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ABSTRACT
Checkpointing a virtual machine (VM) is a proven technique
to improve the reliability in modern datacenters. Inspired by
the CSMA protocol in wireless congestion control, we pro-
pose a novel framework for distributed and contention-free
scheduling of VM checkpointing to offer reliability as a trans-
parent, elastic service in datacenters. In this work, we quan-
tify the reliability in closed form by studying system sta-
tionary behaviors, and maximize the job reliability through
utility optimization. We implement a proof-of-concept pro-
totype based on our design. Evaluation results show that
the proposed checkpoint scheduling can significantly reduce
the performance interference from checkpointing and im-
prove reliability by as much as one order of magnitude over
contention-oblivious scheme.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—checkpoint scheduling optimization

Keywords
Data center, checkpoint, scheduling, reliability, CSMA-based,
optimization

1. INTRODUCTION
In today’s cloud, reliability is often provided as a fixed

service parameter, e.g., all Amazon EC2 users are expected
to receive 99.95% reliability [1]. However, users may find it
either too inadequate or too expensive to fit their various
reliability requirements, thus providing elastic reliability for
the masses remains an elusive goal in cloud computing today.
A number of models for calculating the optimal checkpoint
schedule [2,3] has been proposed for reliability optimization
of a single job, but these solutions fall short in optimiz-
ing checkpoints of co-located jobs that reside on the same
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physical server, where checkpoints from different jobs may
introduce severe contention on shared resources.

In this work, we utilize the technique of saving local VM
image before transferring to networked storage. The time to
save local checkpoint images is determined largely by how
I/O resources are shared, while the time to transfer locally
saved images to networked storage relies on how network
resources are shared. Note that each job may also consists
of multiple VMs that reside on different physical servers.
We use the term serving host to refer to a physical server
that hosts at least one of the VMs belonging to the job.
In a server that hosts hundreds of VMs from various jobs,
chances are that VM checkpointing, if unmanaged and un-
coordinated, would encounter severe network and I/O con-
gestion, resulting in high VM checkpointing overhead and
reliability loss.

The main contributions of this paper are three-fold:(i)
We harness CSMA-based interference management policy to
provide a distributed and contention-free checkpoint schedul-
ing protocol (ii)Reliability received by each individual job
is characterized in closed form. It enables a joint reliabil-
ity optimization subject to flexible service-level agreements
(SLAs) of all jobs (iii)Results are validated via a proof-
of-concept prototype that leverages readily available imple-
mentations in Xen and Linux. The proposed CSMA-based
checkpoint scheduling is sho-wn to significantly reduce check-
point interference and improve reliability.

The paper is organized as follows. Section 2 illustrates the
necessity for distributed, contention-free checkpoint schedul-
ing, Section 3 introduces the protocol and analyzes joint re-
liability optimization. Section 4 show experiment and eval-
uation results, and Section 5 concludes.

2. MOTIVATION
In this paper, we address the problem of joint reliability

maximization by developing a novel, distributed algorithm
for scheduling job checkpoints in order to mitigate not only
contentions among VM checkpoints but also interference be-
tween checkpoints and regular jobs. In the latter case, if a
regular job is I/O or network intensive, the checkpoints on
the same host would take longer to complete due to resource
interference, necessitating lower checkpoint rates to avoid
high overhead and inferior reliability. Now consider two ex-
treme cases for multi-job checkpoint scheduling: parallel and
pipeline scheduling, as illustrated in Figure 1, in which T0

denotes the scheduling overhead, Tn represents the time to
take a checkpoint and Tf is the time taken to transfer check-
point image to remote servers. In the parallel mode, the
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Figure 1: Fully coordinated checkpoint scheduling in a

pipeline mode significantly reduces resource contention

over parallel checkpoints.
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Figure 2: Multiple VMs belonging to the same job must

be checkpointed simultaneously to avoid cascaded roll-

backs. It increases the chance of checkpoint contention.

checkpoints of all N jobs are done at the same time and the
total I/O and network bandwidth are shared among them.
This represents the case with high resource contention in
checkpointing. On the other hand, the checkpoints of jobs
can be taken one immediately after another in a pipelined
fashion by overlapping the image-saving time of one job’s
checkpoint with the transfer time of another job. With such
completely coordinated checkpoints, the contention between
the checkpoints is reduced and the jobs can take full advan-
tage of all I/O and network bandwidth resource available
with minimal interference to others. Our experiment shown
in Figure 3 proves that such pipeline checkpoint scheduling
improves the reliability by nearly an order of magnitude for
various VM sizes over parallel scheduling.

