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While cycle-accurate simulators are essential tools for architecture research, design, and development, their
practicality is limited by an extremely long time-to-solution for realistic applications under investigation.
This work describes a concerted e�ort, where machine learning (ML) is used to accelerate microarchitecture
simulation. First, an ML-based instruction latency prediction framework that accounts for both static instruc-
tion properties and dynamic processor states is constructed. Then, a GPU-accelerated parallel simulator is
implemented based on the proposed instruction latency predictor, and its simulation accuracy and throughput
are validated and evaluated against a state-of-the-art simulator. Leveraging modern GPUs, the ML-based
simulator outperforms traditional CPU-based simulators signi�cantly.
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1 INTRODUCTION
Adopted extensively in computer architecture research and engineering, cycle-accurate discrete-
event simulators (DES) enable new architectural ideas, as well as design space exploration. DES is
composed of distinct modules that mimic the behavior of di�erent hardware components. On certain
events (e.g., advancing a cycle), these individual components and their interactions are simulated
to imitate the behavior of processors. Unfortunately, DES is extremely computationally demanding,
markedly diminishing its practicality and applicability at full system and application scales. Typical
simulations using the state-of-the-art gem5 simulator [7] execute at speeds of hundreds of kilo
instructions per second on modern CPUs, about four to �ve orders of magnitude slower than native
execution. In this context, it would require weeks or months to simulate a realistic application
that only takes a couple minutes to execute on real hardware. To expand the practical limits of
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traditional simulation, design space exploration necessitates a multitude of simulations across
various applications and design parameters under consideration.

Many e�orts have been made to improve traditional simulation speed through software engineer-
ing optimizations [17, 33, 40], multi/many-core simulation parallelization [18, 39], and statistical
approaches [36, 45, 55]. Among them, parallelization is a promising direction due to the broad
availability of massive parallel accelerators such as GPUs nowadays. However, one fundamental
limitation of these traditional simulators is they are intrinsically di�cult to parallelize because
of the heterogeneous nature of distinct components, frequent interactions between components,
and irregular behaviors. As a result, existing parallel simulators focus on a coarse parallelization
strategy, where the simulation of individual cores is parallelized [18, 39]. These simulators have
limited scalability and cannot leverage modern parallel accelerators.
In the meantime, machine learning (ML) advances have led to remarkable achievements in

many domains, and using ML for analytical performance modeling is signi�cant and growing.
Considerable research has been done to predict application performance [3–5, 16, 25, 26, 31, 57].
The major limitation of these application-centric methods is they are program/input dependent,
which means ML models need to be trained for individual program and input combinations. As a
result, their �exibility is limited compared to simulation-based approaches.
This paper aims to explore the possibility of an ML-based computer architecture simulation

approach given the following reasons. First, ML models, especially deep neural networks, have
been proved to be excellent function approximators in many domains, from computer vision to
scienti�c computing [19, 42, 48, 51]. We expect they can also be applied to approximate the complex
and implicit latency calculations that are essential to computer architecture simulation. Second,
ML-based simulation is more �exible compared with ML-based analytical modeling because it does
not require training per program/input. Moreover, an ML-based simulator could bring performance
advantages because ML inferences are highly parallel, and state-of-the-art accelerators (e.g., GPU;
TPU [20]) and software infrastructures [2, 32, 50] are well optimized for such tasks.

Motivated by these potentials, we establish the �rst ML-based architecture simulator, S��N��.
S��N�� is a novel instruction-centric simulation framework that decomposes program simulation
into individual instruction latency and uses tailoredML techniques for instruction latency prediction.
Program performance is obtained by combining the latency prediction results of all executed
instructions. S��N�� achieves noticeably higher simulation throughput while maintaining the
same level of simulation accuracy because: 1) it abstracts the simulated processor as a whole
and eliminates the need to simulate individual components within the processor, and 2) it is well
optimized to execute on GPUs e�ciently. Moreover, S��N�� can simulate complex processor
architectures and realistic application workloads with billions/trillions of instructions. The source
code of S��N�� is available at https://github.com/lingda-li/simnet.

This work’s contributions to the science and practice of simulation include:

• We propose an ML framework to predict instruction latency accurately (Section 2). The
proposed framework accounts for both static instruction properties and dynamic processor
behaviors, and extensive MLmodels are evaluated to balance between the prediction accuracy
and speed.

• We propose an instruction-centric architecture simulator that is built upon ML-based in-
struction latency predictors (Section 3). Evaluated using a realistic benchmark suite and on
full microprocessor architectures, we demonstrate that the proposed approach simulates
programs faithfully compared with the discrete-event simulator it learns from. To the best of
our knowledge, the proposed framework is the �rst of its kind and could set the stage for
developing alternative tools for architecture researchers and engineers.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 25. Publication date: June 2022.

https://github.com/lingda-li/simnet


SimNet: Accurate and High-Performance Computer Architecture Simulation using Deep Learning 25:3

Instruction

History context
simulation

Instruction
context features

History context
features

Machine
learning model

Fetch latency

Execution latency

Memory access info

Clock
management

Context
management

Input trace Static 
properties

Store latency

Fig. 1. ML-based simulation workflow. The ML-based instruction latency predictor is shown in green, and its
input and output are in yellow and orange, respectively (Section 2). Other simulator components are in blue
(Section 3).

• We also prototype a GPU-accelerated ML-based simulator (Section 3.3). It improves the
simulation throughput up to 76⇥ compared to its traditional counterpart. It also achieves a
higher throughput per watt thanks to GPU’s power e�ciency advantage.

RelatedWork. Ithemal [28] represents the closest relatedwork to this e�ort, proposing a long short-
termmemory (LSTM) model to predict the execution latency of static basic blocks. However, Ithemal
has three major limitations: 1) it targets a simpli�ed processor model without branch prediction and
cache/memory hierarchies; 2) it can only predict the performance of basic blocks with a handful
of instructions, while real-world simulation executes billions or trillions of instructions; and 3)
it simulates instructions at a pace of thousands of instructions per second, which is signi�cantly
slower than traditional simulators. As a result, unlike S��N��, Ithemal can neither simulate real-
world processors nor applications, and it is infeasible for realistic computer architecture simulation.
Section 2.5 will quantitatively compare Ithemal with S��N��, and Section 6 will discuss other
related works.
Scope of Work. This paper focuses on simulating out-of-order superscalar CPUs, which employ
technologies such as multi-issue, out-of-order scheduling, and speculative execution to exploit
instruction-level parallelism. We posit the proposed simulation methodology also is applicable
to other processor architectures, which usually are less challenging to simulate. In addition, we
constrain the scope to the prediction of program performance and single-thread program simulation,
leaving multiple-thread/program simulation for future work. Traditional simulators also produce
additional metrics other than performance, such as energy consumption. While it is reasonable
to assume the proposed method is applicable to such prediction as well, these metrics are not
considered in this work.

2 ML-BASED LATENCY PREDICTION
Figure 1 shows the work�ow of S��N��. S��N�� is built around an ML-based instruction latency
prediction framework (the dashed box in Figure 1), and this section will describe its design.

2.1 Factors that Determine Instruction Latency
Successful instruction latency prediction by an ML model is contingent upon capturing all factors
that impact latency in its design and implementation. These factors can be summarized into three
categories.
Static Instruction Properties. These properties describe the basics of an instruction, including
the operation types, source/destination registers, etc. They guide how an instruction is executed in
a processor. For instance, the type of instruction determines its computation resource (e.g., function
units; register �les) and synchronization requirements (e.g., memory barriers).
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Impact Factor Features
Static properties 13 operation features (function type, direct/indirect branch, memory barrier, etc.); 14 register

indices (8 sources and 6 destinations)
Instruction context 27 static properties; 14 history context features; 1 residence latency; 1 execution latency; 1 store

latency; 5 memory dependency �ags to indicate if it shares the same instruction/data address/cache
line/page with the current instruction

History context 1 branch misprediction �ag; 1 fetch level; 3 fetch table walking levels; 2 fetch caused writebacks;
1 data access level; 3 data access table walking levels; 3 data access caused writebacks

Table 1. Input features for various instruction latency impact factors.

