
TEA: A General-Purpose Temporal Graph Random
Walk Engine

Chengying Huan
1,2
, Shuaiwen Leon Song

3
, Santosh Pandey

4
, Hang Liu

4
, Yongchao Liu

5
,

Baptiste Lepers
6
, Changhua He

5
, Kang Chen

1
, Jinlei Jiang

1
, Yongwei Wu

1

1
Tsinghua University;

2
Baihai Technology Inc.;

3
University of Sydney;

4
Stevens Institute of Technology;

5
Ant Group;

6
Université de Neuchâtel

Abstract
Many real-world graphs are temporal in nature, where the

temporal information indicates when a particular edge is

changed (e.g., edge insertion and deletion). Performing ran-

dom walks on such temporal graphs is of paramount value.

The state-of-the-art sampling strategies are tailored for con-

ventional static graphs and thus cannot effectively tackle the

dynamic nature of temporal graphs due to several significant

efficiency challenges, i.e., high sampling complexity, gigantic

index space, and poor programmability.

In this paper, we present TEA, the first highly-efficient

general-purpose TEmporal grAph random walk engine. At

its core, TEA introduces a new hybrid sampling approach

that combines two Monte Carlo sampling methods together

to drastically reduce space complexity and achieve high sam-

pling speed. TEA further employs a series of algorithmic

and system-level optimizations to remarkably improve the

sampling efficiency, as well as provide streaming graph sup-

port. Finally, we introduce a temporal-centric programming

model to ease the implementation of various random walk

algorithms on temporal graphs. Experimental results demon-

strate that TEA can achieve up to 3 orders of magnitude
speedups over the state-of-the-art random walk engines on

large temporal graphs.

CCS Concepts: •Computingmethodologies→ Parallel
algorithms; • Theory of computation → Graph algo-
rithms analysis.

Keywords: Randomwalk; Graph algorithm; Temporal graph

ACM Reference Format:
Chengying Huan

1,2
, Shuaiwen Leon Song

3
, Santosh Pandey

4
, Hang

Liu
4
, Yongchao Liu

5
,, Baptiste Lepers

6
, Changhua He

5
, Kang Chen

1
,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00

https://doi.org/10.1145/3552326.3567491

Jinlei Jiang
1
, Yongwei Wu

1
. 2023. TEA: A General-Purpose Tem-

poral Graph Random Walk Engine. In Eighteenth European Con-
ference on Computer Systems (EuroSys ’23), May 8–12, 2023, Rome,
Italy. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3552326.3567491

1 Introduction
Many real-world graphs are temporal in nature, where the

temporal information indicates when a particular edge is

changed (e.g., edge insertion and deletion). And such tem-

poral information is often crucial to correctly interpreting

temporal graphs. Figure 1 uses the commuting network to

demonstrate the importance of temporal information. In the

commuting graph, if a path is to be formed, the path must

obey the temporal connectivity rule. That is, passing through

each vertex, the time of the out edge from this vertex is larger

than that of the in edges. Using the paths arriving at vertex

7 from vertex 9 as an example, only three paths 9→7→4,

9→7→5, and 9→7→6 are valid. Apparently, this is different

from the case when we disregard the temporal information.

0 1 2 3

4

5

7

6

80

1
5

2
3

6 7

4
5

6

9 90

4

4
2

1

3

Figure 1. Commuting network represented as a temporal

graph where the numerical value on each edge represents

the departing time from the source to the destination vertex.

This running example is used across this manuscript.

For many real-world applications, temporal information

is a key metric for extracting valuable insights and making

informed decisions. Below, we enumerate a few more exam-

ples, in addition to the aforementioned commute network.

In an e-commerce network [22, 51], users’ preferences could

evolve from time to time. Static graph analysis would over-

look such information and result in inaccurate or misleading

market decisions, leading to severe revenue losses. Another

example is an education network [22]. A student who has

not attended class in the last few days will have a higher

https://doi.org/10.1145/3552326.3567491
https://doi.org/10.1145/3552326.3567491
https://doi.org/10.1145/3552326.3567491

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

probability of dropping out. Educators could intervene proac-

tively to avoid such abrupt career changes. The temporal

information in a temporal graph is often indispensable.

Random walk is a popular and fundamental tool for many

graph applications like graph processing, link prediction,

graph mining, graph embedding, and node classification [3–

5, 7, 8, 10, 33, 37, 45, 47–53]. In general, a random walk usu-

ally starts from a specific vertex. At each step, this walker

samples an edge from the outgoing neighbors of its cur-

rently residing vertex according to the transition probability
defined by each randomwalk application [8, 33, 45]. This pro-

cess will continue until it meets certain termination criteria,

such as the desired random walk length. Several recent ef-

forts [32, 40, 45] have developed systems to support random

walks and their applications on static graphs which disregard
the temporal information. However, various graph learning

projects [17, 25, 31, 41, 55] identify that integrating temporal

information into random walks can dramatically improve

graph learning accuracy, demonstrating the importance of

temporal random walks.

Unlike a static graph, a temporal graph walker must guar-

antee that the time order of a path increases. Specifically, a
temporal graph walker starts from a specific edge. At each

step, this walker samples an edge, which has a larger time

instance than the current edge, from the out-edges of its cur-

rently residing vertex according to the transition probability.
In static graphs, the edge sampling step is deemed as themost

challenging step for a random walk algorithm [32, 35, 40, 45].

When it comes to temporal graphs, the additional tempo-

ral information will, unfortunately, further complicate that

sampling process.

TEA
KnightKing
GraphWalker

Av
er

ag
e

S
am

pl
in

g
C

os
t.

1

102

104

Dataset
growth edit delicious twitter

Figure 2. Average sampling cost of TEA (hybrid sampling),

KnightKing (rejection sampling), and GraphWalker (full-

scan sampling), which is defined as #edges/step.

First, rejection sampling, regarded as a desirable sampling

algorithm for dynamic random walks according to [45], suf-

fers from a high rejection rate in temporal random walks.

Particularly, in temporal random walk algorithms, the edge

weight is often associated with temporal information. For

instance, an exponential temporal random walk uses the

exponential value of the temporal information to represent

the sampling bias (Section 2.3). This will result in a highly

skewed probability distribution function (Section 2.2), which

leads to a drastically squeezed “accept" area. Therefore, re-
jection sampling [39] method will suffer from a large number

of average trials due to high rejection rate. Consequently,

one has to resort to either inverse transform sampling (ITS)
method [30] or the alias method for sampling.

Considering that alias method offers better sampling com-

plexity over ITS, one might opt for the former method for

sampling on temporal graphs. However, the dynamically

evolving candidate edge set will introduce overwhelming

space consumption in the alias method. Particularly, because

temporal random walk requires the path to obey the time

order, different walkers might need different candidate edge

sets even when sampling the same vertex. Using Figure 1

as an example, entering vertex 7 from vertex 9 would lead

to the candidate set of {4, 5, 6} while entering vertex 7 from

vertex 8 has the candidate set of {0, 1, 2, 3, 4, 5, 6}. In this

context, using the alias method alone will require construct-

ing various versions of alias tables. Further, identifying the

correct version of the alias table for sampling based on the

temporal information of the current arriving edge could also

be challenging.

Figure 2 compares TEA’s average sampling cost per sam-

pling step (defined as the edges evaluated per step) with

two recent works on four temporal datasets. For the two

recent works, KnightKing, which relies on rejection sam-

pling, requires the evaluation of 11,071 edges on average

per step due to a higher rejection rate. The other approach,

GraphWalker [40] adopts a full-scan sampling method that

generates all edges of the current candidate edge set to build

the alias table on each sampling process and requires an

evaluation of 19,046 edges per step. For this method, Graph-

Walker requires 1 petabyte of preprocessed data for sampling

the twitter dataset [23]. Compared with these two works,

TEA only evaluates 5.5 edges on average per step thanks to

our hybrid sampling approach (Section 3.2).

Further, there lacks a general-purpose framework with

essential algorithmic and system-level optimizations for fast

random walks on temporal graphs. This results in poor

user productivity and low-performance implementations

of these types of algorithms and applications. Additionally,

as KnightKing [45] has suggested, it is counter-intuitive for

users to implement walker-centric algorithms in popular

graph frameworks [29, 54] because programmers could lose

the ability to track the walker state updates. Adding an-

other dimension of temporal information to the random

walk would further complicate the programmability. Specif-

ically, it would be extremely challenging for the users to

manage the dynamically changing sampling space, as well

as derive the optimal Monte Carlo sampling method for tem-

poral random walk algorithms.

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

This paper presents TEA which strives to achieve low

space consumption, fast sampling speed, and expressive pro-

gramming interfaces for various temporal random walk ap-

plications. At its core, TEA provides a novel hybrid sampling

method that combines the ITS and alias methods together to

drastically reduce space complexity and achieve high sam-

pling speed. This method removes the dependency of edge

transition probability calculation on the walker’s temporal

information and takes advantage of both the ITS and the alias

method by averting the expensive searching cost of ITS and

the enormous space overhead in the alias method. Here, the

sampling space is stored in our novel Persistent Alias Table

(PAT) data structure. Furthermore, TEA introduces a Hier-

archical Persistent Alias Table (HPAT) method, associated

with an auxiliary index, to dramatically improve the sam-

pling efficiency, and enable out-of-core sampling for large

temporal graphs. Additionally, TEA also provides efficient

streaming graph processing support. As for programming,

TEA (written in C++) provides high-level user-friendly APIs

and customized function design options to improve user

productivity. Finally, our comprehensive performance eval-

uation reveals that TEA can achieve up to 6, 158× speedup

over GraphWalker and 954× over KnightKing for a diverse

range of dynamic random walks on temporal graphs.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the background. Sections 3 and 4, respec-

tively, present the technical design and system implementa-

tion of TEA. Section 5 evaluates TEA. We discuss the related

work in Section 6 and Section 7 concludes.

2 Background
This section discusses temporal graphs and the taxonomy of

various Monte Carlo sampling algorithms. The major nota-

tions used in this paper have been defined in Table 1.

Table 1. Notation Table.

Notation Description
D The maximum vertex degree in graph G

N (u) Vertex u ′s edge set
C[k] The k-th number of the prefix sum array

Γt (u) Candidate edge set of vertex u at time t
δ ((u,vi , ti)) Weight of the edge (u,vi , ti)
P((u,vi , ti)) Edge transition probability of (u,vi , ti)
trunkSize The size of each trunk

τ k ,iu The i-th trunk of vertex u with the length of 2
k

β,p,q The temporal node2vec parameters

ε The accepted ratio of rejection sampling

2.1 Temporal Graph
Different from static graphs, edges in temporal graphs in-

clude temporal information. Let G = (V , E,R) be a temporal

graph, where V is the vertex set in G, E is the set of edges

in G, and R is the temporal information set which is at the

size of |E|. Each edge e ∈ E is defined as a triplet (u,v, t),
where u,v ∈ V , t represents the time edge e appears and

t ∈ R. We define dv as the degree of the each vertex v and

D is the maximum vertex degree, D =max{dv , v ∈ V }. We

use the maximum vertex degree for time complexity analysis

because, similarly to KnightKing [45], vertices with higher

degree numbers will have higher probabilities to be visited

in a random walk. A path in a temporal graph is called a

temporal path, which starts from a vertex u1 at time t1 and
arrives at vertex un at time tn−1. Thus, this path can be de-

fined by P = e1 · e2 · . . . en−1 where ei = (ui ,ui+1, ti), and it

must satisfy the time constraint: ti−1 < ti with i > 1.