Figure 3: Fully coordinated pipeline checkpoint sched-

ule significantly reduces contention and improves relia-

bility over parallel checkpoint schedule. Reliability cal-

culated with 8 failures/year.

To summarize, even though pipeline scheduling completely
avoids checkpoint interference, such a centralized coordina-
tion and micro-management approach is prohibitive in large-
scale datacenters. A practical checkpoint scheduling scheme
should (i) allow a distributed implementation, (ii) schedule
contention-free checkpoints for a large number of jobs that
may have varying demands, and (iii) enable a joint reliability
maximization to assign the optimal reliability level to each
job that suits its demand. To this end, this paper makes
novel use of the CSMA protocol to derive a distributed,
contention-free checkpoint scheduling protocol with joint re-
liability optimization.

Reliability Model. As shown in Figure 2, a single job
checkpoints all its VMs every Ti seconds. We have Tf = 0
(since no additional transfer time is needed) while Tn in-
creases significantly because checkpointing to a networked
storage takes much longer than checkpointing locally. In
our framework, jobs can be restored from an available check-
point and rolled back to the last saved state with recovery
time Tr when a failure happens. We define reliability as the
value of one minus the fraction of expected service down-

time. More precisely, let a failure occur at time t after the
n-th checkpoint is fully completed. Then,

R = 1− E
[
Service Downtime

Total Service Time

]
= 1− E

[
t− (n− 1)Ti − Tn − Tf + nTn + Tr

t+ Tr

]
, (1)

where nTn is the total service downtime due to taking check-
points, when a failure happens at time t, it needs to roll back
to the end of last successful checkpoint, t−(n−1)Ti−Tn−Tf
is the lost service time due to roll-back, where t−(n−1)Ti is
the roll-back time to last checkpoint and Tn + Tf is the du-
ration of last checkpoint and is considered as up-time since
the job would roll back to the end of last checkpoint. It is
easy to see that there exists a trade-off between checkpoint
interval Ti and reliability R. Since the reliability improves
as Ti increases due to lower checkpoint frequency and over-
head.but the expected roll-back time to the last checkpoint
also increases as the checkpoint frequency decreases.

3. PROTOCOL AND RELIABILITY OPTI-
MIZATION

We consider a datacenter serving N jobs denoted by N =
{1, 2, . . . , N} and using S servers denoted by S = {1, 2, . . . , S}.
Each job i is comprised of hi VMs that are hosted on a sub-
set of servers, i.e., Hi ⊆ S. Since each job may consist of
multiple VMs distributed to different physical machines, to
guarantee consistency in our design, checkpoints are orga-
nized at the job level - to checkpoint a job, images of all
its VMs must be created and saved to remote networked
storage to avoid host failure. Our CSMA-Based checkpoint
scheduling works as follows. Each job i makes the decision
to create a remote checkpoint image based only on its local
parameters and observation of contention. If job i senses on-
going checkpoints at any of its serving hosts (i.e., any host s
such that s ∈ Hi), then it keeps silent. The implementation
details will be described in Section 4. If none of its serving
hosts is busy, then job i waits (or backs-off) for a random
period of time which is exponentially distributed with mean
1/λi and then starts its checkpointing.1 During the back-
off, if some contending job starts taking checkpoints, then
job i suspends its back-off and resumes it after the contend-
ing checkpoint is complete. For analytical tractability, we
assume that the total time of saving a local checkpoint and
transferring it to a remote destination is exponentially dis-
tributed with mean 1/µi = E(Tn + Tf ). This assumption of
exponential checkpoint time can be further removed using
results in [6]. In such an idealized CSMA model, if sens-
ing time is negligible and back-off time follows a continuous

1The random backoff time is to ensure that two potentially-
contending jobs that sense no contention from other jobs
do not start checkpointing at the same time and trigger a
contention.
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distribution, then the probability for two contending check-
points to start at the same time is 0 [5]. Therefore, the
CSMA-based protocol achieves contention-free, distributed
scheduling of job checkpoints.

