
Bring Orders into Uncertainty: Enabling E�icient Uncertain
Graph Processing via Novel Path Sampling

on Multi-Accelerator Systems
Heng Zhang∗

Institute of Software, CAS
FSA lab, University of Sydney

Lingda Li
Brookhaven National Laboratory

Hang Liu
Stevens Institute of Technology

Donglin Zhuang
FSA lab, University of Sydney

Rui Liu
University of Chicago

Chengying Huan
Tsinghua University

Shuang Song
Meta

Dingwen Tao
Washington State University

Yongchao Liu
Ant Financial

Charles He
Ant Financial

Yanjun Wu
Institution of Software, CAS

Shuaiwen Leon Song†
FSA lab, University of Sydney

Abstract
Uncertain or probabilistic graphs have been ubiquitously used to
represent noisy, incomplete, and inaccurate linked data in many
emerging big-data mining and analytics applications. It is imprac-
tical to solve uncertain graph problems exactly as it requires to
evaluate an exponential number of certain instances (or “possible
worlds”) generated from an uncertain graph. Previously, several
CPU-based techniques were proposed to use sampling for uncer-
tain graph processing. However, we observe that (1) they su�er
from low computation e�ciency and large memory overhead due
to unnecessary edge sampling at runtime; (2) they cannot leverage
the massive parallelism provided by modern general-purpose accel-
erators; and (3) there lacks a general programming framework for
high-performance uncertain graph processing. To tackle these chal-
lenges, we propose a novel runtime path sampling method, which
is able to identify and eliminate unnecessary edge sampling via
incremental path identi�cation and �ltering, resulting in signi�cant
reduction in computation and data movement. Centered around
this idea, we introduce a general uncertain graph processing frame-
work for multi-GPU systems, named BPGraph1. BPGraph provides
general support for users to design and optimize a wide-range of
uncertain graph algorithms and applications without concerning
about the underlying complexity. Extensive evaluation on a variety
of real-world uncertain graph applications demonstrates an average
speedup of 26⇥ (up to 43⇥) and better scalability from BPGraph over
the state-of-the-art frameworks.

CCS Concepts
• Computing methodologies → Parallel computing method-
ologies.
∗This work is conducted during Heng’s visit to FSA lab at University of Sydney.
†Corresponding author.
1Beta version can be found at https://github.com/bpgraph/bpgraph

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9281-5/22/06.
https://doi.org/10.1145/3524059.3532379

Keywords
Uncertain Graph; Sampling; GPU; Performance
ACM Reference Format:
Heng Zhang, Lingda Li, Hang Liu, Donglin Zhuang, Rui Liu, Chengying
Huan, Shuang Song, Dingwen Tao, Yongchao Liu, Charles He, Yanjun Wu,
and Shuaiwen Leon Song. 2022. Bring Orders into Uncertainty: Enabling
E�cient Uncertain Graph Processing via Novel Path Sampling on Multi-
Accelerator Systems. In 2022 International Conference on Supercomputing
(ICS ’22), June 28–30, 2022, Virtual Event, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3524059.3532379

1 Introduction
The use of large-scale graph-structured data has exploded in sci-
enti�c, data mining and analytics applications in recent years.
Some community e�orts [14, 28, 38, 45, 53, 54, 59] have been made
to e�ciently process and analyze these data via exploiting high-
performance accelerators under a heterogeneous scale-up and scale-
out setup which has become mainstream node architecture for
Top500 supercomputers. Among these important graph analytics,
uncertainty is often intrinsic to a wide spectrum of graph applica-
tions, which applies to graph data such as noisy measurement in
inter-node connection in supercomputing center [38, 55], database
querying [7, 12, 25, 26, 29], probability in peer-to-peer network [25],
bioinformatics [3, 26, 42], relationship in�uence in social networks
[2, 10, 11], congestion prediction in tra�c network [24], etc. In the
literature, uncertain graphs (also known as probabilistic graphs)
have been widely utilized to represent these uncertainties [5, 47]. In
an uncertain graph, the existence of connection between two nodes
is supposed to be independently indeterminate, and is formulated
as a probabilistic edge which is assigned with an uncertainty value.
Figure 1 illustrates a sensor network, which encodes the network
connectivity probabilities into edge uncertainties. After instanti-
ating the uncertainty of each edge, a set of “possible worlds” are
generated to represent all possible instances of the uncertain graph
and their probabilities. For instance, for the bottom rightmost possi-
ble world in Figure 1(b), which represents the case where all 3 edges
exist, its probability is calculated by multiplying the connection
probabilities of all the edges, i.e., 0.8⇥ 0.5⇥ 0.3 = 0.12. The number
of possible worlds equals to 2 |⇢ | , where |⇢ | is the number of edges.