For real-world applications, a temporal graph is repre-

sented as an edge stream, i.e., a sequence of all edges that

come in the order of time when it is created or collected [15,

18, 22, 42, 43, 53]. In this paper, we assume the temporal

graph is updated incrementally (see Section 3.5). The e-

commerce networks, which add new shopping records to the

graphs with respect to temporal information, are a typical

example of this dynamic feature. TEA adopts the edge stream

data representation format for a temporal random walk.

2.2 Monte Carlo Sampling Methods
Various random walk algorithms often follow a similar pro-

cedure: a group of walkers, each of which starts from a vertex

in a graph (u), selects a neighbor of the current vertex (vi)
from the candidate edge set N (u) (edge sampling step), and
transits to the selected neighbor. This procedure continues

until certain termination conditions are met. Note, the pro-

cess of selecting a neighbor of the current vertex follows

a given probability which is called edge transition probabil-
ity [8, 33, 45]. The edge transition probability for edge (u,vi)
is defined as:

P((u,vi)) =
δ ((u,vi))∑

(u ,vj)∈N (u) δ ((u,vj))
, (1)

where δ ((u,vi)) is the weight of edge (u,vi).
Sampling edges is the most time-consuming step in ran-

dom walk [32, 45]. The previous work [45] has reported

that the sampling step in a Spark node2vec implementa-

tion [9] can take up to 98.8% of the total execution time.

Here we briefly introduce three sampling methods that are

widely used in random walks, including inverse transform
sampling [30], alias method [27], and rejection sampling [39].

Inverse transform sampling (ITS): For each vertex u,
ITS uses an array C to store the Cumulative Distribution
Function by calculating the prefix sum of the weights of u ′s
current edge set, which is defined as N (u). Let us define
N (u) = {e1, . . . , ei } and assume the weight of each edge ei
asW (ei), C[i] =

∑i
j=1W (ej). In every sampling process, a

random number r is produced in the range of [0,C[|N (u)|]],
whereC[|N (u)|] is the sum of all the edges’ weights in N (u).
After this, ITS will find the smallest k that satisfiesC[k−1] <

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

0 1 2 3

4

5

7

6

80

1
5

2
3

6 7

4
5

6

9 90

4

4
2

1

3
4

0 5 11 18

(a) Sampling on vertex 7

(b) ITS

6

(c) Alias method

accept
reject

(d) Rejection method

C array
5 6

4 5 6Vertex

7

0 1 2Trunk

Figure 3. When a walker arrives at 7 from 9, how differ-

ent Monte Carlo sampling methods, i.e., ITS, Alias Method,

and Rejection Sampling, work on the candidate edge set

(7, 4, 5), (7, 5, 6), (7, 6, 7), where these edges use the associ-
ated temporal information as the sampling weights.

r ≤ C[k]. Thus, the sampled edge will be the kth edge in

N (u). This process can be completed via a binary search

with the time complexity of O(loд(D)). Using Figure 3b as

an example, when a walker arrives at 7 from 9, it will sample

from the edges set (7, 4, 5), (7, 5, 6), (7, 6, 7). The cumulative

distribution function C is C = {0, 5, 11, 18}. Our random
number r = 12 leads us to select edge (7, 6, 7).
Aliasmethod divides theweight of each edge into several

pieces and combines them together to form n trunks. In

principle, two conditions have to be satisfied: (1) every trunk

can have up to two pieces, and (2) the total weight of each

trunk must be the overall average weight. Upon sampling,

we first uniformly sample a trunk and subsequently sample

a piece in the trunk. Intuitively, the probability of an edge

being sampled is proportional to the sum of the weights of its

corresponding pieces. The data structures that record these

trunks and their contents are called alias tables. The time

complexity of generating an alias table and sampling on it

is O(n) and O(1), respectively. As shown in Figure 3c, the

alias method generates three trunks with an average of 6.

Our sampling process selects trunk 2, which only contains

one edge. This leads us to select edge (7, 6, 7).
Rejection sampling [39] is recently used to sample the

dynamicweight of each edge in a low-dimensional graph [45].

The key advantage of rejection sampling is that when edge

weight changes, rejection sampling does not need to regen-

erate the sampling space because rejection sampling treats

each participating edge separately. Once an edge is selected,

one only needs to check if this selection is accepted or not.

Figure 3d illustrates an example of the rejection sampling on

the same vertex 7. Rejection sampling first generates a ran-

dom number to select a potential edge. In this case, we select

vertex 4. Subsequently, one generates another random num-

ber to decide whether we should reject or accept this sampled

edge. For the second random number, since the range is 0

to the maximum probability across all edges, which is 7 in

Figure 3d. Therefore, one could generate a rejected sample

like the red dot in Figure 3d. If a sampled edge is rejected,

we need to sample again. This process continues until we

derive a valid selection, such as vertex 6 in Figure 3d.

2.3 Temporal RandomWalk Applications
This section discusses three popular biased temporal ran-

dom walk applications, which are the most common and

complex forms of random walk algorithms. It is worth not-

ing that there also exist unbiased edge weight random walk

algorithms. We also want to clarify that despite our TEA
framework being inspired by biased temporal random walk

algorithms, TEA can also support unbiased counterparts by

assigning uniform weights to all edges.

Candidate edge set:Different from the randomwalk on a

static graph, when a walker arrives at vertex u on a temporal

graph, the eligible candidate edges are defined as Γt (u). Here,
Γt (u) = {(u,vi , ti)| (u,vi , ti) ∈ N (u), ti > t}, where t is
the time instance associated with the preceding edge that

reachesu. Belowwe describe three popular temporal random

walk algorithms.

(I) Linear temporal weight random walk: The edge

transition probability for edge (u,vi , ti) ∈ Γt (u) is defined as:

P((u,vi , ti)) =
δ ((u,vi , ti))∑

(u ,vj ,tj)∈Γt (u) δ ((u,vj , tj))
, (2)

whereδ ((u,vi , ti)) is theweight of edge (u,vi , ti). This weight
is set as either ti or rank((u,vi , ti)). Here, ti is the time in-

stance associated with this edge (u,vi , ti). The rank() func-
tion is the current edge’s timing ranking among all the edges.

Since both ways of deriving edge weight are linearly corre-

lated to the temporal information ti , we consider this variant
a linear temporal bias. Recently, CTDNE [31] has imple-

mented this linear weight algorithm to DeepWalk [33].

(II) Exponential temporal weight randomwalk is an-

other variant of temporal random walk. Using CTDNE [31]

as an example, when a walker arrives at a vertex u of time t ,
the current edge set of u is N (u). The edge weight becomes

δ ((u,vi , ti)) =exp(ti − t), which is changing according to the

current time instance t . However, since the edge weights

of all edges are changing with respect to t , we can cancel

out that impact, which is shown in Equation 3. The edge

transition probability for each edge (u,vi , ti) ⊆ Γt (u) is:

P((u,vi , ti)) =
δ ((u,vi , ti))∑

(u ,vj ,tj)∈Γt (u) δ ((u,vj , tj))

=
exp(ti − t)∑

(u ,vj ,tj)∈Γt (u) exp(tj − t)

=
exp(ti)∑

(u ,vj ,tj)∈Γt (u) exp(tj)
.

(3)

The exponential temporal weight random walk is widely

used in temporal graphs to capture time instances such as

CAW [41] and EHNA [17]. The exponential function here

is similar to the exponentially decaying probability of con-

secutive contacts, which has been observed in the spread of

computer viruses and worms [14].

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

0 1 2 3

4

5

7

6

80

1
5

2
3

6 7

4
5

6

9 90

4

4
2

1

3
0 1 2 3

4

5

7

6

80
5

6 7

4
5

6

9 90

4

4
2

1

3
0 1 2 3

4

5

7

6

80
5

6 7

5

6

9 90

4

4
2

1

3

Time 0 Time 3 Time 4

Figure 4. Evolution of temporal graph i.e., candidate edge set and candidate edge weight with time for vertex 7.

(III) Temporal node2vec [17] extends CTDNE accord-

ing to the definition of node2vec [8]. The probability dis-

tribution depends on not only the time instance of the pre-

ceding vertex but also the distance between the preceding

vertex and the candidate vertex. When a walker arrives at

a vertex u of time t with w as the preceding vertex of u in

the random walk, the edge transition probability for edge

(u,vi , ti) ⊆ Γt (u) can be expressed as :

P((u,vi , ti)) = β(u ,vi) ·
δ ((u,vi , ti))∑

(u ,vj ,tj)∈Γt (u) δ ((u,vj , tj))
, (4)

where β(u ,vi) is
1

p if d(w ,vi) = 0, 1 if d(w ,vi) = 1, and
1

q if

d(w ,vi) = 2.

The definitions of β(u ,vi), d(w ,vi), p, and q are the same as

their definitions in node2vec [8] on static graphs. Particularly,

p and q control the random walk to walk like either Breadth-

or Depth- First Search algorithms. With d(w ,vi) = 0, u will

travel back tow . With d(w ,vi) = 1, vi is one-hop away from

u and w . With d(w ,vi) = 2, vi is two-hops away from w .

β(u ,vi) is combined with exp(ti −t) to get more time-sensitive

information from the temporal paths.

3 TEA: A Temporal Graph RandomWalk
Engine

3.1 Observation and Overview

Observation. In this paper, we observe that, for a temporal

random walk, using any Monte Carlo sampling algorithm

alonewill suffer from overwhelming performance challenges.

Below we offer our key observations:

First, the rejection sampling method faces an extremely

large number of trials when applied to temporal graphs. For

example, when randomwalks arrive at vertex 7 from vertex 8

in Figure 1, the candidate set for vertex 7 will be {0, 1, . . . , 6}
and the weight distribution of the exponential temporal

weight randomwalkwill be {exp(1), exp(2), . . . , exp(7)}. The

expected trials can be as large as
7∗exp(7)∑
7

j=1 exp(j)
. Figure 2 also con-

firms a higher average sampling cost for rejection sampling

with KnightKing.