3.1 Markov Chain Model
In order to optimize reliability, we first need to obtain the

reliability each job receives in the CSMA-based checkpoint
scheduling protocol for given sensing rates. We make use
of a Markov Chain model, which is commonly employed for
CSMA analysis in wireless interference management. The
Markov Chain for analyzing the protocol depends on sens-
ing rate λi and checkpoint overhead µi, for any time t, we
define a system state as the set of jobs actively taking check-
points at t, in each state, a set of non-conflicting jobs are
scheduled. We assume that there exist K ≤ 2N possible
states, represented by Xk ⊆ N , for k = 1, . . . ,K. In state
Xk, if job i is not taking checkpoints and all of its conflicting
jobs are not taking checkpoints, the state Xk can transit to
state Xk∪{i} with a rate λi (i.e., job i starts its checkpoint).
Similarly, state Xk∪{i} can transit to state Xk with a rate µi
(i.e., job i completes its checkpoints). It is easy to see that
the system state at any time is a Continuous Time Markov
Chain (CTMC).

Our goal is to quantify job reliability using this Markov
Chain model, according to (1), this requires the characteri-
zation of the distribution of checkpoint overhead Tn, Tf , and
checkpoint interval Ti, which are related to sojourn time
and returning time of the CTMC. We first apply the uni-
formization technique to obtain a randomized Discrete Time
Markov Chain (DTMC). It is sufficient to consider transi-
tions between states that differ by one job because there is
no contention in our idealized CSMA model. Let v be a
uniformization constant that is sufficiently large. Then, the
DTMC has the following transition probabilities:

PXk,Xk∪{i} =
λi
v

and PXk∪{i},Xk
=
µi
v
, (2)

where PXk,Xl denote the transition probabilities from state
Xk to state Xl. Due to uniformization, we define vk =∑
l6=k v ·PXk,Xl to be the sum of transition probabilities out

of state Xk so we have

PXk,Xk = 1− vk
v
. (3)

Now we can study properties of the original CTMC through
the DTMC whose state transitions occur according to the
jump times of an independent Poisson Process with rate v.
Fig. 4 (a) gives an example datacenter with 3 jobs and 2
hosts. If each host is able to checkpoint one VM at a time
without incurring any performance loss, then checkpoints
of job 3 conflicts with those of jobs 1 and 2, whereas jobs 1
and 2 can take checkpoints without any resource contention.
Therefore, this system has K = 5 feasible states (or Inde-
pendent Sets): {·}, {1}, {2}, {3}, {1, 2}. State {·} means
no job is taking checkpoints, {i} means a single job i takes
checkpoints for i = 1, 2, 3, and {1, 2} means jobs 1 and 2
take checkpoints at the same time.

The stationary behavior of the above DTMC model re-
veals the distributions of checkpoint overhead Tn, Tf , and
checkpoint interval Ti. The stationary distribution is de-
noted by π1, . . . , πK , satisfying

(π1, . . . , πK) = (π1, . . . , πK) · P, (4)

where πk is the stationary probability that the DTMC stays
in state Xk.

Figure 4: Example: 3 jobs and corresponding Markov

Chain.

3.2 Reliability Analysis
Now that we have πk of the Markov model to obtain the

distribution of Tn, Tf , Ti, we further assume that each job
has known Mean Time to Failure (MTTF) 1/fi and its fail-
ure time is modeled by an exponential distribution. In prac-
tice, the MTTF can be estimated from existing failure mod-
els or large-scale datacenter event logs [7, 8]. For example,
if each server has independent failures according to a Pois-
son Process with rate f0 and job i is hosted by mi different
servers, then we have fi = mi · f0.

Consider checkpoint overhead Tn, Tf , and checkpoint in-
terval Ti in our CSMA-based protocol for a single job i. Let
Ai = {Xk : i ∈ Xk} be a set of all states containing job i.
It is not hard to see that total checkpoint overhead Tn + Tf
is the sojourn time that the CTMC stays within Ai, i.e.,
the time to checkpoint job i’s VMs. Similarly, checkpoint
interval Ti is the first returning time of the CTMC to Ai.
Clearly, both sojourn time and first returning time are ran-
dom variables whose distributions depend on the Markov
Chain model. Using the definition in (1), we first rewrite
reliability Ri with respect to random checkpoint overhead
and checkpoint interval.