Conventionally, �nding the exact solution of an uncertain graph
problem requires to iterate through all its possible worlds. As the

https://doi.org/10.1145/3524059.3532379
https://doi.org/10.1145/3524059.3532379

ICS ’22, June 28–30, 2022, Virtual Event, USA Heng, Lingda, Hang, Donglin, Rui, et al.

p(
e 1)

=0
.8

S2S0

S1

 (0.07) (0.28) 0.28 (0.03)

(0.03) (0.07) (0.12) (0.12)

(a) Sensor Packet Delivery Network (b) Possible World Graphs

Connection Probablity

p(e
3)=0.3

p(e2)=0.5

Figure 1: An example of sensor network with its (a) uncertain graph
representation and (b) eight “possible worlds”.

number of possible worlds grows exponentially to the number of
edges, it is often unrealistic to get an exact solution. For example,
computing the probability of whether there is a path between two
vertices on an uncertain graph is #P-hard [26, 47]. The rapidly
increasing scale of data in these applications has hindered many
e�orts to seek e�cient algorithms for traversing, processing, and
mining large-scale uncertain graphs.

Existing Approaches and Limitations. Previous works on
uncertain graph analysis have sought sampling-based methods to
�nd approximate solutions on uncertain graphs [7, 13, 17, 37, 47].
These methods sample the entire or a part of an uncertain graph to
obtain possible world samples. The theory behind these methods is
based on the assumption that with a reasonable amount of samples,
an approximate solution of the original uncertain graph can be
estimated with a certain accuracy guarantee. However, there are
three main limitations for applying the existing approaches in HPC
environments.

First, unnecessary edge sampling results in poor computation and
memory e�ciency. Our evaluation has shown that the existing
approaches su�er from signi�cant performance and memory over-
head, especially for large uncertain graphs. Detailed analysis reveals
that the main factor behind these overheads is the large amount of
unnecessary edges sampled during the execution.

Second, they lack the support of modern heterogeneous HPC and
datacenter architectures which are commonly integrated with one
or more accelerators (e.g., GPUs). To the best of our knowledge,
existing techniques are all built on CPU-based systems. Packed with
massive parallelism and high-bandwidth memory, modern GPUs
are attractive accelerators for uncertain graph processing [15, 16, 23,
40, 41, 54]. There have been works proposed for deterministic graph
processing on multiple GPUs [4, 27, 46, 59]. However, these existing
systems cannot handle the probabilistic nature of the uncertain
graphs.

Third, they lack the support of programming API for users to write
e�cient uncertain graph applications. Previous uncertain graph pro-
cessing solutions only provide ad-hoc optimizations on one or a few
applications, but fail to provide a general programmable interface
for users to e�ectively implement a wide range of applications. It
is unwise to implement di�erent processing strategies and opti-
mizations for di�erent uncertain graph applications which may
share many fundamental features. Thus, an e�cient, scalable, and
programmable uncertain graph processing framework is desirable.

Approach and Contributions. To eliminate unnecessary edge
sampling and improve computation and memory e�ciency, we
propose a novel path sampling method. It e�ectively identi�es
unnecessary edges prior to sampling, and only considers edges that
are on a path between the source and target as useful (Section 3).

Centered around this sampling strategy, we present BPGraph, an
e�cient, scalable, and programmable uncertain graph processing
framework that e�ectively implements path sampling on multi-
GPU based HPC systems (Section 4) and scales up heterogeneous
node-level computation e�ciency. BPGraph provides a general pro-
gramming interface so that users can implement various uncertain
graph processing applications with ease. Additionally, it optimizes
the data organization and computation patterns to better map un-
certain graph processing onto GPUs. To the best of our knowledge,
BPGraph is the �rst system design to provide general support for
developing and optimizing uncertain graph analytics on multi-GPU
based heterogeneous architectures.

Extensive experiments are conducted on eight real-world un-
certain graphs to evaluate BPGraph, and the results demonstrate
that BPGraph achieves an up to 43⇥ speedup (26⇥ on average) over
the state-of-the-art approaches (i.e., ProbTree [37] and BitEdge-
Sampling [69]). BPGraph also scales well with the number of GPUs.