Dynamic Processor States. Besides its static properties, the latency of an instruction largely
depends on the states of all processor components (e.g., register �les; caches) at its execution time.
We refer to these states as contexts and further distill them into two categories.

Instruction Context: Many contexts relate to other concurrently running instructions in the
processor, referred to as instruction context in this paper. For example, whether the desired execution
unit is available depends on whether there is a co-running instruction of the same type using
it currently, and if a source register can be read immediately depends on whether the previous
instruction that writes the same register has �nished. We argue that instruction context can be
determined given all concurrently running instructions, named context instructions in this paper.
The processor capacity decides the maximal number of context instructions.

History Context: The remaining hardware contexts depend on events that happened in the long-
term execution history. Cache, translation lookaside bu�er (TLB), and branch predictor states
belong to this category. For example, whether a memory load hits in the L2 cache depends on when
the same cache line was last accessed, and branch prediction results hinge on the branch execution
history. Traditional simulators employ lookup tables (e.g., cache tag array; branch target predictor)
to keep track of such states. We refer to them as history context.

2.2 Framework Formulation
With these impact factors, we are ready to build an instruction latency prediction framework. The
framework aims to balance between two competing goals: to predict instruction latency accurately
and swiftly. An ML-based instruction latency predictor (the green box in Figure 1) is the center of
the framework, which captures the impact of input features. Its inputs (yellow boxes) take into
account the aforementioned impact factors. Table 1 summarizes the input features, which are
divided into three categories based on which impact factor they model as introduced below.
Modeling Static Instruction Properties. The top row of Table 1 lists the static instruction
properties used as the input features of the ML model, including 13 operation features and 14 source
and destination register indices. They are well known to computer architects and can be extracted
from the instruction encoding directly.
Modeling Instruction Context. To account for the impact of concurrently running instructions,
the key is tomodel their relationshipswith the to-be-predicted instruction. Such relationships include
resource competition, register dependency, and memory dependency. We call these concurrently
running instructions, context instructions. Formally, the context instructions are those instructions
present in the processor when a particular instruction is about to be fetched. In theory, instructions
issued after the current instruction also can in�uence its execution. However, these cases are rare,
and we only include previous instructions for practicality. The middle row of Table 1 shows input
features per context instruction.
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For resource competition and register dependency, it is su�cient to provide the static properties of
context instructions (i.e., their operation features and register indices). The ML model is responsible
for deducing the resource competition using their operation features and the register dependency
by comparing register indices.
To model the memory dependency (including instruction fetch and data access), one solution

is to provide memory access addresses as parts of input features and leave the rest work to the
ML model. Unlike register indices, memory access addresses spread across a much wider range in
a typical 64-bit address space. Thus, having addresses as input would slow down the ML model
prediction speed. Instead, we extract the memory dependency by explicitly comparing the memory
access addresses of the current instruction with those of context instructions and generate several
memory dependency �ags as input features. For example, we compare their program counters (PCs)
to identify if they fall into the same instruction cache line. This PC dependency �ag presumably
helps with fetch latency prediction as instructions that share the same instruction cache line can be
fetched together. Similarly, there are dependency �ags to indicate if data accesses share the same
address, cache line, and page.

In addition, we introduce several features to capture the temporal relationship between instruc-
tions. Particularly, we include the number of cycles it has stayed in the processor (i.e., residence
latency), how long it takes to complete execution (i.e., execution latency), and the memory store
latency (i.e., store latency) if applicable. The latter two are provided by the ML model output, which
will be introduced shortly. The latency of context instructions is useful to predict the latency of the
current one. For example, when an instruction follows a mispredicted branch, its fetch latency is
decided by the execution latency of the branch.
Modeling History Context through Simpli�ed Simulation. History context re�ects the hard-
ware states that depend on long-term historical events, and it includes caches, TLBs, and branch
predictors. It is impractical to either capture the history context within the ML model or directly
have it as the input because it includes a huge amount of information. Considering a 2MB cache
with 64B cache lines as an example, we will need ⇠5B per cache line to store its address tag, etc.
Totally, a 2MB cache requires storing at least 2MB ÷ 64B ⇥ 5B = 160KB of information to simulate
it accurately. The total history-context-related information is much larger given all history context.
It is prohibitively expensive and ine�cient to let the ML model memorize such large amounts of
information.
Fortunately, the majority of history context impacts can be captured using a small number

of intermediate results. For a memory access, the cache/TLB level in which it gets hit roughly
determines its latency. Similarly, whether or not a branch target is predicted correctly determines
the impact of a branch prediction.
Therefore, we propose to simulate history context components explicitly to obtain these in-

termediate results (i.e., history context simulation), which are passed to the ML model as input
features. History context simulation greatly alleviates the burden on ML models. As shown in the
last row of Table 1, a branch misprediction �ag is obtained for a branch instruction. An access level
feature is used for each memory access to indicate which level of the cache/TLB hierarchy satis�es
the request. All instructions require fetch access and fetch table walking levels, and load/store
instructions need data access and data table walking levels, e.g., a load request that hits in the
L2 cache has a level of 2. The numbers of cache writebacks generated are also included in input
features to capture their impacts.
Note that obtaining these intermediate results mostly involves table lookups (e.g., cache tag

array; branch direction predictor). Detailed structures, such as pipeline and miss status history
register (MSHR), are not needed in the history context simulation. The impacts of these structures
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are captured by the ML model in S��N��. Therefore, the history context simulation is lightweight
and has negligible impact on the overall performance.
ML Model Input Summary. In total, each context instruction has 50 input features, and the to-
be-predicted instruction has 47 input features. For alignment purposes, we pad the to-be-predicted
instruction features with three zeros, to have an equal number of 50 features. Together, the ML
model takes 50⇥ (# context instructions+1) features as input. While it is common to adopt one-hot
encoding for individual input features, we choose not to do so to favor smaller input size and faster
prediction speed.
ML Model Output. In Figure 1, the ML model is designed to predict three types of latencies per
instruction: fetch, execution, and store. Fetch latency represents how long an instruction needs
to wait to enter the processor after the previous instruction is fetched. It is a�ected by both its
instruction fetch request and context instructions (e.g., when it follows a mispredicted branch).
Execution latency represents the time interval from when an instruction is fetched to when it
�nishes execution and is ready to retire from the reorder bu�er (ROB). Note it is di�erent from the
ROB retire latency because the ROB retires instructions in order. For store instructions, they write
memory after being retired from the ROB. The store latency is used to represent the latency from
when a store instruction is fetched to when it completes memory write (i.e., when it is ready to
retire from the store queue (SQ)). Section 3.1 will introduce how these latencies are used in S��N��
simulation.