Second, ITS samplingmethod always experiencesO(loд(D))
time complexity, which is nontrivial. It is important to note

that for different time ranges of interest, ITS will not re-

compute the sampling space to reduce the searching space

because reconstructing the sampling space is often more

time-consuming than directly sampling on the largest time

range. Therefore the sampling complexity remains to be

O(loд(D)) for ITS.
Third, for the alias method, one would have to build one

version of the alias table for each unique time step t of each
vertex to take advantage of precomputing the transition prob-

ability for fast sampling. For each vertexvi , the alias method

stores the alias tables of all possible candidate sets of vi . The
alias table of each candidate set will take O(Dvi) space with

Dvi as the degree number of vi . The space complexity is

O(D2

vi). Therefore, the alias method would require around∑
vi ∈V D2

vi space to store all the alias tables. Such an enor-

mous space consumption will make the storing and indexing

of the alias table (i.e., deciding which alias table to search

against) prohibitively expensive. For example, for vertex 7

in Figure 4, the candidate set for vertex 7 will be different if

the arriving time is 0, 3, or 4. Three candidate edge sets will

lead to three different alias tables for the same vertex 7.

Overview. To combat the high sampling cost faced by

rejection sampling, nontrivial sampling time complexity by

ITS, and the enormous space requirement faced by alias ta-

ble method-based temporal random walk, TEA introduces a

hybrid approach that combines both ITS sampling and alias

method. Particularly, the edge sets are partitioned into a col-

lection of smaller static partitions, each of which is a trunk

of an alias table. During sampling, ITS sampling is used to

select the trunk of interest. Subsequently, inside each trunk,

we will resort to the alias method for sampling. Furthermore,

TEA proposes an HPAT design for in-memory sampling and

auxiliary indexing for fast identifying the alias table of in-

terest. Finally, considering temporal graphs could come in

as a streaming format, TEA also introduces streaming graph

support.

3.2 Persistent Alias Table (PAT)
Although the candidate edge sets could change dynamically

according to the temporal information in the temporal graph,

each could be a combination of several smaller subsets of

edges. In our PAT method, we partition the entire edge set

into several smaller subsets. Here, each subset of edges also

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

referred to as a trunk, remains unchanged. For a candidate

edge set that contains multiple trunks, we resort to the ITS

sampling method to select the trunk of interest. Finally, since

the trunk remains unchanged, one can use the alias method

to perform sampling in that trunk.

PAT encompasses new data structures and sampling algo-

rithms to allow efficient sampling. For the new data structure,

we construct alias tables for all the trunks and the prefix-

sum array at the granularity of the trunk. Our construction

process works as follows. We first partition the entire neigh-

bor list into a collection of trunks, each containing an equal

number of edges. As shown in Figure 5, we partition vertex

7’s neighbor list into four trunks, {6, 5}, {4, 3}, {2, 1}, and {0}

in a decreasing time order. Afterward, we build an alias ta-

ble for each trunk. In the meantime, we will construct the

prefix-sum array for these four trunks. Here, we assume the

temporal weight of each edge is defined by the linear tempo-

ral weight rule discussed in Section 2.3, which is shown as

the temporal weight in Figure 5. In this case, we can build

the alias table for each trunk with the mean as 6.5, 4.5, 2.5,

and 1, respectively. The subsequent prefix-sum array of the

trunks are {0, 13, 22, 27, 28} as shown in the bottom right

of Figure 5. Note that we name this data structure persis-
tent alias table (PAT) referencing the concept of persistent

segment tree [34].

6 5 4 3 2 1 07’s edges in trunks
Temporal weight 7 6 5 4 3 2 1

Persistent  
alias table

0 13 22 27 28

2.5
4

4.5

6
6.5

Prefix-sum of  
edge trunks

2
1

2
1

18

6

6
5

3
1 0

4

4

2
2

0 1 2 3

4

5

7

6

80

1
5

2
3

6 7

4
5

6

9 90

4

4
2

1

3

7’s edges grouped in trunks 
(The toy graph in Figure 1)

Figure 5. Persistent alias table (PAT) for vertex 7 of Figure 1
with the edges arranged by decreasing time. Under this new

construction, ITS is first used to select a particular trunk,

then the alias method is applied to perform sampling inside

the selected trunk.

Atop our PAT data structure design, our algorithm would

need to cope with two types of sampling cases hinging upon

whether all the edges in the trunk selected from ITS are

complete or not. The first sampling case, when all the edges

in the selected trunk are complete, is straightforward. Simply,

alias method can then be used directly to sample the neighbor

of interest within the trunk. This case is demonstrated as

1 in Figure 5. Assuming the incoming edge is (0, 7, 3), the
candidate set is {6, 5, 4, 3}. The selected trunk is complete

with a prefix-sum range of 0 to 22. Hence, alias method can

be directly used to sample a neighbor of interest.

The second case needs to deal with sampling within an

incomplete trunk. If the selected trunk by ITS is incomplete,

alias method cannot be used as alias method can only be

performed on a complete trunk. In that case, ITS is used to

sample within the trunk by rebuilding the prefix-sum of that

trunk. Taking the 2 in Figure 5 as an example, assuming

the incoming edge is (9, 7, 4), the candidate edge set will be
{6, 5, 4}. This candidate set occupies the whole trunk {6, 5}
and a part of the trunk {4, 3} (edge 3 is not included). In this

case, PAT builds the prefix-sum array inside the incomplete

trunk, e.g., the prefix-sum array of the edge set {4}, and then

performs the ITS on it for sampling.

Intuitively, our PAT method alleviates the drawbacks of

both the alias table and ITS methods. First, compared to

the alias method design, for each vertex u, we reduce the
space consumption from O(D2) to O(D), where D is the de-

gree of vertex u. Note that our method only takes O(D)
space because our alias table trunks take O(D) space and

prefix-sum of trunks only takes O(D
trunkSize) space. Sec-

ond, compared to the ITS method design, our PAT method

can reduce the searching time complexity from O(logD) to
O(log D

trunkSize).

The trunkSize selection strategies differ under various

execution modes. When the memory capacity is sufficient

(full-in-memory execution), the trunkSize should be as large
as possible while satisfying that the time complexity of ITS

on the prefix-sum of trunks (i.e., O(log D
trunkSize)) is not

smaller than the time complexity of ITS inside each trunk (i.e.,

O(log trunkSize)). Hence, trunkSize should not be larger

than

√
D. In this case, we can choose trunkSize as ⌊

√
D⌋

for each vertex. When the memory is insufficient, we will

run PAT under the out-of-core execution mode. To reduce

the disk I/O, we choose the trunkSize as small as possible

while satisfying that we have enough memory space to store

the prefix-sum array of all trunks whose size is
|E |

trunkSize .

For example, we can choose trunkSize as 10 on the twitter

dataset under 16 GB memory limitation.

3.3 Hierarchical PAT (HPAT)
Although our PAT design can dramatically reduce space con-

sumption, it still has the O(log D
trunkSize) time complexity.

Thus, we propose a hierarchical persistent alias table design
(HPAT) method to trade slightly more memory space for

lower sampling complexity.

Equations 5, 6 and 7 formally define how we construct

our HPAT for each vertex u with edge set as {e1, . . . , en} in
a hierarchical manner.

τu = {τ 0u , . . . , τ
k
u , . . . , τ

K
u },

0 ≤ k ≤ K = ⌊log
2
(|N (u)|)⌋ .

(5)

τ ku = {τ k ,0u , . . . , τ
k ,i
u , . . . , τ

k ,I
u },

0 ≤ i ≤ I = ⌊
|N (u)|

2
k

⌋ − 1.
(6)

τ k ,iu = {ei∗2k+1, . . . , e(i+1)∗2k }. (7)

In Equation 5, each τ ku is a relatively bigger trunk. Subse-

quently, in Equation 6, we partition each bigger trunk τ ku

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

Later Earlier

4

5.5
5

4

4.5

6
6.56

6
5

34

4 6

6

5

345
6 5 4 3 2 1 0

6 5 4 3 2 1 0

6 5 4 3

2=2 3=2+11=1 4=4 5=4+1 6=4+2 7=4+2+1

6 5 4 3

6 5 4 3 2 1 0

6 5 4 3 2 01

(b) Sequentially group edges into a trunk.2k (c) Case without (left) vs. with (right) HPAT.1 (d) Auxiliary index.

k=0

k=1

k=2

0 1 2 3

4

5

7

6

80

1
5

2
3

6 7

4
5

6

9 90

4

4
2

1

3

(a) 7’s edges grouped in hierarchical  
trunks (The toy graph in Figure 1).

Figure 6. Hierarchical persistent alias table design (HPAT) for vertex 7 of Figure 1: (a) 7’s edge grouped in hierarchical trunks

(the toy graph in Figure 1), (b) sequentially group each 2
k
edges into a trunk, (c) case 1 without (left) vs. with (right) HPAT,

and (d) the auxiliary index for HPAT.

from Equation 5 into smaller trunks, i.e., τ k ,iu . Further, as

shown in Equation 7, each trunk is represented by an edge

set of τ k ,iu , which represents the i-th trunk of vertex u with

the length of 2
k
. For each trunk (bigger or smaller), we build

an alias table for subsequent sampling.

When sampling occurs, since each candidate edge set

{e1, . . . , ei } must be the prefix of the current vertex’s edge

set {e1, . . . , en} with decreasing time, the candidate edge set

can be divided into a number of trunks via binary decom-

position. Then, TEA first samples these trunks using ITS to
reduce the overall space overhead. After this, the alias table

of the sampled trunk is used to locally sample an edge (i.e.,

alias method is applied here to enable fast sampling).

Still using vertex 7 of Figure 1 as an example, the candi-

date set will be {6, . . . , 0}. Our trunk sets are shown in Fig-

ure 6b, τu can be represented as a set of τ 0u={{6}, . . . , {0}},
τ 1u= {{6, 5}, {4, 3}, {2, 1}}, τ 2u={{6, 5, 4, 3}}}. Upon sampling,

the candidate set is divided into three trunks (7 = 4 + 2 + 1):

Trunk_set={д1,д2,д3}, where д1 = {6, 5, 4, 3} = τ 2,0u , д2 =
{2, 1} = τ 1,2u , and д3 = {0} = τ 0,6u . Then the sampled proba-

bility of each trunk can be calculated by using the ITS array
C: P(д1) = (0, C[4]

C[7]
], P(д2) = (

C[4]

C[7]
, C[6]

C[7]
], P(д3) = (

C[6]

C[7]
, 1]. Af-

ter all available trunks are sampled by ITS, sampling based

on the local alias method begins: an edge in the sampled

trunk is sampled by the alias table in the trunk.

In this design, the time complexity of PAT is further re-

duced toO(loд(loд(D))) because each candidate edge set will

cover up to loд(D) trunks. After that, the local processing
using the alias method within each sampled trunk only takes

O(1) time complexity. In terms of space consumption, only

the alias tables of the subsets of τ k ,iu need to be preprocessed,

resulting in the space overhead of τ ku as D and the overall

space overhead of τu as O(Dloд(D)) with D as the degree

number. This is still much lower than simply applying the

alias method, which costsO(D2) for random walking on tem-

poral graphs. Although it has a higher space overhead than

ITS, which only needs D space, our sampling methods have

a faster sampling speed.