2 Background & Motivation
2.1 Uncertain Graph Basics
First, we give a de�nition for uncertain graph as follows.

De�nition 1. (Uncertain Graph) Let⌧ = (+ , ⇢) be a determin-
istic graph where+ is a set of vertices, and ⇢ ✓ + ⇥+ is a set of edges
among vertices. An uncertain graph is de�ned as a tripleG = (+ , ⇢, %),
where % is a function on edges. For any 4 2 ⇢, % (4) represents the
existence probability of 4 . It is obvious that 0 < % (4)  1.

We refer⌧ as the corresponding deterministic graph ofG. Clearly,
⌧ is a special uncertain graph, where % (4) = 1 for any 4 . Note that
the edge probabilities are independent of each other following by
the previous literature. The number of vertices and edges in G or
⌧ can be denoted as the size of vertex list |+ | and edge set |⇢ |,
respectively. It is also worth noting that the probability function
% is di�erent from edge weights of deterministic graphs. Without
losing generality, we assume all edges have the same weight 1 in
this paper. To solve uncertain graph problems, we introduce:

De�nition 2. (Possible World) By instantiating an uncertain
graph, we denote a possible world⌧ 0 = (+ , ⇢ 0) as a certain instance of
the uncertain graphG, i.e.,⌧ 0 v G. The edge set ⇢ 0 ✓ ⇢ is obtained by
executing independent sampling operations on ⇢, following the prob-
ability function % . Thus, each uncertain graph G yields 2 |⇢ | possible
worlds, based on which edges are selected. Particularly, the possibility
of observing a possible world graph ⌧ 0 is calculated by multiplying
the probabilities that every edge gets selected or unselected:

Pr(⌧ 0) =
÷
42⇢0

% (4)
÷

42⇢\⇢0
(1 � % (4))

Many probabilistic problems in data analytic, machine learning,
and many other areas employ uncertain graphs to model the in-
accurate relationships on datasets of interest. Here, we introduce
reliability as an application example of uncertain graphs. A wide
variety of applications, e.g., network routing [43], network detec-
tion [39, 52], route planning [24], web crawling [2, 50], can bene�t
from a high-performance reliability computation. Given two arbi-
trary vertices B and C in an uncertain graph, there are four typical
variations of B � C reliability:

(1) Reachability [7]. Compute the probability from B to C .

Enabling E�icient Uncertain Graph Processing via Novel Path Sampling ICS ’22, June 28–30, 2022, Virtual Event, USA

0 6

(b) Sample K=3 Possible Worlds with P(E) (c) Traverse Each Possible World and Generate Paths

Path1 in G1 :

50 2 6

S-T Distance
3

Reliability
2/30 6

5 1/30 6

(d) Evaluate Paths with Reliability in Possible Worlds

Path4 in G3 :
Path5 in G3 :

2 1/30 6

S-T Pair

Possible World (G1) Possible World (G3)

G1 G3

Path2 in G1 :
50 64
50 62

0 61

Uncertain
Graph G

Distance
3

2

3

3

5

Possible World (G2)

G2

Path3 in G2 : 40 52 3 6

Distance-Constraint Reliability
1

5

3

4

0 6

(0.05)(0.
51

)

(0.21)

(0.28)

(0.26)

(0.3)

(0.63)

2
(0.

46
)

(0.13)(0.25)

(0
.3

2)

s T

(a) A Toy Uncertain Graph With Probability

7(0.25)

(0.45)

Figure 2: Execution �ow of possible world sampling using the toy graph in (a).

(2) Distance-Constraint Reachability [25]. Given a probability
threshold X 2 (0, 1), returns a set of distance ⇡ (B ! C) and
the corresponding reachable probability % (B ! C), with the
constraint that % (B ! C) � X .

(3) Expected Shortest Distance [63, 66]. On top of the distance-
constraint reachability, �nd the shortest path from B to C .

(4) User-De�ned-Constraint Reachability. [26, 70] On top of the
distance-constraint reachability, �nd eligible paths based on
a user-de�ned constraint. E.g., users may want to �lter out
paths with too long distance.

In order to compute the exact reliability of an uncertain graph G,
we need to iterate through all its possible worlds. Then the reliability
of G can be derived from the reachability between B and C of each
individual possible world. Recall that there are 2 |⇢ | possible worlds
in total, making this reliability computation method impractical.
Section 2.2 will introduce how previous work uses sampling to �nd
approximate solutions for uncertain graph problems.