2.3 Neural Network Architecture
Given the input and output, we train various ML models to learn their connections and capture the
architectural impact.
Sequence-Oriented Models. The ML model input includes a sequence of instructions (i.e., to-be-
predicted instruction and context instructions), similar to word sequences in the case of natural
language processing (NLP). Therefore, a natural option is to apply models designed to process
sequences, such as recurrent neural networks [38], LSTM [15], and Transformer [51], for instruction
latency prediction. Ithemal [28] follows this strategy and adopts LSTM to predict basic block latency.
The main drawback of these models is they are more computational intensive, resulting in low
simulation throughput.
Deep Convolutional Neural Network (CNN) Models. Deep CNN models have shown great
success in computer vision [14, 24, 48], where convolution kernels learn and recognize the spatial
relationship between pixels. In our instruction latency prediction setting, convolution can help
learn the relationship among input instructions. CNNs are less computational demanding than
sequence-oriented models and fully connected networks. Another bene�t of CNN is it eases the
training of deeper networks because signi�cantly less parameters need to be learned. As will be
demonstrated in Section 2.5, we choose CNNs for S��N��’s instruction latency predictors due to
their prediction accuracy and computation overhead advantages.

Figure 2 illustrates the proposed CNN architecture. Inst0 represents the instruction to be predicted,
and the MLmodel outputs �0, ⇢0, and (0, which are its predicted fetch, execution, and store latencies,
respectively. Without loss of generality, Figure 2 shows three context instructions, Inst1,2,3.

We organize input instructions in a one-dimensional (1D) array by their execution order and have
their features as channels, per CNN terminology. As introduced in Section 2.2, every instruction
includes 50 features. Using computer vision as an analogy, instructions correspond to pixels, except
they are 1D instead of two-dimensional, and instruction features correspond to pixel color channels.
This input organization facilitates convolutional operations to reason the relationship between
instructions. Again, it is analogous to reasoning the shape composed by pixels in computer vision.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 25. Publication date: June 2022.



SimNet: Accurate and High-Performance Computer Architecture Simulation using Deep Learning 25:7

Inst0

Inst1

Inst2

Inst3

1D Conv

Fl
at

te
n

Fu
lly

 c
on

ne
ct

ed
 la

ye
r

F 0
E

0
S 0

1D Conv

1D Conv

B
at

ch
 n

or
m

Si
gm

oi
d

E
xp

an
d 

co
nv

B
at

ch
 n

or
m

Si
gm

oi
d

D
ep

th
 c

on
v

Sq
ue

ez
e 

&
 

ex
ci

ta
tio

n

+

B
at

ch
 n

or
m

Po
in

t c
on

v

Si
gm

oi
d

A residual block inspired by EfficientNet

Fig. 2. Convolutional neural network architecture illustration.

We organize the convolutional layers in a hierarchical way, where the �rst layer captures the
relationship between temporally adjacent instructions, and subsequent layers integrate the impact
of further away instructions. In Figure 2, the impact of Inst1 to Inst0 is captured in the �rst layer, and
the impact of Inst2 and Inst3 is incorporated in the second layer. This hierarchical design prioritizes
the impact of temporally closer context instructions while penalizing the in�uence of more distant
instructions, and real processors follow the same principle. For instance, if a source register of Inst0
is the destination register of both Inst1 and Inst3, Inst0 only has to wait for Inst1 where a true read
after write dependency exists.
In our default design, each convolution layer includes a convolution operation followed by an

activation operation. An alternative is to use a residual block as shown at the bottom of Figure
2, which facilitates to increase the depth of CNNs [14]. In this work, we design a residual block
architecture inspired by the state-of-the-art image recognition model, E�cientNet [47, 48].

The output of the last convolutional layer is �attened then used as the input of two fully connected
layers. At the end, the model outputs the predicted fetch, execution, and store latencies of Inst0.
We adopt the commonly used recti�ed linear unit (ReLU) as the activation function of both the
convolutional and fully connected layers.
Empirically, we �nd the following CNN design principles work well for instruction latency

prediction. First, the inputs of di�erent convolutional operations have no overlap in contrast to
computer vision CNNs. For example, we do not convolve Inst1 and Inst2 in Figure 2. In this way,
the impact of a context instruction is integrated only once. Second, a convolution kernel size of 2 is
always used to account for only two adjacent inputs, which reduces the complexity. Combined
with the �rst principle, it means all convolutional layers have the uniform kernel and stride size,
2. Our experiments demonstrate that these principles work well across di�erent architecture
con�gurations. While an extensive neural architecture search [11] could potentially �nd better
architectures, it also means signi�cant searching overhead and we leave it for future work.
From Output to Latency. There are two ways to convert the ML model output to the latency
prediction results. In a regression model, the model output is directly used as the predicted latency.
One inherited issue for the regression latency prediction model is its inability to distinguish between
small latency di�erences. The impact may be minor when a latency of 1000 cycles is predicted to
be 1001 cycles, but the error could be signi�cant for small latencies (e.g., 0 cycle predicted to be 1).
Because the fetch latency is 0 or 1 cycle in most cases, this drawback is particularly critical for its
prediction.
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Parameter Default O3CPU A64FX
Core 3-wide fetch, 8-wide out-of-order issue/commit, bi-mode

branch predictor, 32-entry IQ, 40-entry ROB, 16-entry LQ,
16-entry SQ

8-wide fetch, 4-wide out-of-order issue/commit, bi-mode
branch predictor, 48-entry IQ, 128-entry ROB, 40-entry LQ,
24-entry SQ

L1 ICache 48KB, 3-way, LRU, 4 MSHRs 64KB, 4-way, LRU, 8 MSHRs
L1 DCache 32KB, 2-way, LRU, 16 MSHRs, 5-cycle latency 64KB, 4-way, LRU, 21 MSHRs, 8-cycle latency, 8-degree

stride prefetcher
I/DMMU 2-stage TLBs, 1KB 8-way TLB caches with 6 MSHRs 2-stage TLBs, 1KB 4-way TLB caches with 6 MSHRs
L2 Cache 1MB, 16-way, LRU, 32 MSHRs, 29-cycle latency 8MB 16-way, LRU, 64 MSHRs, 111-cycle latency

Table 2. Simulated processor configurations.

A classi�cation model could help to better distinguish between close latency values, where every
latency value corresponds to a class, and the ML model predicts which class has the largest proba-
bility. However, because the latency could be up to several thousands of cycles, a pure classi�cation
scheme will signi�cantly increase the output size and, thus, the computational overhead. Another
problem of a pure classi�cation scheme is it is di�cult to train such a model because large latency
samples appear less frequently in the training set.
As it is quite expensive to have a class for each possible latency value, we propose a hybrid

scheme which uses classi�cation for latency that appears frequently and regression for others.
Naturally, small latencies appear more frequently. Taking the fetch latency prediction as an example,
we classify them into 10 classes in the hybrid scheme. Cycles 0 to 8 have dedicated classes (20, ..., 28),
while another class is used to represent cycles that are larger than 8 (2>8). The proposed model
outputs the probability of each class. It also outputs a direct prediction result ; as in the regression
model. On a prediction, we �rst check which class has the largest probability. If it is one among
20, ..., 28, the corresponding latency is predicted. Otherwise, ; is used as the predicted latency. Similar
procedures are used to predict execution and store latencies.

2.4 Dataset and Training

Data Acquisition. Due to their data-driven nature, acquiring a su�cient training dataset is
necessary for the success of ML-based approaches. Fortunately, it is convenient to engage existing
simulator infrastructures to acquire a dataset for standard supervised training.