We also added two ad hoc optimizations. First, if the tem-

poral information of certain neighbors is earlier than all the

incoming edges, we can simply discard them. Second, if the

out-degree of a vertex is relatively low, we can simply build

alias tables for its specific out edges.

3.4 Auxiliary Index
This section introduces the concept of the auxiliary index

to reduce the time complexity for finding the trunks of in-

terest for each candidate edge set from O(loд(D)) to O(1).
During sampling, HPAT designs need to find the trunks con-

taining the candidate edges, i.e., Γt (u), which would lead to

O(loд(D)) time complexity. Below we detail the complexity

analysis. When a walker arrives at vertexu of time t , we need
to find the minimum number of trunks at sizes of 2i that can
construct Γt (u). This process needs loд(|Γt (u)|) operations
for decomposing Γt (u)| into appropriately sized trunks, and

loд(D) operations to find those trunks of interest. Using ver-

tex 7 in Figure 1 as an example, when a walker arrives at

vertex 7 from 0, the candidate edge set is Γt=3(u) = {6, 5, 4, 3}.
For HPAT, the required trunk will be {6, 5, 4, 3}. In another

situation, if vertex 7 is arrived from vertex 9, the Γt=4(u)
would be {6, 5, 4}. In this case, the trunks of interest in the

hierarchical persistent alias method would be {6, 5} and {4}.

Our auxiliary index enables TEA to rapidly identify the

trunks of interest. Figure 6d shows how to build an auxiliary

index for HPAT of vertex 7. Assuming the HPAT requires

7 neighbors from vertex 7, i.e., the top right dotted box in

Figure 6d, these neighbors will fall into three trunks: {6, 5, 4,

3}, {2, 1} and {0}. Since the HPAT arranges all the alias tables

into a complete binary search tree, with the indices 4+ 2+ 1,

we can locate the trunks of interest as follows. First, value

4 indicates we should fetch the only size =4 trunk in the

top-level, i.e., {6, 5, 4, 3}. Second, the value of 2 indicates our

second trunk of interest lies in the second level of the binary

search tree. Then the position of the trunk would start from

4, which is the sum of the size of the prior trunk. Finally,

value 1 indicates that this trunk resides in the third level

(where the size of all the trunks is 1). Further, the position of

the current trunk would be the sum of the sizes of fetched

trunks, that is, 4+2=6. Therefore, we obtain the last trunk.

This design reduces the time complexity of trunk finding

from O(loд(D)) to O(1).

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

6 5 4 3

6 5 4 3 2 1 0

6 5 4 3 2 01

Existing HPAT for vertex 7
New out edges for 7 9 8

8 9
9 8

10 11
11 10

1110

Merge
11 10 9 8

12
12

6 5 4 3

6 5 4 3 2 1 0

6 5 4 3 2 01

11 10 9 8

9 8

9 8

11 10

1110

6 5 4 31110 9 8

12

Incremental HPAT

Existing HPAT for
vertex 7

12

12

k=0

k=1

k=2

k=0

k=1

k=2

k=3

Figure 7. Incremental HPAT updating for vertex 7 of Figure 1

with five new streaming edges from 7 to {8, 9, 10, 11, 12},

respectively.

3.5 Streaming Graph Support
For the streaming graph setting, we assume the updates in-

clude the addition of new edges and vertices, and the updates

are done in batches for the sake of efficiency, which is similar

to the state of the art streaming graph systems [2, 20, 36].

For each new batch, we need to update the PAT and HPAT

indices. Fortunately, both our PAT and HPAT are built by

the timing order of the edges, that is, we arrange the edges

by decreasing timing order. For the batch of new incoming

edges, since their timing information is always larger than

the existing edges, we can simply append these new edges to

PAT and HPAT. That leads to our incremental update design

for PAT and HPAT. Since PAT is a special case of HPAT, we

describe the incremental update support for HPAT below.

The key to our incremental update design is that - we

keep the old HPAT index intact and create new trunks for

the incoming edges. Chances are that the newly added trunks

together with the old ones could lead to the growth of the

hierarchy in HPAT. We hence increase the hierarchy by com-

bining the existing and new trunks. Figure 7 exemplifies this

design for the same sample graph in Figure 6b. Assuming the

new incoming batch contains edges from vertex 7 of Figure 1

to {8, 9, 10, 11, 12}, where these incoming edges are sorted by

increasing time order. We perform the incremental update

to HPAT in two steps. First, we build an incremental HPAT

for these new arrivals (top right of Figure 7). Second, when

merging our incremental HPAT and the existing HPATs, we

might also need to generate a higher hierarchy for our HPAT

like {3, 4, 5, 6, 8, 9, 10, 11} at the bottom of Figure 7. Be-

cause we create new HPATs with a higher hierarchy, even

under the out-of-core mode, the created HPATs will be stored

sequentially following current HPATs.

4 System Implementation
4.1 TEA: Putting All Things Together
Figure 8 presents the workflow of random walk atop TEA.
Particularly, for each random walk step, TEA uses the active

vertex to access the corresponding auxiliary index. And the

resultant auxiliary index is used to index the respective HPAT.

Temporal Graph

Incoming random walk source node

1. Access auxiliary index of node s;
2. Access hierarchical persistent alias table with auxiliary index;
3. Perform sampling on the hierarchical persistent alias table;
4. Using the newly selected vertex, repeat from 1;
Steps 1 - 4 continue until our random walk meets the required length.

TEA runtime sampling engine

Output random walk

TEA preprocessed data structures
Persistent alias table (preprocessed)

Hierarchical persistent alias table
(B+ tree, where each node is an alias table, preprocessed)

Auxiliary index
(<key value> pairs, preprocessed)

Streaming graph
support

S
S

S

Figure 8. Overall workflow of TEA.

Finally, we perform sampling on the HPAT to derive the

sampled vertex. This process continues until the convergence

(i.e., arriving at the random walk length). TEA outputs the

sampled path at the end.

Table 2. TEA API specifications.

Name Description
Dynamic_weight() Dynamic weight definition interface

Dynamic_parameter() Dynamic parameter

Edges_interval() Extract the temporal subgraph

Algorithm 1 Temporal node2vec in temporal-centric API.

1: Dynamic_weight (Time time)

2: return exp(time)

3:

4: Dynamic_parameter (Vertex u, Vertex v)
5: if(u==v)
6: return 1

p
7: else if(u.ISNEIGHBOR(v))
8: return 1

9: else
10: return 1

q
11:

12: Edges_interval(Edges_set E, Time start_time, Time end_time)

13: begin=E.find(start_time)

14: end=E.find(end_time)

15: return {E[begin] , . . . , E[end]}

TEA Framework and temporal-centric API: We pro-

vide a temporal-centric framework for the end-users to ex-

press temporal randomwalk algorithmswith ease.We extend

the walker-centric concept on KnightKing to our temporal-
centric one which lets users think from the “time” perspec-

tive: The time instance affects the core of random walk, that

is, probability distribution. This framework mainly consists

of two user involvements, i.e., parameters and subgraph

selection which are listed in Table 2. Parameters (e.g., Dy-
namic_weight and Dynamic_parameter) allow users to

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

Algorithm 2 Temporal-centric API in TEA.

1: Sampling (Random R, Vertex u, Time t)

2: Candidate edge set L = Γt (u)
3: Trunks set L’ = Auxiliary_Index (L)

4: Sampled trunk index (k,i) = Sampling R on L’ by ITS

5: return Edge = Sampling R on the trunk τk ,iu by alias method

6:

7: Preprocess (Edges_set E, Dynamic_weight())

8: Dynamic_weight() defines the weight for each edge in E

9: Generate HPAT for E

10:

11: Main (Len, start_time, end_time)

12: E’ = Edges_interval(E, start_time, end_time)

13: Preprocess(E’, Dynamic_weight())
14: while (Len>0)
15: for (each random walk S)

16: (u, t) = S.current_vertex

17: (up , tp) = S.previous_vertex

18: while (True)
19: (R, R’) = random()

20: (u, v, t’) = Sampling(R, u, t)
21: if (R’ ≤ Dynamic_parameter(up , v))
22: break
23: S.previous_vertex = (u, t)

24: S.current_vertex = (v, t’)

25: Len = Len-1

customize the bias according to different applications. Sub-

graph selection provides more expressiveness to users, i.e.,

(Edges_interval). Edges_interval derives the subgraphs

of interest for TEA to perform random walk on. All these

APIs center around temporal information.

Algorithm 1 shows the usage of our APIs for temporal

node2vec. Dynamic_weight is defined as exp(time) as in
the state-of-the-art [31]. Dynamic_parameter defines the
parameter β(u ,vi) in Equation 4 of temporal node2vec.Edges_
interval is provided for users to generate a subgraph (snap-

shot) for random walk according to different applications.

Algorithm 2 shows how user APIs interact with the TEA
framework. Particularly, it first uses Edges_interval to get

the subgraph for each query. Then, TEA uses Preprocess
function to generate the alias tables and auxiliary index.

During random walk computation, Sampling function uses

HPAT to encodeDynamic_weight and the random number

R. Then TEA uses the rejection sampling to check whether

this sampling trial is in the “Accepted” area, i.e., whether the

random number R′
is not larger than the dynamic parame-

ters provided by Dynamic_parameter. For random walks

without dynamic parameters, we simply return “Accepted”

during each rejection sampling process. Finally, it updates

random walks by newly sampled edges.

Out-of-core support: While HPAT is faster, it requires

more space. Our out-of-memory case focuses on space-saving

when HPAT cannot fit in memory. First, we resort to PAT

which is smaller than HPAT for sampling. During sampling,

the prefix-sum array of each edge’s trunk is cached in mem-

ory (Section 3.2) and we use it to sample the trunk of interest,

which will be loaded into memory for alias table-based sam-

pling. Our workflow of out-of-core execution is similar to

GraphWalker [40] except that we use PAT for sampling. As

shown in Section 3, if the sampled trunk is completed (Sec-

tion 3.2), we load the alias table of the current trunk into

memory, otherwise, we load the prefix-sum array. Second,

each to-be-loaded data will use the prior loaded data re-

entry [1] to minimize the disk I/O. The updating process

uses multiple threads to update walkers asynchronously.

Third, TEA stores the completed random walks the same as

GraphWalker [40], that is, we flush the completed ones to

disk when the number of them reaches 1,024.

4.2 Parallel TEA Data Structure Construction
TEA mainly requires the following three components: (1)

search the candidate edge set of each edge (2) construct the

PAT/HPAT for each vertex, and (3) generate the auxiliary

index for the HPATs. Fortunately, we can perform all these

steps in parallel. In the following, we analyze the above three

processes in detail.

