)th entry of W (2) corresponds to the
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(m + (k − 1)M + (t − 1)M K )th entry of vec(W T
(2)). Since

entries in WWW are i.i.d. random variables, i.e.,

E{wm1,t1,k1 w
∗
m2,t2,k2

} =
{

σ 2; m1 = m2, t1 = t2, k1 = k2

0; otherwise

where wm,t,k represents the (m, t, k)th entry of WWW .
Therefore, in Cw1,w2 ∈ CT K M×M K T , the number of
nonzero entries is MT K and the corresponding indexes,
{(n1, n2)|Cw1,w2(n1, n2) �= 0}, is equal to

{(n1, n2)|n1 = t + (k − 1)T + (m − 1)T K ,

n2 = m + (k − 1)M + (t − 1)M K ,∀m, t, k}
Similarly, the index of the nonzero elements in Cw1,w3 ∈

CT K M×MT K and Cw2,w3 ∈ CM K T ×MT K are respectively
belongs to

{(n1, n2)|n1 = t + (k − 1)T + (m − 1)T K ,

n2 = m + (t − 1)M + (k − 1)MT,∀m, t, k}
and

{(n1, n2)|n1 = m + (k − 1)M + (t − 1)M K ,

n2 = m + (t − 1)M + (k − 1)MT,∀m, t, k}

C. Cramér-Rao Bound

After obtaining the fisher information matrix, the CRB for
the parameters p can be calculated as [47]

CRB( p) = 	−1( p). (73)
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