We modify gem5 [7] to dump instruction execution traces, which then are used to generate ML
training/validation/testing datasets. In the modi�ed gem5, each instruction is assigned with three
timestamps to record its respective fetch, execution, and store latencies. While the fetch latency
stamp is updated in the instruction fetch unit, the execution and store latency stamps are updated
in the ROB and SQ, respectively. After all latencies of an instruction are recorded, gem5 dumps it
to a trace �le.
The instruction traces output by gem5 require several steps of processing before they can be

used for ML. First, for each instruction, we �nd and associate its context instructions based on the
timestamps to form a sample. Second, many samples may be alike because the same scenarios can
appear repeatedly during the execution of benchmarks. We eliminate such duplication to reduce
the dataset. Finally, we convert the dataset to the format used by the ML framework.
Table 2 shows the processor con�gurations that ML models learn from. The default O3CPU

resembles a classic superscalar CPU. We also train models to learn the Fujitsu A64FX CPU deployed
in the current top-ranked supercomputer, Fugaku [41, 56], which represents a state-of-the-art
CPU. We obtain the o�cial gem5 con�gurations of A64FX at [23], which is veri�ed to have an
average simulation error of 6.6% against the real processor. Both simulated processors support the
ARMv8 instruction set architecture (ISA), and benchmarks are compiled using gcc 8.2.0 under the
O3 optimization level. The full system simulation mode of gem5 is employed with Linux kernel
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Type ML Simulation

INT perlbench,
gcc

mcf, omnetpp, xalancbmk, x264, deepsjeng,
leela, exchange2, xz, specrand_i

FP bwaves,
namd

cactuBSSN, parest, povray, lbm, wrf, blender,
cam4, imagick, nab, fotonik3d, roms, specrand_f

Table 3. Benchmarks for ML and simulation.

4.15. We use the default O3CPU con�guration for most of our experiments, while Section 4.1 will
present the results for the A64FX con�guration. Under the default O3CPU con�guration, there are,
at most, 110 context instructions. Therefore, the ML model input has 50 ⇥ (1 + 110) = 5550 features.
ARMv8 is a representative 64-bit reduced instruction set computer (RISC). It includes various

integer, �oating-point, branch/jump, load/store, vectorized �oating-point/integer, Boolean logic
instructions, etc. A trained S��N�� model can predict the latency of all these instructions. We
expect S��N�� will be able to support future ISA extensions.

S��N�� can also support other ISAs including complex instruction set computers (CISCs) such as
x86. To directly predict the performance of CISC instructions, more input features (e.g., multiple data
access levels) are required because they show more complex behaviors such as multiple memory
accesses. Another possible approach to support CISCs is to decompose CISC instructions into RISC
like macro instructions, similar to what contemporary CISC CPUs do. In this way, S��N�� can be
used to predict the latency of simpler RISC instructions, similar to ARM ones.
Benchmark. Theoretically, any program can be run on the modi�ed gem5 to collect the ML
dataset, and we can acquire an unlimited amount of data. We choose to use the SPEC CPU 2017
[8] benchmark suite in this paper because it is widely used in computer architecture simulation
and includes a wide range of applications, which should lead to a su�cient coverage of instruction
execution scenarios. We select the �rst four SPEC CPU 2017 benchmarks to generate the ML
training/validation/testing dataset, which are shown in Table 3. The default test workloads are
used for these four benchmarks, and one billion instructions are simulated from the beginning for
each benchmark to collect the ML dataset. Totally, we obtain a dataset with 71 million samples,
among which roughly 90% of them are dedicated for training, 5% for validation, and 5% for testing.
As will be introduced in Section 4, we use the reference workloads to verify the simulation

accuracy of all 25 SPEC CPU 2017 benchmarks. The facts that 21 benchmarks of them do not appear
in the ML dataset and the simulation accuracy is evaluated on di�erent input workloads, allow us
to evaluate the generalizability of S��N��.
Training.We use the standard gradient-based optimization to train various models. Let {(G8 ,~8 )}=8=1
represent the set of input and output pairs in a training set of = samples. Let 5\ represent a to-be-
trained model with parameters \ , and our goal is to �nd a particular \ that minimizes the training

loss � (\ ) = 1
=

=Õ
8=1

!(5\ (G8 ),~8 ). When training the regression output, ! is the squared-error loss

function. When training the classi�cation output, ! is the cross-entropy loss function.
Our training code is built upon PyTorch 1.7.0 [32]. The objective function � is minimized using

the Adam optimizer [22]. We use a learning rate of 0.001 and no weight decay or momentum.
Every model is trained for 200 epochs, and the validation set is used to select the model with
the lowest loss. No hyperparameter tuning is performed when training for di�erent architecture
con�gurations to avoid extensive hyperparameter search overhead. Our ML training hardware
platform is an NVIDIA DGX A100 system [1]. It includes eight NVIDIA A100 GPUs connected
through NVLink 3.0 and NVSwitch, and each is equipped with 40GB HBM that supports 1.5 TB/sec
peak bandwidth. Tensor cores in an A100 GPU enable a peak performance of 156 TFlops for Tensor
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Approach ML model Output Computation
intensity (MFlops)

Instruction prediction error Benchmark simulation error
Fetch Execution Store train avg. sim. avg. all avg.

S��N��

FC2 reg 5.7 89% 11% 71% 82% 57% 61%
FC3 reg 6.7 32% 6.1% 4.1% 14% 20% 19%
C1 reg 4.0 55% 9.3% 8.5% 19% 31% 29%
C3 reg 8.1 35% 6.4% 17% 4.6% 9.0% 8.3%
C3 hyb 8.1 2.7% 3.4% 1.0% 2.7% 12% 10%
RB7 hyb 93 1.7% 1.8% 0.6% 5.7% 5.5% 5.6%

LSTM2 hyb 119 6.5% 6.0% 1.6% 7.3% 7.9% 7.8%
TX6 hyb 1185 6.4% 4.2% 1.1% 7.9% 9.6% 9.3%

Ithemal LSTM2 N/A 216 64% 17% 37% 20% 27% 26%
LSTM4 487 68% 14% 74% 15% 16% 16%

Table 4. Instruction latency prediction and program simulation accuracy of various ML models. Output
indicates if it is a regression model (reg) or hybrid model with classification (hyb). Computation intensity
measures the number of million floating point multiplications (MFlops) required for one inference.

Float 32 operations. The DGX A100 system’s high computing and memory throughputs make it
ideal for ML training and inference. Depending on its complexity, training a model takes 18 ⇠ 75
hours on this machine. Section 4.3 will discuss the training overhead.

2.5 Model Evaluation
We evaluate an array of ML models for instruction latency prediction, and the middle part of Table
4 compares their prediction accuracy. We represent an ML model using a combination of letters
and numbers, where the pre�x denotes the basic building block type and the su�x denotes the
number of layers. Particularly, FC, C, RB, LSTM, and TX represent the fully connected layer, the
conventional convolutional layer, the residual block depicted at the bottom of Figure 2, the standard
LSTM block, and the Transformer encoder layer [51], respectively. For example, C3 is composed of
three conventional convolutional layers.

The prediction error of each latency type is de�ned as follows for the 8th entry of testing dataset:
⇢ = |5\ (G8 )�~8 |

~8+1 , where G8 is the input and ~8 is the expected output. Note that we use ~8 + 1 as the
denominator instead of ~8 because the ~8 of fetch and store latencies (e.g., non stores) is often 0.
Table 4 a�ords several observations. First, we note that the prediction error of CNNs improves

with the number of layers, which demonstrates the necessity of a deep neural network. Particularly,
RB7 with residual blocks achieves the best accuracy, while the simplest FC2 model’s prediction
error is an order of magnitude larger.

Second, the hybrid scheme helps reduce prediction errors, from 35% to 2.7% for fetch latency’s
error under C3, while barely increasing the computation complexity. We notice that the hybrid C3
model makes correct fetch latency predictions in 95% of cases. In comparison, the regression C3
model predicts 65% of fetch latency correctly, which demonstrates that classi�cation is helpful to
predict latencies with small values.