Searching candidate edge sets: On sampling, when the

current random walk arrives at edge (u,v, t), it needs to
find the candidate edge set Γt (v), which are the out-edges

that are later than the time t of edge (u,v, t). We search

the candidate edge sets for all in-edges in parallel in two

steps. First, we sort the out-edges of the same source vertex

in time decreasing order by the radix sort with O(|E |) time

complexity. Second, we perform a binary search on the sorted

out-edge list to determine the candidate edge set for each in-

edge withO(|E |loд(D)). However, this step can be conducted

in parallel because the candidate edge set for each in-edge is

independent.

PAT/HPAT construction: TEA needs to construct alias

tables for both PAT and HPAT. For brevity, we mainly discuss

the HPAT construction because the PAT can be constructed

similarly. If different threads are assigned to construct differ-

ent alias tables, threads may compete for the same memory

position. To provide a lock-free parallel construction pro-

cess, we calculate the position of each alias table (τ k ,iu) in

memory before construction. As the length of each alias ta-

ble is fixed (i.e., 2
k
), the position can be calculated before

constructing the alias table. With the derived position, we

can assign a thread to construct each alias table and store

the resultant alias table in the designated memory position

without contentions.

Auxiliary index generation: The auxiliary index is con-
structed on each candidate edge set Γt (u) for HPAT sampling.

As the size of Γt (u) is up to the degree size of u, it can store

the binary decomposition of each degree size from 1 to D,
where D is the maximum degree of the whole graph. There-

fore, the auxiliary index construction takes

∑D
D′=1 loд(D

′)

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

time. For most traditional graphs, the maximum degree D is

up to millions, which leads to the acceptable auxiliary index

construction time. Additionally, the binary decomposition

of different candidate edge sets is independent. Therefore,

the auxiliary index construction can be parallelized embar-

rassingly.

4.3 Complexity Analysis

This part compares the time complexity of TEA with state-

of-the-art works GraphWalker [40] and KnightKing [45] for

linear temporal weight random walk, exponential tempo-

ral weight random walk and temporal node2vec algorithms.

TEA uses HPAT for all random walk algorithms. For lin-

ear temporal weight random walk, both GraphWalker and

KnightKing use ITS. For exponential temporal weight ran-

dom walk, GraphWalker uses the sequential pass to calculate

the probability distribution and then samples the selected

edge, while KnightKing relies upon the rejection sampling

method. When dealing with the temporal node2vec, for dy-

namic weight component, GraphWalker uses the full-scan

sampling method (Section 1), and KnightKing exploits rejec-

tion sampling. For the dynamic parameter component, both

GraphWalker and KnightKing use rejection sampling.

For the linear temporal weight random walk, both Graph-

Walker and KnightKing have O(loд(D)) time complexity

while TEA only has O(loд(loд(D))) time complexity thanks

to our novel hybrid sampling approach on the HPAT data

structure. For the exponential temporal weight random walk,

the time complexity of GraphWalker is O(D) for the sequen-
tial pass, and KnightKing is O(1ε) where ε is the accepted
ratio of rejection sampling. The accepted ratio can be de-

fined as ε = δ (e1)+δ (e2)+...+δ (eD)

D∗δ (eD)
where δ (ei) is the weight of

edge ei and the maximum weight of these edges is δ (eD). For
example, as discussed in Section 3.1, the accepted ratio of

rejection sampling of vertex 7 is ε =
∑D
j=1 exp(j)

D∗exp(D)
. Because the

accepted ratio is always larger than
1

D , the time complexity

of KnightKing is slightly smaller than O(D). For TEA, the
complexity is always O(loд(loд(D))).
The only difference between temporal node2vec and ex-

ponential temporal weight random walk is that the temporal

node2vec has the dynamic parameter β which is defined in

Equation 4. The dynamic weight for both algorithms is the

same as defined in Equation 3. For the dynamic parameter

β , both KnightKing and GraphWalker use the rejection sam-

pling as β is requiring a small and constant expected number

of trails. Therefore, for both KnightKing and GraphWalker,

the time complexity of temporal node2vec is the same as the

exponential temporal weight random walk.

4.4 Discussion and Limitations
We anticipate that TEA could offer two benefits to the broader

community. First, the training of temporal graph neural net-

works on large graphs, such as recent work [16], could ben-

efit from TEA. Particularly, sampling is one of the most ex-

pensive steps for training a GNN on large graphs. Since

TEA could accelerate sampling by orders of magnitude, the

impacts on GNN training for temporal graphs would be enor-

mous. Second, random walks and sampling on static graphs

could also benefit from our idea of combining various Monte

Carlo sampling methods together. For instance, C-SAW [32],

which scales the random number to perform repeated sam-

pling, could benefit from our hybrid approach.

Although TEA proposes efficient solutions for temporal

graph random walk, there are still some limitations. First,

TEA can not support distributed random walk and sampling.

One possible solution could be replacing the rejection sam-

pling of KnightKing [45] by our PAT or HPAT in order to

support distributed execution. Second, TEA can only support

streaming graphs. Other cases such as deleting or changing

vertices or edges are not supported. We plan to add support

for these features to TEA in the future.

5 Evaluation
5.1 Experimental Setup

Environment: TEA is evaluated against GraphWalker

and KnightKing both of which are state-of-the-art general

random walk engines. We use two setups i.e., a single ma-

chine and a distributed machine for evaluation. While TEA
is evaluated in both single and distributed machine, Graph-

Walker is evaluated on the single machine and KnightKing

is evaluated on a distributed machine. For single machine

execution, evaluations are performed on a machine with two

Intel(R) Xeon(R) CPU E5- 2640 v2 @ 2.00GHz (each has 8-

cores), 94GB DRAM (20MB L3 Cache) and an 1TB SATA SSD

(650MB/s for sequential read). For distributed machine, we

use an 8-node cluster (each node is the same as our single

machine configuration) with 40Gbps IB interconnection.

Table 3. Datasets used for evaluation (where k = 10
3
).

Dataset |V| |E| Degree Mean Max Degree

growth 1,870k 39,953k 42.714 226,577

edit 21,504k 266,769k 21.069 3,270,682

delicious 33,777k 301,183k 66.752 4,358,622

twitter 41,652k 1468,365k 74.678 3,691,240

Benchmarks: Table 3 lists the details of datasets in this

section. We choose four widely used datasets from Koblenz

Large Network Collection [23] for evaluation, all of which

are temporal graphs in the standard format, i.e., edge streams.

For each graph, |V | denotes the number of vertices; |E | de-
notes the number of edges; Deдree Mean gives the averaged

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

Table 4.The runtime performance (in seconds) and speedup of TEA over state-of-the-artmethods GraphWalker and KnightKing.

Datasets

Linear weight random walk Exponential weight random walk Temporal node2vec

GraphWalker KnightKing TEA GraphWalker KnightKing TEA GraphWalker KnightKing TEA
growth 14.97 (26.4x) 2.46 (4.3x) 0.56 39.71 (13.6x) 4.82 (1.6x) 2.93 52.18 (14.8x) 7.03 (2.0x) 3.52

edit 161.12 (30.9x) 25.8 (4.9x) 5.21 27961.48 (860.1x) 2583.94 (79.5x) 32.51 71907.56 (1536.1x) 10388.17 (221.9x) 46.81

delicious 248.36 (31.1x) 40.60 (5.1x) 7.98 46479.26 (1196.6x) 5044.26 (129.9x) 38.84 119724.11 (2001.5x) 29627.98 (495.3x) 59.82

twitter 479.84 (39.4x) 73.26 (6.0x) 12.16 224421.26 (3140.0x) 37968.30 (531.3x) 71.47 572274.20 (6158.0x) 88677.35 (954.2x) 92.93

number of edges connected to each node; Max Deдree is

the maximum degree among all nodes in the graph. These

datasets, especially the large ones, are representative power-

law graphs. As discussed previously, since evolving graphs

can be transformed into temporal graph representation [25]

for random walking, we exclude the evaluation for them.

Walkers parameters: For traditional random walk algo-

rithms, we have to set the number of walks starting from

each vertex (i.e., R), which gives the total number of walks

as R ∗ |V |. For fairness, we set the number R as 1 and the

maximum length L = 80, which is the same as traditional ran-

dom walk engines such as KnightKing [45]. For the dynamic

parameters p and q of the temporal node2vec, we set p = 0.5,
q = 2 which is widely used in random walk engines [17, 45].

Baselines: For the all-in-memory mode, we compare TEA
with both GraphWalker [40] and KnightKing [45]. We di-

rectly use open source codes of GraphWalker and KnightK-

ing. KnightKing uses 8 nodes distributed setting which has

better performance than only on a single node [45]. Note

that both GraphWalker and KnightKing use binary search

to search candidate edge sets on sampling, while TEA does

not. For the external-memory mode, we only compare TEA
to GraphWalker because GraphWalker can support external-

memory well while KnightKing cannot.

5.2 TEA vs. State-of-the-art Systems

Table 4 presents the overall performance of GraphWalker,

KnightKing, and our TEA. For fairness, we include the pre-
processing time of TEA in the total random walk time.

Linear temporal weight random walk: We evaluate

GraphWalker, KnightKing, and TEA on linear temporal weight

random walk under different datasets to demonstrate the

effectiveness of TEA. Overall, TEA is 26.4 ∼ 39.4× faster than

GraphWalker. Because KnightKing uses eight machines, the

speedup of TEA over KnightKing is lower than that of Graph-

Walker. However, we still achieve a 4.3 ∼ 6.0× speedup over

KnightKing. Because our main sources of performance im-

provement come from the optimization of the candidate

edge sets searching in preprocessing and the sampling pro-

cess, both of which are associated with the graph degree,

we observe that the graph dataset that exhibits the maxi-

mum speedup for TEA over GraphWalker to be the same for

KnightKing too. Similarly for the minimum speedup case.

TEA
GraphWalker
KnightKing

M
em

or
y

(G
B

, l
og

 s
ca

le
)

0.1

1

10

100

Dataset
growth edit delicious twitter

Figure 9. Memory Usage.

R
un

 T
im

e
(s

, l
og

 s
ca

le
)

1

102

104

106

Dataset
growth edit delicious twitter

TEA
K-1-node
CTDNE

Figure 10. TEA VS Others.

Exponential temporal weight randomwalk: Because
exponential temporal weight random walk has to deal with

dynamic edge weights, GraphWalker needs to rebuild the

transition probability on demand. This process has to fully

scan all the neighbors. Togetherwith sampling, GraphWalker

takes about 62.3 hours on the largest dataset twitter. In con-

trast, TEA finishes the entire sampling in 1.2 minutes. Over-

all, TEA can achieve up to 3, 140× speedup across all set-

tings. Even for the smallest dataset, we still observe a 13.6×

speedup. Although the exponential function makes the prob-

ability distribution highly skewed which will result in a large

number of trials, KnightKing still outperforms GraphWalker

because the number of trials is always less than the degree of

nodesD, which determines the overhead of each sampling in

GraphWalker. Further, because KnightKing is a distributed

system that runs on an 8-node cluster, KnightKing has sev-

eral times speedup over GraphWalker. But overall, our TEA
achieves up to 531× speedup over KnightKing. As KnightK-

ing uses rejection sampling, it requires a large number of

trials which follows the discussion of Section 4.3.