We can quantify the reliability received by each job i in our
contention-free, distributed checkpoint scheduling protocol
as:

Theorem 1. For given rates λ1, . . . , λK , job i has Pois-
son failures with rate fi, each job i in our protocol receives
the following reliability Ri:

Ri = 1− fiτri − τ ci µiπAi −
fi
µi

(πAi +
1

πAi

) (5)

where τ ci is the mean time to save a local checkpoint image,
τri is mean repair time, and πAi =

∑
k∈Ai

πk is the sum of
all states in Ai. The proof and derivation of this theorem
can be found in our online technical report [11].

3.3 Reliability Optimization
We can use Theorem 1 to numerically calculate the re-

liability of each job i for any given rates λ1, . . . , λK and
failure rate fi. Let Ui(Ri) be an arbitrary non-decrasing
utility function, representing the value of assigning reliabil-
ity level ri to job i. Our goal is to derive an autonomous
reliability optimization where flexible SLAs are negotiated
through a joint assessment of users’ utility and total data-
center resources available. Toward this end, we formulate a
joint reliability optimization through a utility optimization
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framework [10] that maximizes total utility
∑
i Ui(Ri), i.e.,

max
∑
i

Ui(Ri) (6)

s.t. Ri = 1− fiτri − τ ci µiπAi −
fi
µi

(πAi +
1

πAi

),

πAi =
1

Cλ
·

∑
Xk∈Ai

∏
j∈Xk

λj ·
∏
l/∈Xk

µl,

var. λ1, . . . , λK

where Cλ is a normalization factor such that
∑
k πk = 1.

Here we used the closed-form reliability characterization in
(5) and the results of stationary distribution.

The reliability optimization is computed by maximizing
an aggregate utility

∑
i Ui(Ri) over all feasible sensing rates

λ1, . . . , λK . The optimal solutions are obtained through ei-
ther local search heuristics or other sufficient conditions,
then each job only has to update its checkpoint rate ac-
cording to the optimal solutions. Due to the distributed
nature of CSMA-based scheduling, jobs can easily reconfig-
ure their checkpoint rates on-the-fly without relying on any
centralized checkpoint coordination.

Validation of theoretical analysis. To validate the re-
liability analysis in Theorem 1, we implement a prototype of
the contention-free, distributed checkpoint scheduling proto-
col. The implementation and evaluation details are provided
later in Section 4. We first benchmark necessary parameters
in our theoretical model using Markov Chain analysis, i.e.,
mean checkpoint local-saving time τ ci = 30.2 seconds, mean
checkpoint overhead 1/µi = 71.5 seconds, and mean repair
time τri = 80.2 seconds for all jobs i = 1, . . . , 24(experiment
details are provided later in Section 4), and reliability in
the experiment is obtained according to (1) using the pa-
rameters from the benchmark. So all jobs in the experi-
ment receive equal reliability value. For a sensing rate of
λi = 1/(2.5 days) and exponential failures with fi ranging
from 2 to 16 failures per year, we compare the reliability val-
ues from our theoretical analysis to the values obtained from
the experiment. Figure 5 shows that our theoretical analy-
sis can accurately estimate the reliability values received in
the proposed protocol, with a small error margin of ±1%.
This implies that our theoretical reliability analysis provides
a powerful tool for reliability estimation and optimization.