Third, Table 4 also compares the computational overhead of various models. CNN models require
4 ⇠ 93 millions of multiplications per inference/prediction. Di�erent models represent di�erent
trade-o� points between accuracy and computation overhead. Although they seem to be higher
than that of traditional simulators, these computations are performed very e�ciently on modern
accelerators, such as GPUs and TPUs. As a result, S��N�� achieves signi�cantly higher simulation
throughputs as well as better power e�ciency, as will be shown in Section 4.2.
Compared with CNN models, both LSTM and Transformer models show lower prediction

accuracy while incurring much larger computational overhead. Transformer models are especially
expensive due to the attention computation [51]. Although there are spaces to improve their
accuracy through the adoption of deeper and wider networks, doing so requires larger computation
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overhead. This demonstrates that CNNs are more e�cient at instruction latency prediction under a
constrained computation budget.
Comparison with Ithemal.We also compare S��N�� with Ithemal [28], a state-of-the-art ML-
based latency prediction approach. It is designed to predict the latency of a basic block for processors
with ideal caches and branch predictors, i.e., all memory accesses hit in L1 caches, and branch
latency is not considered. To make a meanful comparison, we enhance it with S��N�� input features
so that it considers the impact of realistic caches and branch predictors and can predict the latencies
of instruction sequences that are much longer than basic blocks. The key di�erence between Ithemal
and S��N�� is that the former uses a �x number of previous instructions as the input, while the
latter explicitly selects instructions that are active in the processor (i.e., context instructions) as its
input and excludes those that have retired.
We train two LSTM models using the Ithemal approach, and the last two rows of Table 4 show

their results. The LSTM4 model is similar to what Ithemal originally uses, and we also include a
2-layer LSTM. The same training dataset and process as S��N�� is adopted to ensure fairness. We
�nd LSTM4 does not always perform better than LSTM2 due to the fading gradient problem that is
common for deep LSTM training.
We observe that S��N��’s prediction errors are one order of magnitude lower than those of

Ithemal. S��N�� models also incur lower computation overhead. These results demonstrate that
explicitly constructing context instructions signi�cantly improves instruction latency prediction
accuracy, which is a key contribution of S��N��. This conclusion is intuitive because the input can
better re�ect the processor status when excluding retired instructions, which simpli�es the job of
ML models and results in higher accuracy. Note that the LSTM2 models of S��N�� and Ithemal
have the same architecture. S��N��’s LSTM2 has a lower computation intensity because S��N��
has less instructions as input. The fact that S��N��’s LSTM2 has signi�cantly better prediction
accuracy than Ithemal’s LSTM2 further demonstrates the e�ectiveness of S��N��.

3 ML-BASED SIMULATION
3.1 From Instruction Latency to Program Performance
S��N�� simulates the program performance using the ML-based instruction latency predictor intro-
duced in Section 2. Figure 3 illustrates how to calculate program execution time using instruction
latencies, leveraging the fact that instruction fetch and instruction retire from ROB and SQ happen
in order. Note that the fetch latency could be 0 in cases when multiple instructions are fetched
together (e.g., Inst4). We observe the execution time E of a program can be computed as

E = (
=’
8=1

�8 ) + �, (1)
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where = is the total number of simulated instructions, �8 represents the fetch latency of the 8th
instruction, and � is the amount of time from when the last instruction is fetched to when all
instructions exit the processor. When = is large enough, the total execution time is dominated by
the accumulated fetch latencies, and � is negligible. This equation lays down the foundation for
the proposed instruction-centric simulator.

3.2 Simulator Implementation
Based on Equation 1, we develop a trace-driven simulator. The simulator goes through every
executed instruction instance to predict its latency and outputs the program performance upon
completion. Themodi�ed gem5 is used to generate input traces, which include instruction properties
extracted by functional simulation, and history context simulation results.
Context Management. As introduced in Section 2.2, the ML predictor requires the features
of context instructions as part of its input. Therefore, S��N�� needs to keep track of context
instructions. For example, in Figure 3, when Inst6 is about to be fetched (vertical black-dotted line),
Inst1 has retired, and Inst2⇠5 are still in the processor based on their execution and store latencies.
Therefore, Inst2⇠5 are the context instructions of Inst6. To this end, we employ two �rst-in-�rst-out
(FIFO) queues, processor queue and memory write queue, to keep track of context instructions that
stay in the processor and their features. They roughly correspond to the ROB and SQ in an out-
of-order processor but are not exactly the same. The two major di�erences are that the processor
queue includes instructions in the frontend, while ROB does not, and a store instruction enters the
memory write queue after it retires from the processor queue.
After the simulator reads one instruction from the input trace, the ML predictor is invoked to

predict its latency. Then, it enters the processor queue with the residence latency initialized to 0.
When it retires from the processor queue is determined based on its predicted execution latency
and other simulation constraints (e.g., it must obey the in-order retirement and retire bandwidth).
A non-store instruction exits the simulator when it retires from the processor queue. For a store
instruction, it will enter the memory write queue. Similarly, when an instruction retires from the
memory write queue is decided based on its predicted store latency, and it will exit the processor at
that time. Much like real processors, the retire bandwidth of a processor queue is set according to
that of the ROB, and the memory write queue can retire any number of instructions from its tail.
Clock Management. The simulator employs curTick to record the total number of simulation
cycles, which is updated whenever a prediction completes. When the predicted fetch latency is
larger than 0, it is added to curTick so that the counter always points to the time when the current
instruction enters the processor. In this case, we also increase the residence latency of all context
instructions by the predicted fetch latency to update the time that they have remained in the
processor. When the residence latency of an instruction is larger than its execution latency, it
is ready to retire from the processor queue. Similarly, an instruction is ready to retire from the
memory write queue when its residence latency exceeds its store latency.
After the last instruction in the input trace is predicted, we continue advancing curTick until

all instructions retire from the simulator. The �nal value of curTick represents the total execution
time of the program, which is exactly the same as Equation 1.

3.3 GPU-accelerated Parallel Simulation
In our ML-based instruction latency predictor, the latency of an instruction depends on the predicted
latencies of previous instructions, i.e., the latency prediction of adjacent instructions is inherently
sequential. This restriction limits the sequential simulation speed and computational resource
utilization. As a result, a sequential implementation of S��N�� runs at a throughput of ⇠ 1k
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instructions per second, and it can only leverage a very small fraction of modern GPU’s computing
power. To improve the simulation throughput and resource utilization, we seek to extract parallelism.
Parallel Simulation of Sub-traces. The primary idea is to break down the input instruction trace
into multiple, equally sized continuous sub-traces and simulate sub-traces independently in parallel.
The instructions within each sub-trace are simulated sequentially to preserve the instruction
dependency within the speci�c sub-trace. The drawback of this approach is that extra simulation
errors are introduced when simulating earlier instructions of a sub-trace due to inaccurate or
missing contexts. Section 4.2 will show that such accuracy loss is negligible when each sub-trace
is large enough. Figure 4 shows the overview of parallel simulation. The design leverages CPU
multi-threading to partition the input trace and transfer sub-trace instructions to the GPU memory.
The remaining work is done by GPUs to capitalize on their high computational capacity and reduce
communications between CPUs and GPUs.
GPU Acceleration. Both context and clock management are implemented on GPUs, and each
sub-trace has separate copies of them. Particularly, each sub-trace has its own processor queue
and memory write queue, as well as a curTick counter to record its number of simulated cycles.
After the ML model input is built independently for each sub-trace, we combine them into a single
input to allow GPU-batched inferences. This process repeats until all instructions in a sub-trace
are simulated. After all sub-traces complete their simulation, we sum up their curTicks to get
the total execution time. For ML model inferences, we use TensorRT [50], developed by NVIDIA
for high-performance GPU deep learning inferences. It optimizes GPU memory allocations and
supports reduced precision inferences. We adopt the TF32 and FP16 formats for ML inferences in
this paper, and expect S��N�� can bene�t from the use of lower precisions when their supports
becomemore mature in TensorRT. Compared with PyTorch, TensorRT provides roughly 3⇥ speedup.
In addition, this design can be scaled to multiple GPUs, where each GPU is responsible for a fraction
of sub-traces. No inter-GPU communication is required during the simulation process. Section 4.2
will o�er a detailed evaluation of simulation throughput.