Temporal node2vec: Different from the exponential ran-

dom walk, temporal node2vec further adds the dynamic pa-

rameter β (Equation 4) into random walk generation and the

time complexity of temporal node2vec is close to β as shown

in Section 4.3. For the dynamic parameter β , all systems use

rejection sampling. As current works always choose p = 0.5
and q = 2 for β , the expected trial number is not large [45].

For each trail, temporal node2vec runs a exponential random

walk. As large degree vertices tend to have higher trail num-

bers and TEA can achieve better performance on the large

degree numbers, TEA has better improvement on temporal

node2vec than the exponential random walk. Particularly,

the speedup of TEA is 14.84 ∼ 6, 158× over GraphWalker

and up to 954× over KnightKing.

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

Memory comparison: Figure 9 illustrates the memory

usage of TEA, GraphWalker, and KnightKing on different

datasets. TEA uses HPAT data structure under the full mem-

ory mode. TEA takes up to 78.06 GB on twitter, while us-

ing 2 GB memory on growth. The HPAT index takes the

most space, i.e. 82.5% ∼ 91.2%, of the total memory usage.

Compared with state-of-the-art systems, GraphWalker takes

36.48 GB on twitter, while KnightKing takes a maximum of

6.91 GB per node under 8-node distributed execution. When

KnightKing is executed in a single node, it takes 45 GB on

twitter. While HPAT takes a slightly larger space than the

state-of-the-art, it is astonishingly 6,158× and 954× faster

than GraphWalker and KnightKing on this twitter graph,

respectively.

Compare with other engines: Figure 10 compares TEA
with other engines, including KnightKing under the single

node execution (K-1-node) and CTDNE [31] with the tempo-

ral node2vec random walk method. The general trend is that

our TEA outperforms both K-1-node and CTDNE tremen-

dously. Particularly, TEA can achieve 5, 627× speedup over K-

1-node. Compared to CTDNE, TEA can achieve up to 8, 816×
speedup because CTDNE provides a temporal graph random

walk-based neural network model rather than an efficient

random walk system with system-level optimizations.

Parameters Sensitivity: Randomwalk parameters affect

the overall performance. For R and L, they directly affect the

performance. The runtime of R = 2 is 1.91 ∼ 2.14× longer

than R=1 under different L with range from 10 to 80. The

runtime of L = 80 takes nearly 4.7 ∼ 5.9× longer runtime

than L=10 under different R with range from 1 to 3.

Applications scope:We also notice that some other pop-

ular static graph randomwalk based algorithms, such as Sim-

Rank [19], meta-path [6], and Personalized PageRank [11, 46],

do not have existing variations on temporal graphs. Nev-

ertheless, if practitioners would like to implement these

applications atop temporal graphs, the goal can be conve-

niently achieved by deploying them atop TEA, which comes

with algorithm-level and system-level optimizations together

with the general framework provided by TEA.

5.3 Piecewise Breakdown
In this section, we study the impacts of our two major opti-

mizations, HPAT sampling optimization, and auxiliary index

optimization (Section 3.4). We choose the temporal node2vec

as the example application and perform this study under the

in-memory environment. And the baseline is GraphWalker.

HPAT sampling optimization: As seen in Figure 11, on

average, our HPAT optimization is 812.55× faster than the

baseline. The maximum speedup comes from the twitter

dataset, where TEA retains up to 1, 788× speedup. Even the

smallest speedup is as high as 5.4×. We also find that the

root cause of this speedup variation comes from the differ-

ence between the average degrees of various graph datasets.

Particularly, since the time complexity of the baseline and

GraphWalker
HPAT
HPAT+Index

R
un

 T
im

e
(s

, l
og

 s
ca

le
)

1

102

104

106

Dataset
growth edit delicious twitter

Figure 11. Piecewise breakdown as HPAT and auxiliary

index.

TEA are O(D) and O(loд(loд(D)) + loд(D)), our sampling is

almost insensitive to the degree D. Therefore, for graphs
with a higher average degree, like the twitter graph, our

speedup climbs.

Auxiliary index optimization further adds 2.75 ∼ 3.45×
speedup to TEA. Recall that the auxiliary index optimization

is to help locate the alias table trunks of our interest. This

becomes important after our HPAT significantly reduces the

sampling time. Similarly, as the first optimization, we ob-

serve the biggest gain for twitter from 320.1 to 92.93 seconds

while the smallest speedup for growth was from 9.66 to 3.52

seconds. The speedup comes from the time complexity re-

duction, fromO(loд(loд(D))+loд(D)) toO(loд(loд(D))). Note
that the impacts of the degree in this optimization are similar

to HPAT across datasets.

5.4 Comparison of Various Sampling Methods

Alias Method
HPAT
PAT
ITS

OOM OOMOOMR
un

 T
im

e
(s

, l
og

 s
ca

le
)

1

10

100

Dataset
growth edit delicious twitter

(a) Runtime Comparison.

Alias Method
HPAT
PAT
ITS

OOM OOMOOMM
em

or
y

(G
B

, l
og

 s
ca

le
)

1

10

100

Dataset
growth edit delicious twitter

(b) Memory Usage.

Figure 12. The comparison across various sampling meth-

ods, i.e., HPAT, PAT, ITS, and alias method.

This section compares the performance impacts of HPAT

and PAT with the traditional Monte Carlo sampling methods,

i.e., inverse transform sampling [30] and alias method [27].

Particularly, for ITS, we can directly use it in TEA because

the sampling space is organized in time decreasing order

that favors ITS sampling space construction. For the alias

method, we build multiple versions of alias tables for each

possible candidate edge set.

Figures 12a and 12b compare the runtime and memory

usage for temporal node2vec respectively. We can see that

the alias method has the smallest runtime on the growth

dataset but it fails to accommodate other datasets due to

overwhelming space consumption (see Section 3.1). Even for

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

the growth dataset, the alias method is a mere 1.38× faster

than HPAT but with an astonishing 51.7× larger memory

usage than HPAT. For other datasets, HPAT is the fastest

sampling method and PAT comes second. Particularly, HPAT

can achieve 1.43 ∼ 2.97× speedup than PAT and PAT can

achieve 1.22 ∼ 1.89× than ITS. For memory usage, PAT and

ITS consume similar memory space, i.e., PAT only consumes,

on average, 1.26× larger space than ITS. Further, HPAT con-

sumes, on average, 1.95× larger space than PAT.

5.5 TEA Data Structure Construction Cost
This section studies the time consumption of the TEA data

structure construction (i.e., preprocessing). The preprocess-

ing includes searching candidate edge sets, PAT/HPAT con-

struction, and auxiliary index generation. As discussed in

Section 4.2, TEA provides a lock-free parallel execution for

all these processes. In the following, we show the evaluation

of these processes one by one.

Figure 13a shows the evaluation of searching candidate

edge sets from a single thread up to 16 threads. With a sin-

gle thread, it takes 50s (seconds) on the twitter dataset and
0.96s on the growth dataset. When we scale to 16 threads,

it only takes 3.7s on the twitter dataset and 0.07s on the

smallest dataset. Although the time complexity of this pro-

cess is O(|E |loд(D)) with D as the maximum degree number,

our multithreaded support helps significantly speed up this

ordering process (O(|E |loд(D)) is reduced to O(
|E |loд(D)

Threads).

Figure 13b presents the evaluation of HPAT construction.

Under a single-threaded context, TEA takes 233s on the twit-
ter dataset while the time consumption shrinks to 18.4s under

16 threads. On the smallest dataset growth, TEA takes 4.8s

under the single-threaded setting and 0.4s under 16 threads.

This process has the same time complexity O(
|E |loд(D)

Threads) as

the candidate edge sets searching. But this process has bigger

constants because it needs to build alias tables with addi-

tional constants while searching candidate edge sets only

needs an amount of binary search with very small constants.

This process takes about 80% of the preprocessing time.

Figure 13c shows the evaluation of auxiliary index gener-

ation. This process takes the smallest percentage of the total

preprocessing time, only 5%. This is because of the small time

complexity, i.e., O(
∑D

D′=1 loд(D
′)) with D as the maximum

degree number. This process takes from 0.025s to 1.1s under

16 threads. Even under the single thread setting, it only needs

12s on the twitter dataset. As shown in Table 3, the maximum

degree number D of all datasets is up to millions. This is the

main reason for the fast auxiliary index generation process.

Figure 13d shows the speedup of our incremental HPAT

updating over the naïve baseline that rebuilds the HPAT

from scratch. This speedup is affected by two factors, i.e.,

the batch size of new incoming edges and the vertex degree

size. While the first factor is straightforward, the second one

could impact the speedup because it decides the workload

difference between our method and the naïve one. In this

evaluation, we study the batch sizes of 100 and 10000 for

vertex degrees of 1, 100, 10k, and 1 million. Generally, when

the vertex degree is much smaller than the batch size, the

speedup is close to 1. When the batch size is equal to the

vertex degree, the speedup is 1.82× and 1.65× under batch

size is 100 and 10000 respectively. When the degree size is

much larger than the batch size, the speedup is enormous.

Particularly, when the degree size is 10
6
, the batch size 100

enjoys 8,975× speedup, and the batch size 10000 offers 79.3×

speedup.

Figure 13e reports the preprocessing time with respect

to the increasing number of threads on the twitter dataset.
Since the preprocessing step is embarrassingly parallel, we

observe close to linear scalability, i.e., 12.8× from 1 to 16

threads. When we perform a random walk of length 80 from

each vertex in this dataset, the preprocessing time takes 24%

of the total time. This ratio is subject to change when the

number and length of the random walks vary.

5.6 Studying TEA in Out-of-Core Setting

Figure 14a shows the overall runtime of TEA and Graph-

Walker under an out-of-core execution environment, where

temporal node2vec is the application. On average, TEA is

713× faster than GraphWalker with the maximum and mini-

mum speedups as 1, 172× (twitter) and 115× (growth), respec-

tively. Since the out-of-memory setting is closely related to

disk I/O, Figure 14b further investigates the I/O performance

of TEA and GraphWalker. As expected, longer runtime in

Figure 14a also experiences longer I/O time in Figure 14b.

Particularly, the average, maximum and minimum speedups

are 480.4×, 1107.8× (twitter), and 130.3× (growth), respec-

tively.

Disk I/O takes the majority of runtime in the out-of-core

execution environment. And since we use prefix-sum of edge

trunks to pick the trunk of interest for loading, our I/O com-

plexity is henceO(trunkSize) (Section 3.2). For GraphWalker,

because it has to load D neighbors in memory for sampling,

both its sampling and I/O complexities areO(D). Considering
that disk I/O has a remarkably slower speed than CPUs, the

computation of sampling takes much less time than neighbor

loading from disk. This explains the trend matching between

Figure 14b and Figure 14a.