2.2 Uncertain Graph Sampling
As we state above, it is extremely expensive computationally to
get the exact solution of an uncertain graph, which requires to
enumerate every possible world. In practice, researchers propose
to use sampling methods to get approximate solutions. By solving
the problem on randomly selected samples of an uncertain graph,
and averaging the solutions on them, an approximate solution of
the uncertain graph is obtained. Based on the sampling granularity,
existing work can be classi�ed as either 1) entirety sampling or 2)
partition sampling.

Entirety Sampling. These methods, e.g., Monte Carlo sampling
[48, 69] and recursive sampling [25, 35], randomly sample a certain
number of possible worlds from the entire uncertain graph.

Figure 2 illustrates an example of using entirety sampling to
solve distance-constraint reachability between +0 and +6. Assume
three possible worlds are sampled from the uncertain graph G
based on the independent edge probabilities (Figure 2(b)). After
that, we traverse each possible world to �gure out all paths from+0
to +6, as shown in Figure 2(c). The distances of these paths are also
calculated, which equal to their hop counts. Finally, the distance-
constraint reachability between +0 and +6 can be summarized by
combining the distances of all paths found. E.g., 2 possible worlds
include paths with distance=3 (⌧1 and⌧2) out of the total 3 possible
worlds, and thus the reliability of distance=3 is calculated as 2/3.

As we will discuss in Section 2.3, entirety sampling results in a
lot of redundant sampling overhead due to the similarity between
possible worlds, which further causes signi�cant computation and
memory overhead.

90
.2
3%

89
.3
6%

91
.5
9%

98
.1
7%

97
.9
8%

Evaluation Cost Traversal Cost Sample Cost

Ex
e.

 B
re

ak
D

ow
n

(%
)

0

50

100

Dataset
netHept gnutellaP2P coauthor kron-logn20kron-logn21

(a) Execution Breakdown

Dataset

M
em

or
y

U
sa

ge
 �0
%
�

0

5

10

netHep
t
gnutel

laP2P

Raw Size
DistR
ProbTree

0
2×103
4×103
6×103
8×103

coauthor
kron-logn20

kron-logn21

(b) Memory Usage (MB)

Figure 3: Performance analysis of uncertain graph processing. We
illustrate the results from evaluating a state-of-the-artMonte-Carlo
sampling method [69].

Partition Sampling. Instead of sampling the entire uncertain
graph to generate possible worlds, partition sampling methods
break down the graph into partitions and try to prune useless par-
titions [8, 37, 62]. These methods organize the mutual dependency
between partitions in a tree index structure. Given a reachability
query, they �nd out all partitions that are on the way from the spe-
ci�c source to target vertices, using the tree index structure. Then,
a subgraph ⌧@ is created by combining these relevant partitions
together, and sampling is performed on ⌧@ instead of the entire
uncertain graph. By this way, partition sampling does not sample
irrelevant partitions and thus reduces workloads.

The major drawback of these methods is that 1) they still do
unnecessary edge sampling because there are useless edges within
useful partitions, 2) they require to build the index tree, which is
very time consuming, and 3) maintaining the redundant large index-
ing tree data in memory is di�cult and costly, which is unacceptable
for GPU platforms which have limited memory capacity.

2.3 Challenges & Opportunities
Unnecessary Edge Sampling. Figure 3(a) shows the execution
time breakdown of an optimized Monte-Carlo sampling method
[69], a state-of-the-art entirety sampling based method, running on
a 20-core Intel(R) Xeon(R) CPU E5-2698 (512GB memory, detailed
con�guration in Section 5). The experimental results include the
sampling cost (Figure 2(b)), the traversal cost (Figure 2(c)), and the
�nal evaluation cost (Figure 2(d)). It illustrates that more than 90%

ICS ’22, June 28–30, 2022, Virtual Event, USA Heng, Lingda, Hang, Donglin, Rui, et al.