4 EVALUATION
4.1 Simulation Accuracy Validation

Benchmark Simulation Accuracy.We conduct simulation experiments on our training platform:
the NVIDIA DGX A100 system equipped with eight A100 GPUs and an AMD EPYC 7742 64-core
CPU. We simulate all 25 SPEC CPU 2017 SPECrate benchmarks using the reference workload. For
each benchmark, SimPoint [45] is used to select a representative sample of 100 million instructions.

The right side of Table 4 illustrates the simulation errors of various models compared with gem5.
We use the absolute value of normalized cycle per instruction (CPI) di�erence to measure the
simulation error for each benchmark: |⇠%�S��N��/⇠%�gem5 � 1| ⇥ 100%. Although models with lower
instruction prediction errors have lower simulation errors in most cases, it is not always true. The
reason is because previous prediction results are used to construct the input of latter predictions
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through the instruction context, which leads to a more complicated relationship between the
predictor’s and simulator’s accuracy as will be discussed later.
Table 4 shows the average simulation errors across three benchmark sets: benchmarks used

in ML training (i.e., 4 ML benchmarks in Table 3), benchmarks not used in ML training (i.e., 21
simulation benchmarks in Table 3), and all of them. Note that for benchmarks used in training,
di�erent input workloads (test vs. reference) and simulation segments (beginning vs. SimPoint
selected) are used in their simulation. We observe that the average errors of simulation workloads
are not necessarily larger than those of training benchmarks, and the formers are smaller for several
models. It demonstrates S��N��’s ability to simulate unseen benchmarks. S��N��’s generalizability
roots in the fact that its predictor is trained at the instruction level.
Among S��N�� models, the deepest CNN model RB7 achieves the lowest average simulation

error of 5.6%. The shallower CNN model C3 also achieves good accuracy with a signi�cantly low
computation cost. Therefore, we focus on C3 and RB7 in the following experiments. On the other
hand, LSTM and Transformer models achieve comparable simulation accuracy at a cost of one
order of magnitude more computation overhead. Compared with Ithemal models, S��N�� ones
have signi�cantly lower errors, which again demonstrates S��N��’s e�ectiveness by constructing
context explicitly.

Figure 5 further compares the simulated CPIs of gem5, the most accurate Ithemal model LSTM4,
and representative S��N�� models per benchmark. While Ithemal incurs signi�cant errors for
several benchmarks, S��N�� models accurately simulates most benchmarks whose CPIs spread
across a wide spectrum. Among them, RB7 achieves the best simulation accuracy where only 1 out
of 25 benchmarks has an absolute error > 10% (22% for imagick).
Phase Level Accuracy. To verify the simulation accuracy with respect to execution phases, Figure
6 studies the CPI variation under C3 and RB7 models for all 25 benchmarks. Particularly, we
calculate the average CPI every 1 million instructions and plot these CPIs over the total simulation
length of 100 million instructions. As observed in Figure 6, benchmarks have either steady curves
(e.g., povray, leela), high CPI variations (e.g., perlbench, gcc), phased behaviors (e.g., bwaves,
specrand), or mixes of them.

For most benchmarks, we observe that S��N��’s CPI curves almost perfectly match those of gem5,
especially those using RB7 (i.e., red dotted lines are always close to 0). This phenomenon happens
to many highly variable benchmarks such as xalancbmk, which demonstrates S��N��’s ability
to capture small CPI variations during simulation. For cam4 where C3 has the largest simulation
error (see Figure 5), a consistent error persists across most simulation periods, while RB7 still has a
CPI curve that resembles that of gem5. These results show that S��N�� not only can predict the
overall performance well, but it also generates insights, such as identifying execution phases and
performance bottlenecks.
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Fig. 6. CPI variation during the simulation of 100 million instructions. The solid lines show simulated CPI
curves of gem5 and S��N��models. The do�ed lines show the simulation errors of S��N��models, calculated
by subtracting the CPIs of S��N�� models by those of gem5.

We also observe that a period of inaccurate simulation does not necessarily a�ect the simulation
accuracy of the time periods that follow. For instance, C3’s simulation errors reduce to 0 for 3 short
periods when gem5’s CPIs increase for cam4. Another example is cactuBSSN, where C3 fails to
simulate it from 20M to 50M accurately, but has an almost identical CPI curve to that of gem5 after
50M.
This observation is counter-intuitive at �rst glance. Because previous prediction results are

used to construct the input of latter predictions through the instruction context, it is reasonable
to expect the prediction errors will propagate through the simulation. We discover two reasons
behind it. First, the processor pipeline is emptied every once in a while due to events such as branch
misprediciton during simulation. Upon these events, there are no context instructions, and the
predicted latency does not rely on previous prediction results. As a result, the latency is easier
to predict by S��N�� models and thus the simulation accuracy gets calibrated on these events.
Second, a well-trained S��N�� model can self correct its errors throughout the simulation because
such self-correction appears in the training data generated from real processors’ behaviors. For
example, assume one instruction � takes longer than it should and prevents the next instruction
�= from entering the processor earlier. When �= enters, the processor pipeline is emptier than it
should be, which results in faster execution of �= . In such a scenario, � is executed slower, while �=
is executed faster. Together, the total execution time calibrates towards the right direction. These
reasons prevent the prediction error from propagating, and thus ensure S��N��’s accuracy during
long simulation.
Accuracy Against Hardware. When there is an actual hardware that a simulator intends to
simulate, the simulator accuracy can be validated against the hardware. For this purpose, we
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evaluate the accuracy of S��N�� under the gem5 A64FX con�guration. The gem5 simulaton of
A64FX is ver�ed to have an average absolute error of 6.6% against the real A64FX processor
across a set of benchmarks [23]. Since their simulated benchmarks do not include SPEC CPU
2017 benchmarks, we cannot directly calculate the simulation accuracy of S��N�� against the
A64FX processor. Instead, we deduce the accuracy of S��N�� against A64FX as follows. Under a
reasonable assumption that the normalized CPI follows a normal/Gaussian distribution, we get
the following distributions from S��N�� results and [23]: ⇠%�S��N��/⇠%�gem5 ⇠ N(1.062, 0.0162),
⇠%�gem5/⇠%�A64FX ⇠ N(1.013, 0.0782). Their product, ⇠%�S��N��/⇠%�A64FX, which represents the
accuracy of S��N�� against A64FX, has a mean of 1.060 and a standard variance of 0.016 [46]. The
expected average absoluate simulation error is 6.0% under this distribution, similar to that of gem5.
To give more contexts, a simulator is usually considered to be accurate if simulation errors are

around 10%. For example, ZSim reports an average error of 9.7% against an Intel Westmere CPU
[39], and [13] reports a 13% error of gem5 against an ARM Cortex-A15 system. Although we cannot
directly validate the accuracy of S��N�� against A64FX, the deduced average absoluate simulation
error is similar to that of gem5 that it learns from. We contend the low simulation error of S��N��
is su�cient to gain con�dence about its simulation results.
Relative Accuracy. While the simulation accuracy against real hardware is a useful metrics,
simulators are often applied in design space exploration where no corresponding hardware exists
for veri�cation. In these cases, computer architects care more about the “relative” simulation
accuracy, which measures how accurate simulation results re�ect the performance variance under
certain architecture changes. For instance, how much the performance will improve with doubled
cache sizes. Section 5 will demonstrate that S��N�� achieves excellent relative accuracies using
several case studies.