Example for reliability optimization. To give a nu-
merical example of the proposed reliability optimization,
consider a datacenter with 2 classes of jobs: 10 large jobs
that contain 10 VMs each and 100 small jobs that contain
2 VMs each. Assume that at most 2 jobs can take non-
contending checkpoints at each time. Average checkpoint
overhead is τ c1 = 50 seconds for large jobs and τ c2 = 25
for small jobs. Recovery time is τr1 = 400 seconds and
τr2 = 200 seconds. Assume that each host has indepen-
dent failures with rate f0 = 2/year. Then, large jobs have
failure rates f1 = 10 · f0 = 6.43 × 10−7 and small jobs
f2 = 2 · f0 = 1.29 × 10−7. Finally, total checkpoint time
is 1/µlarge = 200 seconds for a large job and 1/µlarge = 100
seconds for a small job. We implement Hill Climbing lo-
cal search [13] to find the optimal sensing rates λ1, λ2 that
maximize a utility Ui(Ri) = 2R1 + R2. As shown in Fig-
ure 6, the algorithm converges within a few local updates to
the optimal sensing rates. At optimum, large jobs receive a
higher reliability R1 = 0.99 than small jobs R2 = 0.90 be-

cause the weight of large jobs is twice as that of small jobs
in the optimization objective 2R1 +R2.

4. IMPLEMENTATION AND EVALUAT-IONS
We have implemented a prototype of the contention-free

checkpoint scheduling based on Linux and Xen. Our schedul-
ing strategy is achieved with a locally managed list of the
checkpointing status for all the VMs. Each VM will check
the co-located VM’s status through this list before check-
pointing in order to avoid the contention. When no others
are checkpointing, the VMs belonging to the same job will
update their checkpoint status to checkpointing and start
the checkpointing process. Once the checkpointing is done,
the VMs will update the status to non-checkpointing.

For testing, we use a local cluster where each node has an
Intel Atom CPU D525 processor, 4GB DRAM, 7200 RPM
1TB hard drive, and 1Gb/s network interface. Note that
I/O and network bandwidth rather than CPU and memory
are the major limiting factors for our tests. To simulate the
workload, each VM runs a CPU-intensive benchmark [12]
with 1 VCPU, 512MB or 1GB DRAM, and 10GB VDisk.
The host OS is Linux 2.6.32 and Xen 4.0. Each failure is
simulated by manually killing a VM. If not specified, the
failure rate is eight times per year, and each reliability result
is the average of three runs. We compare our contention-free
scheduling with contention-oblivious scheduling where each
job independently performs checkpointing at the predefined
intervals.

Figure 7 shows the reliability of a job when the annual
failure rate varies from 4 times to 128 times per year. In
this experiment, we run three jobs (two VMs per job, and six
VMs in total) and present the average reliability. For small
failure rates, the reliability for both contention-oblivious and
contention-free scheduling is very high. But as more failures
occur, the benefit of contention-free scheduling becomes very
obvious, achieving much higher reliability.

Reliability as a function of checkpoint interval is shown in
Figure 8. Overall, contention-free scheduling can achieve a
reliability of two nines (> 99%), compared to one nine (>
90%) for contention-oblivious scheduling. For contention-
free scheduling, the reliability of the system keeps increasing
as the checkpoint interval becomes larger. At the same time,
the contention-oblivious mechanism increases at a slower
pace, but it can also potentially reach as high reliability
as contention-free scheduling. This happens because when
the checkpoint interval becomes large enough, chances for
checkpoint contention from different jobs are small.

To demonstrate the scale of our approach, we also extend
this test to simulating 128 jobs and 256 VMs. In this experi-
ment, we intentionally intensify the job checkpointing rate in
our cluster. As shown in Figure 9, almost all contention-free
configuration jobs can achieve a reliability of two nines but
the major percentage of contention-oblivious jobs falls into
one nine reliability range. In addition, we present the nor-
malized downtime for different annual failure rate settings
in Figure 10. Note that the downtime of a system includes
the checkpoint time, and recovery time if the host is down.
All times are normalized to the downtime for contention-
oblivious scheduling with 128 failures per year. One can see
that our contention-free checkpointing can achieve a reduc-
tion in downtime of upto 18.3% compared to contention-
oblivious scheduling.
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5. CONCLUSIONS
Inspired by the CSMA protocol, we propose a new proto-

col for distributed and contention-free checkpoint schedul-
ing which also provides elastic reliability service to meet
disparate user-requirements in large-scale datacenters. The
reliability that each job receives in our protocol is character-
ized in closed form. We also present optimization algorithms
to jointly maximize all reliability levels with respect to an
aggregate utility. Our design is validated through prototype
implementations in Xen and Linux, and significant reliability
improvements over contention-oblivious checkpoint schedul-
ing are demonstrated via experiments in realistic settings.
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