6 Related Work
The majority of the recent random walk applications cen-

ter around static graph random walk engines. Particularly,

DrunkardMob [24] and GraphWalker [40] are high-speed

out-of-core randomwalk engines that target static walks run-

ning on a single machine. DrunkardMob loads the selected

dataset into the memory in every round to update each ran-

dom walk’s status. GraphWalker optimizes DrunkardMob

by using a better data loading strategy and a random walk

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

16 threads
single thread

R
un

 T
im

e
(s

, l
og

 s
ca

le
)

0.1

1

10

100

Dataset
growth edit delicious twitter

(a) Edges Searching.

16 threads
single thread

R
un

 T
im

e
(s

, l
og

 s
ca

le
)

1

10

100

Dataset
growth edit delicious twitter

(b) HPAT Generation.

16 threads
single thread

R
un

 T
im

e
(s

, l
og

 s
ca

le
)

0.1

1

10

Dataset
growth edit delicious twitter

(c) Index Generation.

Sp
ee

du
p

(lo
g

sc
al

e)

1

101

102

103

104

Vertex degree
1 100 10000 1000000

Batch size=100
Batch size=10000

(d) HPAT Updating.

295

149

76
41 23

R
un

 T
im

e
(s

).

0

100

200

300

Thread Number.
0 5 10 15

(e) Preprocessing Time.

Figure 13. Preprocessing Breakdown.

GraphWalker
TEA

R
un

 T
im

e
(s

, l
og

 s
ca

le
)

1

102

104

106

Dataset
growth edit delicious twitter

(a) Out-of-Core Performance.

GraphWalker
TEA

I/O
 T

im
e

(s
, l

og
 s

ca
le

)

1

102

104

106

Dataset
growth edit delicious twitter

(b) Disk I/O Comparison.

Figure 14. Out-of-Core Execution Analysis.

updating strategy. KnightKing [45] is a distributed random

walk engine for static graphs. It brings novel optimizations to

rejection sampling algorithms. However, these optimizations

can neither efficiently address temporal random walks prob-

lems nor expedite out-of-core executions. FlashMob [44] and

ThunderRW [38] both improve the irregular memory access

of random walk while they still can not have an efficient

sampling method for temporal graphs with dynamic sam-

pling. C-SAW [32] is a single machine GPU-based random

walk engine that aims to optimize ITS sampling algorithms

for static graphs. However, none of these sampling optimiza-

tions are designed for temporal graphs and thus suffer from

high time complexity, and overwhelming space consumption

when accommodating temporal graphs.

Temporal graph random walk is a very important type

of graph embedding methods [10, 12, 13, 21, 26, 28, 47]. For

example, several popular static graph random walk models

have been expanded to support temporal graphs, such as

node2vec [8, 37, 50, 52]. It is important to note that existing

static random walk models are not designed to tackle tempo-

ral graph randomwalk problems. Many current technologies

for static random walk models cannot be directly applied to

solve temporal graph random walk problems due to being

oblivious to the additional time instance dimension. As for

random walk models in temporal space, CTDNE [25, 31] pro-

poses the exponential weight random walk which is widely

used in temporal graph random walks [17, 41]. CAW [41]

proposes Causal Anonymous Walks for inductive representa-
tion learning in temporal graphs which has a similar edge

transition probability to CTDNE but with a different random

walk generation strategy. EHNA [17] proposes the temporal

node2vec and embeds the temporal random walk algorithm

in a stacked LSTM architecture to provide high accuracy but

has high programming challenging and even slower execu-

tion efficiency than random walk based model CTDNE.

7 Conclusion
This paper presents TEA, the first general-purpose random
walk engine for temporal graphs. TEA proposes a novel

method to prevent the edge weight from being affected by

dynamic temporal information. Further, we introduce a per-

sistent alias table (PAT), hierarchical persistent alias table

(HPAT), and associated auxiliary index mechanism to accel-

erate the sampling process. Finally, we provide a temporal-

centric programming interface for the end users to express

various temporal random walk algorithms with ease. Sup-

ported by TEA, diverse temporal random walk algorithms

can benefit from our optimizations. Centered around our

novel persistent alias sampling method, TEA can achieve up

to 3 orders of magnitude performance improvement over the

state-of-the-art random walk engines.

8 Acknowledgments
We thank the anonymous reviewers and our shepherd Phillip

Stanley-Marbell for their valuable comments and sugges-

tions. The authors from Tsinghua University are all in the

Department of Computer Science and Technology, Beijing

National Research Center for Information Science and Tech-

nology (BNRist), Tsinghua University, China. This work is

supported by National Key Research & Development Pro-

gram of China (2020YFC1522702), Natural Science Founda-

tion of China (61877035, 62141216), National Science Foun-

dation CRII Award 2000722, NSF 2212370, CAREER Award

2046102, SOAR fellowship, University of Sydney Faculty

Startup funding, Australia Research Council (ARC) Discov-

ery Project DP210101984, Ant Group through Ant Research

Intern Program, and Tsinghua University Initiative Scientific

Research Program. Chengying Huan and Santosh Pandey

contributed equally to this research. Hang Liu and Yongwei

Wu are joint corresponding authors.

References
[1] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen,

and Weimin Zheng. 2017. Squeezing out All the Value of Loaded Data:

An Out-of-core Graph Processing System with Reduced Disk I/O. In

2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa
Clara, CA, USA, July 12-14, 2017, Dilma Da Silva and Bryan Ford (Eds.).

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

USENIX Association, 125–137. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/ai

[2] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,

Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen.

2012. Kineograph: taking the pulse of a fast-changing and connected

world. In European Conference on Computer Systems, Proceedings of the
Seventh EuroSys Conference 2012, EuroSys ’12, Bern, Switzerland, April
10-13, 2012, Pascal Felber, Frank Bellosa, and Herbert Bos (Eds.). ACM,

85–98. https://doi.org/10.1145/2168836.2168846
[3] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-

Jui Hsieh. 2019. Cluster-GCN: An Efficient Algorithm for Training

Deep and Large Graph Convolutional Networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. 257–266.
https://doi.org/10.1145/3292500.3330925

[4] Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko

Paulheim. 2017. Biased graph walks for RDF graph embeddings. In

Proceedings of the 7th International Conference on Web Intelligence,
Mining and Semantics, WIMS 2017, Amantea, Italy, June 19-22, 2017.
21:1–21:12. https://doi.org/10.1145/3102254.3102279

[5] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2019. A Survey

on Network Embedding. IEEE Trans. Knowl. Data Eng. 31, 5 (2019),
833–852. https://doi.org/10.1109/TKDE.2018.2849727

[6] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. meta-

path2vec: Scalable Representation Learning for Heterogeneous Net-

works. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017. ACM, 135–144. https://doi.org/10.1145/3097983.3098036

[7] Tao-Yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore

Meta-paths in Heterogeneous Information Networks for Representa-

tion Learning. In Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, CIKM 2017, Singapore, November
06 - 10, 2017. 1797–1806. https://doi.org/10.1145/3132847.3132953

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature

Learning for Networks. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016. 855–864. https://doi.org/10.
1145/2939672.2939754

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature

Learning for Networks. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining.

[10] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Induc-

tive Representation Learning on Large Graphs. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA. 1024–1034. http://papers.nips.cc/paper/6703-inductive-
representation-learning-on-large-graphs

[11] Taher H. Haveliwala. 2002. Topic-sensitive PageRank. In Proceedings
of the Eleventh International World Wide Web Conference, WWW 2002,
May 7-11, 2002, Honolulu, Hawaii, USA, David Lassner, David De Roure,
and Arun Iyengar (Eds.). ACM, 517–526. https://doi.org/10.1145/
511446.511513

[12] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional

Networks on Graph-Structured Data. CoRR abs/1506.05163 (2015).

arXiv:1506.05163 http://arxiv.org/abs/1506.05163
[13] Ryohei Hisano. 2016. Semi-supervised Graph Embedding Ap-

proach to Dynamic Link Prediction. CoRR abs/1610.04351 (2016).

arXiv:1610.04351 http://arxiv.org/abs/1610.04351
[14] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics

reports 519, 3 (2012), 97–125.
[15] Chengying Huan, Hang Liu, Mengxing Liu, Yongchao Liu, Changhua

He, Kang Chen, Jinlei Jiang, Yongwei Wu, and Shuaiwen Leon Song.

2022. TeGraph: A Novel General-Purpose Temporal Graph Computing

Engine. In 38th IEEE International Conference on Data Engineering,

ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 578–592.
https://doi.org/10.1109/ICDE53745.2022.00048

[16] Chengying Huan, Shuaiwen Leon Song, Yongchao Liu, Heng Zhang,

Hang Liu, Charles He, Kang Chen, Jinlei Jiang, and Yongwei Wu. 2022.

T-GCN: A Sampling Based Streaming Graph Neural Network System

With Hybrid Architecture. In The 31st International Conference on
Parallel Architectures and Compilation Techniques, PACT 2022.

[17] Shixun Huang, Zhifeng Bao, Guoliang Li, Yanghao Zhou, and J. Shane

Culpepper. 2020. Temporal Network Representation Learning via

Historical Neighborhoods Aggregation. In 36th IEEE International Con-
ference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24,
2020. IEEE, 1117–1128. https://doi.org/10.1109/ICDE48307.2020.00101

[18] Silu Huang, James Cheng, and Huanhuan Wu. 2014. Temporal

Graph Traversals: Definitions, Algorithms, and Applications. CoRR
abs/1401.1919 (2014). arXiv:1401.1919 http://arxiv.org/abs/1401.1919

[19] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-

context similarity. In Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, July 23-26,
2002, Edmonton, Alberta, Canada. ACM, 538–543. https://doi.org/10.
1145/775047.775126

[20] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta.

2021. Tripoline: generalized incremental graph processing via graph

triangle inequality. In EuroSys ’21: Sixteenth European Conference on
Computer Systems, Online Event, United Kingdom, April 26-28, 2021,
Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian

Cadar (Eds.). ACM, 17–32. https://doi.org/10.1145/3447786.3456226
[21] Thomas N. Kipf andMaxWelling. 2017. Semi-Supervised Classification

with Graph Convolutional Networks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. https://openreview.net/forum?id=
SJU4ayYgl

[22] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting

Dynamic Embedding Trajectory in Temporal Interaction Networks.

In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019. 1269–1278. https://doi.org/10.1145/3292500.3330895

[23] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection.

In 22nd International World Wide Web Conference, WWW ’13, Rio de
Janeiro, Brazil, May 13-17, 2013, Companion Volume, Leslie Carr, Al-
berto H. F. Laender, Bernadette Farias Lóscio, Irwin King, Marcus

Fontoura, Denny Vrandecic, Lora Aroyo, José Palazzo M. de Oliveira,

Fernanda Lima, and Erik Wilde (Eds.). International World Wide

Web Conferences Steering Committee / ACM, 1343–1350. https:
//doi.org/10.1145/2487788.2488173

[24] Aapo Kyrola. 2013. DrunkardMob: billions of random walks on just a

PC. In Seventh ACM Conference on Recommender Systems, RecSys ’13,
Hong Kong, China, October 12-16, 2013. 257–264. https://doi.org/10.
1145/2507157.2507173

[25] John Boaz Lee, Giang Hoang Nguyen, Ryan A. Rossi, Nesreen K.