4.2 Parallel Simulation

Accuracy.When simulating a single benchmark, because the parallel simulator partitions the input
trace into multiple sub-traces, there is simulation accuracy loss across sub-trace boundaries. Figure
7 studies how the overall simulation accuracy varies with the number of instructions per sub-trace.
RB7 cannot have sub-traces that are smaller than 12k instructions because the GPU memory cannot
accommodate too many sub-traces. As the results show, sub-traces of 3k instructions are su�cient
to achieve parallel simulation errors that are similar to sequential ones. The parallel simulation
errors vary in a small range with sub-traces of di�erent sizes (around 8% for C3 and 5% for RB7),
which demonstrates the reliability of parallel S��N��.
Throughput. We evaluate the simulation throughput of parallel S��N�� in terms of million
instructions per second (MIPS). Figure 8 evaluates the average throughput across all benchmarks
with various numbers of sub-traces using the same models. The x and y axes are on the logarithmic
scale. Limited by the GPU memory capacity, we cannot evaluate C3 beyond 32k sub-traces or RB7
beyond 8k sub-traces. We observe that the simulation throughputs improve almost linearly when
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Fig. 10. Overall simulation throughput under di�erent instruction numbers.

increasing the number of sub-traces, because more sub-traces allow S��N�� to utilize both CPU
and GPU resources more e�ciently until it saturates them.

Figure 9 assesses the throughput scalability of S��N�� with multiple GPUs, where the horizontal
black-dotted line marks the gem5 simulation throughput. As ML inferences take a signi�cant
portion of time in S��N��, using multiple GPUs improves both the inference and simulation
throughputs. Again, S��N�� achieves near-linear speedup with the number of GPUs. With eight
GPUs, it achieves 15.1 and 1.4 MIPS with the C3 and RB7 models. Correspondingly, this represents
76.2⇥ and 7.4⇥ improvement over gem5. We can further scale S��N�� to distributed GPU systems
easily for higher throughputs, because very limited communication is involved.
Note that we evaluate the throughput when simulating a single benchmark above. In practical

simulation scenarios, computer architects usually need to simulate many benchmarks as well as
di�erent con�gurations. Our design of S��N�� can naturally simulate di�erent benchmarks and
con�gurations in parallel, which provides even more opportunities to exploit parallelism.
Comparison with CPU-based Parallel Simulation. Previous CPU-based simulators can make
use of multi-core CPUs to simulate multiple programs/threads in parallel [7, 18, 39]. However, they
cannot simulate a single program/thread in parallel and their parallelism is limited by the number
of cores (dozens on modern CPUs). In comparison, GPU-based S��N�� is able to simulate tens
of thousands of traces in parallel on one GPU as shown in Figure 8. These traces can come from
a single or multiple programs/threads. As discussed below, such massive parallel simulation of
S��N�� bene�ts not only simulation performance, but also power e�ciency.
Power E�ciency. GPU-based S��N�� can also achieve higher or similar simulation throughputs
given a certain power/energy budget compared with traditional CPU-based simulators. On our
experimental platform, S��N�� has a simulation power e�ciency of 4.7 and 0.44 KIPS/watt for
C3 and RB7, while that of gem5 is 0.88 KIPS/watt. C3 is the most power e�cient model while
having acceptable simulation accuracy. While an A100 GPU has a TDP of 400 watts, we expect that
S��N��’s power e�ciency can be further improved using consumer grade GPUs such as NVIDIA
GeForce series or ASIC ML accelerators.

4.3 Overhead Discussion

Training Overhead. Figure 10 shows the overall throughputs of various S��N�� models that
considers both simulation and training time. It is calculated as # simulated instructions

training time+simulation time . The training
overhead amortizes with the increasing number of simulated instructions. The overall throughputs
of S��N�� exceed that of gem5 by 24 and 59 billion instructions for C3 and RB7, and approach
their ideal throughputs with zero training overhead at trillions of instructions. To put it into
context, a typical SPEC CPU 2017 benchmark executes more than one trillion instructions using
the reference workload, and computer architects typically need to simulate dozens of benchmarks
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Fig. 11. Feature a�ribution scores.

under hundreds of con�gurations, which means quadrillions of instructions. Even with the help
of statistical simulation tools such as SimPoint, simulating trillions of instructions is still needed
assuming the common practice of simulating at least 100 million ⇠ 1 billion instructions per
benchmark. The training overhead of S��N�� is negligible in these use cases. It is also worth noting
that the training and simulation of S��N�� can be trivially scaled to large distributed systems,
which will further reduce the training overhead.
Functional and History Context Simulation Overhead. Functional simulation can be accom-
plished using fast instruction set simulators/emulators such as QEMU [6]. History context sim-
ulation is also fast because it only requires simpli�ed results, such as cache access levels, where
simulating address tag comparison and replacement is su�cient. Our initial experiments and previ-
ous research show such simulation can be done at ⇠ 100MIPS on a single CPU core [49], which
is much larger than S��N��’s simulation throughputs. These overheads are therefore negligible.
Further acceleration of functional and history context simulation is possible with GPUs, and we
leave it for future works.

4.4 Impact of Features
Figure 11 evaluates the contribution of each input feature to the output for C3 using the SHapley
Additive exPlanation (SHAP) method [27]. SHAP’s goal is to explain the prediction of an instance
by computing the contribution of each feature to the prediction. It computes Shapley values [44]
using the coalitional game theory. Shapley value is the average marginal contribution of a feature
value across all possible coalitions. We take the average of absolute Shapley values on training
samples for each feature to produce feature attribution scores. Figure 11a and 11b summarize
the attribution scores of to-be-predicted instructions and context instructions separately. We
categorize the 50 features into latency, operation, register, and memory. Memory and operation
features generally have more impacts on the prediction results. The most in�uential feature of
to-be-predicted instructions is the fetch access level because the fetch latency depends on it. For
context instructions, the branch misprediction �ag has the largest attribution score as mispredicted
branches need to �ush the processor pipeline.

4.5 Impact of Training Dataset Size
We also generate a large ML training dataset using 15 SPEC CPU 2017 benchmarks instead of four.
Our results show that using the large dataset reduces the average simulation error by 33% at a cost
of 3⇥ training time. While larger training datasets further improve accuracy, we conclude that the
smaller dataset is enough to train accurate models and also requires less training time.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 25. Publication date: June 2022.



SimNet: Accurate and High-Performance Computer Architecture Simulation using Deep Learning 25:19

Simulated speedup Relative error range
gem5 C3 RB7 C3 RB7

BiMode_l 10.4% 11.2% 9.9% [-2.7%, 3.7%] [-1.7%, 1.4%]
TAGE-SC-L 12.3% 13.7% 12.4% [-4.0%, 4.5%] [-0.7%, 1.8%]

Table 5. Simulated speedups of various branch predictors.

The reason why a small training dataset is su�cient is because most benchmarks use a variety
of instructions which provide ample samples to train the instruction latency predictor. We expect
reasonableML prediction accuracy as long as there are adequate samples to cover enough instruction
and context scenarios, and the results show that 4 benchmarks are enough to obtain su�cient
scenarios. Benchmark selection for the training set is also not critical.