1

5

3

4

0

2

6 5

16

4

(a) Breadth-First Order Traversal Tree

10 6

40 65 3
40 65 3 1

40 652

0 652

40 652 3 1
40 632 5

s-t pair
 0-6

(b) Path Identification

6

(d) Path Sampling & Constraints (e) Sampled Paths with Constrains

0 6

Distance-Reliability
Pair

(2, 1/3)
(3, 2/3)

(f) Reliability Results

(4,1/3)

7

7

50 632
40 65primary

secondary

path0
path1
path2
path3
path4
path5
path6
path7
path8

Path Status
Bits

path0 001

Constraints
(σ>0.5)

0.6
path1 101 0.7
path2 100 0.3
path3 000 0.8
path4 100 0.7
path5 000 0.2
path6 000 0.4
path7 010 0.1

10
(011)

20 (111)

40 (100)

52
(101)

54
(110)

42
(111)

35
(110)

13
(000)

1 6(001)

5 6(101)

3 6(011)

(c) Edge Sampling

path8 000 0.8

10 6

40 65 3
40 65 3 1

40 652

0 652

40 652 3 1
40 632 5

50 632
40 65

Figure 4: The work�ow of our proposed path sampling.

time is spent on the sampling. For larger-scale uncertain graphs,
the cost of sampling becomes even more signi�cant.

The reason why the sampling phase takes so much time is that
existingmethods sample many useless edgeswhich do not contribute
to the results. On one hand, possible world sampling needs to
sample every edge of the uncertain graph, no matter whether it is
possible for them to be on a path from source to target. For instance,
in Figure 2(a), it is obvious to see that none of the paths through
edges+1 ! +7 and+6 ! +7. On the other hand, although partition
sampling does not need to sample edges in the pruned partitions,
there are still useless edges in the useful partitions. As a result,
partition sampling cannot eliminate unnecessary edge sampling
within the partitions.

Unnecessary edge sampling has bad consequences: waste of both
computation and memory resources because it requires extra mem-
ory to cache useless edge sampling results. Figure 3(b) depicts that
the memory consumption of two state-of-the-art approaches, DistR
[8] that uses entirety sampling and ProbTree [37] that uses parti-
tion sampling. The results shows that their memory requirement is
more than 5.31⇥ larger than the raw structural data in kron_g500-
logn20 graph, and even 6.57⇥ larger than that in gnutellaP2P graph.
The partition sampling methods consume more memory because
they require extra space to store the index tree. Due to massive
caching memory space overhead, existing approaches cannot scale
to large-scale uncertain graphs.

Traversal Redundancy. Besides, in entirety and partition sam-
pling, there exist a lot of redundant traversals due to the similarity
of di�erent possible worlds. For instance, in Figure 2(b), %0C⌘1 in
⌧1 and %0C⌘5 in⌧3 are exactly the same. Instead of letting di�erent
possible worlds traverse these common paths separately, it will be
much more e�cient if they are traversed only once.

Poor Programmability and Generality. The state-of-the-art
methods focus on solving speci�c uncertain graph problems. For
instance, [24] is designed for tra�c prediction, while [2] focuses on
social network analysis. A general, programmable framework is in
need to support the implementation of a wide range of uncertain
graph applications.

Lack of Utilizing State-of-the-art GPU. Existing uncertain
graph processing frameworks are all built upon CPU platforms.
Compared to CPU, GPU has shown great potentials for determinis-
tic graph algorithms because of their superior parallel capability
[27, 28, 45, 59]. GPU-accelerated data analytic technology has been
mainly used for certain graph analysis by now [4, 14, 59], very
few literature research on uncertain graph processing. Due to the
fact of that SIMD architecture is �t for repetitive computation on

regular data, accelerating of uncertain graph processing via GPUs
is still challenging, i) how to organize massive possible world in
GPU-resident memory via dataset reformation, ii) how to easily
express the probability feature of uncertain graph program on par-
allel SIMD-aware GPUs. This motivates us to leverage GPU’s high
computation throughput for uncertain graph processing.

2.4 Our Goal
To address unnecessary edge sampling and redundant traversals, we
aim to identify and �lter out useless edges before sampling. Section
3 will introduce our novel path sampling method for this purpose. To
address the programmability and hardware utilization challenges,
we aim to propose a general multi-GPU based uncertain graph
processing framework which centers around our path sampling
method. Section 4 will discuss the design of our framework.

3 Novel Path Sampling
Inspired by our observation that possible worlds share many com-
mon paths, we propose a novel path sampling strategy. While en-
tirety and partition sampling traverses every possible world after
sampling, our path sampling approach requires only a one-time
traversal of the uncertain graph before sampling to �nd all possible
paths between the source and target vertices. As a result, the shared
paths among di�erent possible worlds are sampled only once which
solves the traversal redundancy challenge discussed in Section 2.3.
Furthermore, our path sampling only samples edges on possible
paths and completely avoids sampling other useless edges. This can
address the unnecessary edge sampling challenge in Section 2.3.