Ahmed, Eunyee Koh, and Sungchul Kim. 2019. Temporal Network Rep-

resentation Learning. CoRR abs/1904.06449 (2019). arXiv:1904.06449

http://arxiv.org/abs/1904.06449
[26] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein.

2019. CayleyNets: Graph Convolutional Neural Networks With Com-

plex Rational Spectral Filters. IEEE Trans. Signal Process. 67, 1 (2019),
97–109. https://doi.org/10.1109/TSP.2018.2879624

[27] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J. Smola. 2014.

Reducing the sampling complexity of topic models. In The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014. 891–900.
https://doi.org/10.1145/2623330.2623756

[28] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adap-

tive Graph Convolutional Neural Networks. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),

https://www.usenix.org/conference/atc17/technical-sessions/presentation/ai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ai
https://doi.org/10.1145/2168836.2168846
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3102254.3102279
https://doi.org/10.1109/TKDE.2018.2849727
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1145/3132847.3132953
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://doi.org/10.1145/511446.511513
https://doi.org/10.1145/511446.511513
https://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1506.05163
https://arxiv.org/abs/1610.04351
http://arxiv.org/abs/1610.04351
https://doi.org/10.1109/ICDE53745.2022.00048
https://doi.org/10.1109/ICDE48307.2020.00101
https://arxiv.org/abs/1401.1919
http://arxiv.org/abs/1401.1919
https://doi.org/10.1145/775047.775126
https://doi.org/10.1145/775047.775126
https://doi.org/10.1145/3447786.3456226
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2507157.2507173
https://doi.org/10.1145/2507157.2507173
https://arxiv.org/abs/1904.06449
http://arxiv.org/abs/1904.06449
https://doi.org/10.1109/TSP.2018.2879624
https://doi.org/10.1145/2623330.2623756

EuroSys ’23, May 8–12, 2023, Rome, Italy Chengying Huan et al.

the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.
3546–3553. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16642

[29] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.

Pregel: a system for large-scale graph processing. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, Ahmed K.

Elmagarmid and Divyakant Agrawal (Eds.). ACM, 135–146. https:
//doi.org/10.1145/1807167.1807184

[30] Frederic P. Miller, Agnes F. Vandome, and John Mcbrewster. 2010.

Inverse Transform Sampling.
[31] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K.

Ahmed, Eunyee Koh, and Sungchul Kim. 2018. Continuous-Time

Dynamic Network Embeddings. In Companion of the The Web Con-
ference 2018 on The Web Conference 2018, WWW 2018, Lyon , France,
April 23-27, 2018. 969–976. https://doi.org/10.1145/3184558.3191526

[32] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S. Li, and Hang

Liu. 2020. C-SAW: a framework for graph sampling and random

walk on GPUs. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2020,
Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, Christine
Cuicchi, Irene Qualters, and William T. Kramer (Eds.). IEEE/ACM, 56.

https://doi.org/10.1109/SC41405.2020.00060
[33] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk:

online learning of social representations. In The 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014. 701–710. https:
//doi.org/10.1145/2623330.2623732

[34] Neil Sarnak and Robert Endre Tarjan. 1986. Planar Point Location

Using Persistent Search Trees. Commun. ACM 29, 7 (1986), 669–679.

https://doi.org/10.1145/6138.6151
[35] Yingxia Shao, Shiyue Huang, Xupeng Miao, Bin Cui, and Lei Chen.

2020. Memory-Aware Framework for Efficient Second-Order Ran-

dom Walk on Large Graphs. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel

Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and

Hung Q. Ngo (Eds.). ACM, 1797–1812. https://doi.org/10.1145/3318464.
3380562

[36] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado:

A System For Real-Time Iterative Analysis Over Evolving Data. In

Proceedings of the 2016 International Conference onManagement of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM,

417–430. https://doi.org/10.1145/2882903.2882950
[37] Guolei Sun and Xiangliang Zhang. 2017. Graph Embedding with

Rich Information through Bipartite Heterogeneous Network. CoRR
abs/1710.06879 (2017). arXiv:1710.06879 http://arxiv.org/abs/1710.
06879

[38] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen

Li. 2021. ThunderRW: An In-Memory Graph Random Walk Engine.

Proc. VLDB Endow. 14, 11 (2021), 1992–2005. http://www.vldb.org/
pvldb/vol14/p1992-sun.pdf

[39] John von Neumann. 1951. Various Techniques Used in Connection

with Random Digits. In Monte Carlo Method, A. S. Householder, G. E.
Forsythe, and H. H. Germond (Eds.). National Bureau of Standards

Applied Mathematics Series, Vol. 12. US Government Printing Office,

Washington, DC, Chapter 13, 36–38.

[40] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui.

2020. GraphWalker: An I/O-Efficient and Resource-Friendly Graph

Analytic System for Fast and Scalable Random Walks. In 2020 USENIX

Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020, Ada
Gavrilovska and Erez Zadok (Eds.). USENIX Association, 559–571.

https://www.usenix.org/conference/atc20/presentation/wang-rui
[41] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li.

2021. Inductive Representation Learning in Temporal Networks via

Causal Anonymous Walks. In International Conference on Learning
Representations. https://openreview.net/forum?id=KYPz4YsCPj

[42] HuanhuanWu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan

Xu. 2014. Path problems in temporal graphs. Proceedings of the VLDB
Endowment 7, 9 (2014), 721–732.

[43] Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang,

and Hejun Wu. 2016. Efficient algorithms for temporal path compu-

tation. IEEE Transactions on Knowledge and Data Engineering 28, 11

(2016), 2927–2942.

[44] Ke Yang, Xiaosong Ma, Saravanan Thirumuruganathan, Kang Chen,

and Yongwei Wu. 2021. Random Walks on Huge Graphs at Cache

Efficiency. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany, October 26-29,
2021, Robbert van Renesse and Nickolai Zeldovich (Eds.). ACM, 311–

326. https://doi.org/10.1145/3477132.3483575
[45] Ke Yang, Mingxing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and

Yong Jiang. 2019. KnightKing: a fast distributed graph random walk

engine. In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019.
524–537. https://doi.org/10.1145/3341301.3359634

[46] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S.

Bhowmick. 2020. Homogeneous Network Embedding for Massive

Graphs via Reweighted Personalized PageRank. Proc. VLDB Endow. 13,
5 (2020), 670–683. https://doi.org/10.14778/3377369.3377376

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.

Hamilton, and Jure Leskovec. 2018. Graph Convolutional Neural

Networks for Web-Scale Recommender Systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 2018, London, UK, August 19-23, 2018. 974–983.
https://doi.org/10.1145/3219819.3219890

[48] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng

Chen, and Wei Wang. 2018. NetWalk: A Flexible Deep Embedding

Approach for Anomaly Detection in Dynamic Networks. In Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018.
2672–2681. https://doi.org/10.1145/3219819.3220024

[49] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,

and Viktor Prasanna. 2020. GraphSAINT: Graph Sampling Based

Inductive Learning Method. In International Conference on Learning
Representations. https://openreview.net/forum?id=BJe8pkHFwS

[50] Ziqian Zeng, Xin Liu, and Yangqiu Song. 2018. Biased Random Walk

based Social Regularization forWord Embeddings. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. 4560–4566. https:
//doi.org/10.24963/ijcai.2018/634

[51] Yifeng Zhao, Xiangwei Wang, Hongxia Yang, Le Song, and Jie Tang.

2019. Large Scale Evolving Graphs with Burst Detection. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. 4412–4418.
https://doi.org/10.24963/ijcai.2019/613

[52] Dongyan Zhou, Songjie Niu, and Shimin Chen. 2018. Efficient

Graph Computation for Node2Vec. CoRR abs/1805.00280 (2018).

arXiv:1805.00280 http://arxiv.org/abs/1805.00280
[53] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole

Ai, Yong Li, and Jingren Zhou. 2019. AliGraph: A Comprehensive

Graph Neural Network Platform. PVLDB 12, 12 (2019), 2094–2105.

https://doi.org/10.14778/3352063.3352127

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1109/SC41405.2020.00060
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/6138.6151
https://doi.org/10.1145/3318464.3380562
https://doi.org/10.1145/3318464.3380562
https://doi.org/10.1145/2882903.2882950
https://arxiv.org/abs/1710.06879
http://arxiv.org/abs/1710.06879
http://arxiv.org/abs/1710.06879
http://www.vldb.org/pvldb/vol14/p1992-sun.pdf
http://www.vldb.org/pvldb/vol14/p1992-sun.pdf
https://www.usenix.org/conference/atc20/presentation/wang-rui
https://openreview.net/forum?id=KYPz4YsCPj
https://doi.org/10.1145/3477132.3483575
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.14778/3377369.3377376
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3220024
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.24963/ijcai.2018/634
https://doi.org/10.24963/ijcai.2018/634
https://doi.org/10.24963/ijcai.2019/613
https://arxiv.org/abs/1805.00280
http://arxiv.org/abs/1805.00280
https://doi.org/10.14778/3352063.3352127

TEA: A General-Purpose Temporal Graph Random Walk Engine EuroSys ’23, May 8–12, 2023, Rome, Italy

[54] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.

2016. Gemini: A Computation-Centric Distributed Graph Process-

ing System. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016. 301–316. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/zhu

[55] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu.

2018. Embedding Temporal Network via Neighborhood Formation.

In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018, London, UK, August
19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, 2857–2866. https:
//doi.org/10.1145/3219819.3220054

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://doi.org/10.1145/3219819.3220054
https://doi.org/10.1145/3219819.3220054

	Abstract
	1 Introduction
	2 Background
	2.1 Temporal Graph
	2.2 Monte Carlo Sampling Methods
	2.3 Temporal Random Walk Applications

	3 TEA: A Temporal Graph Random Walk Engine
	3.1 Observation and Overview
	3.2 Persistent Alias Table (PAT)
	3.3 Hierarchical PAT (HPAT)
	3.4 Auxiliary Index
	3.5 Streaming Graph Support

	4 System Implementation
	4.1 TEA: Putting All Things Together
	4.2 Parallel TEA Data Structure Construction
	4.3 Complexity Analysis
	4.4 Discussion and Limitations

	5 Evaluation
	5.1 Experimental Setup
	5.2 TEA vs. State-of-the-art Systems
	5.3 Piecewise Breakdown
	5.4 Comparison of Various Sampling Methods
	5.5 TEA Data Structure Construction Cost
	5.6 Studying TEA in Out-of-Core Setting

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