5 USE SCENARIOS
S��N�� can be applied in many computer architecture research and engineering scenarios. First,
many recent computer architecture e�orts focus on caches or branch predictors while other
microarchitecture components are more sophisticated and less likely to be subjects of change. In
such scenarios, pre-trained S��N�� models can be directly applied as caches and branch predictors
are modeled in history context simulation, and no additional training is required (i.e., the training
overhead discussed in Section 4.3 does not exist.). Second, when studying other microarchitecture
parameters (e.g., ROB size) or novel components, di�erent parameter/con�guration choices can be
included in the input of the model, so training a single model is su�cient to study all variations.
We illustrate both use scenarios below, where the �rst two cases do not require training, and the
last case requires a one time training.
Branch Predictor Study. We compare the simulated performance of two branch predictors using
gem5 and S��N��, including a large bi-mode branch predictor (BiMode_l) and the recently proposed
TAGE-SC-L [43]. Their implementation in gem5 is used in S��N��’s history context simulation to
generate branch misprediction �ags for ML models’ input. Table 5 shows the simulated average
speedups across SPEC benchmarks, where the speedup is calculated against the performance of a
baseline bi-mode branch predictor. We observe that the average speedups obtained using S��N��
are similar to those using gem5. Moreover, the right side of Table 5 shows the speedup error ranges
of individual benchmarks compared with gem5 results. We observe that S��N�� also predicts the
speedups of individual benchmarks well, especially under RB7.
L2 Cache Size Exploration. We also simulate the performance impact of L2 cache sizes using
gem5 and S��N��. Similar to the branch predictor case, S��N�� accurately simulates the relative
speedup under cache sizes from 256 kB to 4 MB, and the average error against gem5 is 0.8%.
ROB Size Exploration. In this experiment, the ML model input includes the ROB size as an
additional feature to account for its impact. The training data are generated by running the same
four SPEC benchmarks in gem5 under various ROB sizes. We train a C3 model to study the impact
of ROB sizes. Again, the simulation results of S��N�� and gem5 agree with each other. For example,
the average performance improvement when increasing the number of ROB entries from 40 to 80
and 120 is 1.2% and 1.4% under gem5. Using S��N��, the corresponding speedups are 1.1% and 1.5%,
which are very similar.

6 RELATEDWORK

ML for Latency Prediction. Ithemal [28] uses LSTM models to predict the execution latency of
static basic blocks. The instructions within a block are fed into the model in the form of assembly,
such as words in NLP. On top of Ithemal, Di�Tune [37] trains a di�erentiableML performancemodel
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to con�gure the simulator parameters to closely resemble a target architecture. These methods
pose limits as they do not consider dynamic execution behaviors, such as memory accesses and
branches, which have signi�cant impacts on program performance. They also target basic blocks
with a limited number of instructions. As a result, they are not applicable to a computer architecture
simulator that needs to simulate realistic processors and billions/trillions of instructions.
ML for Application Performance Prediction. Ipek et al. propose using neural networks for
application performance prediction [16]. Meanwhile, Lee et al. formulate nonlinear regression
models for performance and power prediction [25, 26]. Eyerman et al. propose inferring unknown
parameters ofmechanistic performancemodels using regression, to balance betweenmodel accuracy
and interpretability [12]. Mosmodel [3] is a multi-input polynomial model used for virtual memory
research that can predict the program execution time given the page table walking statistics. Wu et
al. use performance counters as the input of ML models to predict GPU performance and power [53].
Nemirovsky et al. schedule threads based on ML-based performance models [29]. Some approaches
are proposed to predict a processor’s performance/power based on those obtained on di�erent
types of processors [4, 5, 31] or with di�erent ISAs [57, 58].

While these works build performance models on a per-program/input basis, S��N��works at the
instruction level. Therefore, these application-centric approaches require generating training data
and retraining models when target applications change, and the overhead of doing so is signi�cant.
On the other hand, S��N�� can directly simulate any application, making it much more �exible.
ML for Other Architecture Research. In addition to the aforementioned uses, ML has been
widely applied to many other computer architecture aspects, including microarchitecture design
and energy/power optimization. These applications are summarized in [35, 54].
Simulation with Statistical Sampling. Instead of simulating the entire program, statistical
simulation selectively simulates representative sampling units and infers the overall performance
from these sample simulation results statistically [10]. SMARTS [52, 55] periodically switches
between detailed and functional simulation to obtain an accurate CPI estimation with minimal
detailed simulation.

SimPoint records the basic block execution frequencies of individual sampling units and those of
the whole program to select representative ones with the aim that the selected samples capture the
overall execution behaviors well [36, 45]. Similarly, PinPoints uses dynamic binary instrumentation
to �nd representative samples for X86 programs [34], and BarrierPoint applies sampling to multi-
threaded simulation [9]. These methods require pre-analyzing the simulated program with a certain
input, while our ML-based simulator can be applied directly to any program and input combination
because of its instruction-centric approach.

One key challenge in statistical simulation is to keep track of the microarchitecture state between
detailed simulation fractions, especially cache states. To simulate the cache behavior accurately in
statistical simulation, Nikoleris et al. propose using Linux KVM to monitor the reuse distance of
selected cache lines [30]. Similarly, Sandberg et al. leverage hardware virtualization to fast-forward
between samples, so di�erent samples can be simulated in parallel [40]. These statistical simulation
approaches can be used together with S��N�� to further accelerate the detailed simulation portions.
As an example, Section 4 uses SimPoint and S��N�� together.
Traditional Simulation Acceleration. ZSim is an X86 simulator that supports many-core system
simulation [39]. It decouples the simulation of individual cores and resources shared across cores,
as well as adopts a simpli�ed core model. As a result, it achieves ⇠ 10 MIPS for single-thread
workload simulation on an Intel Sandy Bridge 16-core processor. SST [18] distributes the simulation
of di�erent components across Message Passing Interface (MPI) ranks to achieve parallel simulation.
Field programmable gate array (FPGA)-based emulators run signi�cantly faster than simulation
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software but require a huge amount of e�ort to develop and validate register-transfer level models
[21]. In comparison, our work accelerates simulation from a di�erent angle to make the most of
widely available ML accelerators, such as GPUs.

7 CONCLUSIONS
This work proposes a new computer architecture simulation paradigm using ML. To the best of
our knowledge, this e�ort is the �rst to demonstrate ML’s applicability to full-�edged architec-
ture simulation. This new methodology signi�cantly improves simulation performance without
sacri�cing accuracy. In addition to discrete-event, analytical, or other statistical approaches to
architectural simulation/modeling, we maintain this new class of simulators will become a useful,
valuable addition to the architect’s “bag-of-tools.” We recognize several advantages of this new
approach.
1) We demonstrate that ML-based simulators can predict overall performance accurately, and

they also qualitatively capture architecture and application behaviors. 2) ML is intrinsically easier
to parallelize than discrete-event simulation. Moreover, ML-based simulators capitalize on modern
computing technology that is tailored for boosting ML performance. 3) ML-based simulators gener-
alize well to a large spectrum of application workloads. In our approach, this stems from building
them around an instruction-level latency predictor. Hence, the focus is on learning instruction
behaviors rather than high-level program behaviors that are much more di�cult to capture. 4)
The training data are easy and fast to obtain. Potential sources of training data are multiple, in-
cluding simpli�ed models of simulators, actual execution of code on existing systems, or historical
performance data.
FutureDirections.Weplan to investigateML-based approaches that supportmulti-thread/program
simulation as our next step. The key to supporting multi-thread/program simulation is to model
communications. We describe two possible strategies as follows, 1) extending context instructions
to include concurrently executed instructions from other threads/programs, and 2) training ML
models to model the impact of shared resources (e.g., caches, memory).
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