3.1 Overview
Figure 4 shows how our proposed path sampling works for the
uncertain graph in Figure 2(a).

Path Identi�cation. First, we traverse the uncertain graph
(shown in Figure 4(a)) from the source vertex +0 to �nd all possible
paths that lead to the target vertex +6. To �nd paths from +0 to +6,
we align all vertices along the breadth-�rst order tree and mark
their out edges, then do a bottom-up traversal to �nd the temporal
paths from+0 to+6. After recursively expanding other paths among
the inter vertices, all possible paths from +0 to +6 are fetched. For
example, after getting the �rst path +0 ! +2 ! +5 ! +6, we
repeatedly add other paths +0 ! +4 ! +5, +0 ! +2 ! +4 ! +5
from the bottom-up results of +0 ! +5 and +0 ! +2 until no
new vertex is added into the path. Note that, the depth of a path is
bounded by the diameter of the graph, which prevents the lengths

Enabling E�icient Uncertain Graph Processing via Novel Path Sampling ICS ’22, June 28–30, 2022, Virtual Event, USA

of generated paths from getting too large or skewed. Figure 4(b)
shows that all paths are found.

Edge Sampling. Second, we only sample edges that are on those
identi�ed paths. This is the core di�erence between our path sam-
pling and entirety/partition sampling, which also samples other
useless edges. Figure 4(c) shows the sampled edges.

The sampling of di�erent edges are performed independently.
A bitmap is used to store the sampling result for each edge. It has
 bits (= 3 in Figure 4), and the 8C⌘ bit represents the result of
the 8C⌘ sampling. If the 8C⌘ bit 18C8 = 0, it represents this edge does
not exist in the 8C⌘ possible world ⌧8 . Otherwise, 18C8 = 1 repre-
sents it exists in ⌧8 . Each edge is sampled times by generating
 random numbers {A1, A2, ..., A } where each of them distributes
uniformly in the range of (0, 1]. We compare the edge’s probability
with A1, A2, ..., A . If the probability is larger than A= , we update the
=C⌘ bit of the bitmap to 1 to mark the edge’s existence, otherwise
to 0. E.g., the status of edge +0 ! +1 is 011 means it exists in the
2nd and 3rd sample but does not in the 1st sample in Figure 4(c).

Path Sampling. Third, we combine the edge sampling results
to compute the path sampling results. Intuitively, a path only exists
when every edge on it exists. Similarly, a bitmap is used for each
path to represent its sampling result as shown in Status Bits of
Figure 4(d). The path bitmap is calculated by logically ANDing the
bitmap of every edge on this path. For example, the bitmap of ?0C⌘0
equals to the bitmap of edge +0 ! +1 AND that of+1 ! +6, which
further equals to 011 ^ 001 = 001. Note that the sampling result of
each path can be computed independently.

Constraint based Filtering. Fourth, candidate paths are �l-
tered based on the path sampling results and user-de�ned con-
straints. There is a two-level �lter to evaluate the existence of paths.
(1) The �rst �lter prunes paths that do not exist in any samples. If
all sampling result bits are 0 for a path (Status Bits in Figure 4(d)),
it is �ltered out. In Figure 4(d), ?0C⌘3, ?0C⌘5, ?0C⌘6, and ?0C⌘8 are
pruned by this �lter. (2) The second �lter prunes paths that do not
qualify according to the user-de�ned constraint criteria. ?0C⌘2 and
?0C⌘7 are pruned by the second �lter in Figure 4(d).

Result Computation. Finally, we obtain the distance proba-
bilistic results (Figure 4(f)) from leftover paths (Figure 4(e)). This
step is same as that of entirety sampling described in Section 2.2.

3.2 Computational & Memory Overhead
We model the principle computational and memory overhead of
entirety sampling, partition sampling, and our proposed path sam-
pling. Given an uncertain graph ⌧ , let the number of vertices and
edges be = and< respectively, i.e., = = |+ | and< = |⇢ |, and let the
number of possible worlds be .

Entirety Sampling. These methods sample each edge of⌧ by
 times, and thus the number of total sampling operations is ⇥<.
To memorize the whole set of possible worlds, it consumes ⇥<⇥ 5
of memory space, where 5 is the average fraction of edges sampled
in all possible worlds and 0 < 5 < 1.

Partition Sampling. The partition sampling tries to organize
the uncertain graph into % partitions, and connect them via a tra-
versal index tree. The s-t query task �nds out all partitions along
the tree and combine them into one subgraph. The subgraph needs
to contain all the traversal paths to give a precise answer for the

query. The sampling overhead depends on the edge number of the
reduced subgraph<? . The number of sampling equals to ⇥<? .
Meanwhile, due to the mutual connection between the % partitions,
the memory cost of partition sampling will be much larger than
entirety sampling, i.e., ⇥<? ⇥ 5 + 2% .

Our Path Sampling. Di�erent from sampling the entire graph
or a partial subgraph, path sampling achieves the minimal edge
sampling number. Its sampling number depends on the number
of useful edges<0, which equals to ⇥<0. In the power-law dis-
tributed real-world graphs, <0 is far less than < in most cases.
Similarly, the memory cost of the path sampling is proportional to
 ⇥<0. Section 5.2 further evaluates the memory cost on real-world
graphs and demonstrates why our method consumes signi�cantly
less memory compared to the other methods.

4 BPGraph Framework
Building upon our core path sampling method, we propose an ef-
�cient GPU-accelerated uncertain graph processing framework,
called BPGraph, to provide high-performance, scalability and pro-
grammability on multi-GPU systems. In this section, �rst, we de-
scribe the proposed general programming API in BPGraph which
allows users to easily de�ne uncertain graph applications (Section
4.1). Then we discuss the implementation aspects of BPGraph, a
fast GPU-based design of one-pass path identi�cation and path
sampling (Section 4.2), and intra-GPU path sampling optimization,
multi-GPU scaling (Section 4.3). Together, they provide an e�cient
parallel GPU implementation of path sampling.

4.1 Path-Sampling Centric Programming
To easily express and debug uncertain graph applications over GPU
accelerators, a uni�ed programming API supporting is proposed in
BPGraph. Generally, starting from inputting source vertices, uncer-
tain graph applications recursively perform reliability evaluation
operations on the set of identi�ed paths until achieving a global
reliable result. User-de�ned parameters and API functions are pro-
vided by BPGraph for user involvements. The parameter option is a
simple user involvement which includes the number of samples ,
accuracy bound, value reliability, etc. User-de�ned API functions
are more expressive which let users to describe the control logic of
uncertain graph applications of their interests.

Application Programming Interfaces (APIs). The following
four API functions are proposed in which stages they are invoked
as described in Section 3.1.

• Path Identi�cation.We propose a DispelEntity function
to de�ne activate �lter operation of active structural ver-
tices/edges [59], enabling identi�cation of source-to-target
paths from graphs.

• Path Sampling. We propose a Initialize function to ini-
tialize the distance of an empty path from identi�ed paths,
and de�ne the sampling method utilized. And another func-
tion Expand is proposed to be repeatedly invoked on all
edges of a path to calculate the distance and probability of
that path.

• Filtering & Result Computation. We propose a function
ReduceVertex to combine the distance and probability of
all available paths on the target vertex.

ICS ’22, June 28–30, 2022, Virtual Event, USA Heng, Lingda, Hang, Donglin, Rui, et al.

Listing 1 illustrates the execution �ow of BPGraph using these
API functions. The input of the execution �ow is an uncertain graph,
and source and target vertex pairs. The path-centric execution �ow
is processed under two stages: expand and update the value of paths
along the edges (line 5-9), and reduce and calculate the distance
and probability values of target vertices (line 12-13).

Taking Figure 4 as an example, given a source vertex 0 and
a target vertex 6 in the toy uncertain graph 6 (Figure 2(a)), the
reachability traversal algorithm in Figure 4 aims to answer the
distance between them and the reliability value (i.e., the existing
probability of paths from 0 to 6). This algorithm is widely used in
high performance data-center or sensor network for delivering data
packages [51][44].

1 voidMainProc(Graph g,Vertex srcs[],Vertex tgts[]) {
2 /∗ Path Identifcation Stage ∗/
3 ConvertGraphToPaths(g, DispelEntity, srcs, tgts);
4 /∗ Path Sampling Stage ∗/
5 parallel−for Path p in g.getPaths(srcs, tgts)
6 Initialize(p);
7 // Nested parallel processing edge along paths
8 parallel−for Edge e in p.getEdges()
9 Expand(p, e);
10 synchronize; //Synchronize cooperative threads
11 /∗ Result Computation:Reduce from all paths ∗/
12 parallel−for Vertex (s, v) in (srcs, tgts)
13 ReduceVertex(g.getPaths(s, v), v);
14 synchronize; //Synchronize cooperative threads
15 }

Listing 1: Pseudo code for path-based execution �ow.

1 /∗ Path Intial Identify Phase ∗/
2 extern void DispelEntity(){
3 DistanceConstrain=5;ReliabilityThreashold=0.1;}
4 /∗ Path Sampling Phase ∗/
5 __device__ void Initialize(Path p) {
6 p.distance = 0; }
7 __device__ void Expand(Path p, Edge e) {
8 p.distance += e.distance;
9 p.prob = OP_AND(p.prob,e.prob); }
10 /∗ Result Computation Phase ∗/
11 __device__ void ReduceVertex(Path pArray[], Vertex v) {
12 for path p in pArray {
13 if((p.distance < DistanceConstrain)
14 && (p.prob > ReliabilityThreashold))
15 // Use expected−reliable formulation
16 atomicAdd(v.distance,
17 OP_MUL(p.prob, p.distance));
18 } }

Listing 2: Source-to-target query implementation in BPGraph.

Listing 2 exhibits how to implement the reachability traversal
algorithm in BPGraph. First, before execution, the following global
constraints are de�ned through parameter-based user involvement,
i.e., ReliabilityThreshold=0.5 and DistanceConstrain=5 to �lter out
unquali�ed paths. Subsequently, as shown in Listing 2, we �rst
de�ne the initial distance of an empty path to be 0 (line 3). In this
example, the distance of a path is de�ned as the summation of all
edges’ distances (line 7), e.g., the distance of path [0 1 6] is calcu-
lated as 2 in Figure 4(d). Besides, a path would exist in a possible
world only if all its edges exist in that possible world (line 8), which
is exploited to �lter the status bits in Figure 4(d). Finally, by aggre-
gating the results of corresponding paths, ReduceVertex is used to
calculate the distances and probabilities of vertices via multiplying
distance and probability for an expected-reliable result, in which

1

5

3

4

0

2

6 5

16

4

6

7

7

primary

secondary

P2
P3

P6

P0 @ GPU cg_0

P2P1

P0 P3P4

P5 P6

P1 @ GPU cg_1

P2 @ GPU cg_2
P3 @ GPU cg_3

P4 @ GPU cg_4

P5 @ GPU cg_5
P6 @ GPU cg_6

(a) Pre-partition Traversal Tree (b) Generated dependent paths executed on GPUs

0 2 5 6
0 1 6 7
1 7
0 4 5

5 3 6
2 4

3 1

Figure 5: Dependency generation in path identi�cation.

the paths need to satisfy the global probability and distance con-
straints (line 12-17). The �nal expected-reliable distance of vertex 6
for reachability traversal from 0 is 2 ⇤ 1

3 + 3 ⇤ 2
3 + 4 ⇤ 1

3 = 4 (Figure
4(f)).

Generality of our APIs. To demonstrate the expressiveness
of our APIs, in addition to the aforementioned source-to-target
query application, we have further developed a number of other
uncertain graph applications with our APIs, which include source-
target query (a.k.a, s-t query), k-nearest neighbor search, breadth-
�rst search, any-pair shortest paths. These algorithms are all built
upon the path sampling model.

4.2 GPU-based Design for Asynchronous Path
Identi�cation and Sampling

Aswementioned in Section 3.2, path-samplingmethodology achieves
the minimal sampling overhead and consumes signi�cantly less
memory compared to other methods. Building a parallel uncer-
tain graph processing framework over GPUs is still challenging
[33, 34, 56]. This subsection focuses on the implementation of chal-
lenging phases, which are parallel path identi�cation (Figure 4(a))
and sampling (Figure 4(b)). To enable fast path identi�cation, in-
spired by iterative graph processing methods [32, 37, 64], BPGraph
maintains the entire uncertain graph under a structure of breadth-
�rst ordered tree (Figure 5) to help optimize graph locality.

Asynchronous Path Identify via Dependency. As we can
see from the breadth-�rst ordered tree, a large number of paths of
varying lengths will result in space explosion. Before identifying
massive paths, BPGraph introduces two steps to pre-partition paths
via a dependency tree building technique: (a) breath-�rst layer-
aware decomposition: we �rst perform a partition stage to divide the
ordered tree into linked paths (as shown in Figure 5); (b) construct
dependency tree of linking paths: connecting the corresponding in-
neighbors of the start vertex to create dependency between the
linked paths. For example, according to the dependency relationship
of the start vertices 0, 2, 3, both of %1, %4 and %5 are dependent on
%0. Furthermore, these bridging vertices are marked with two �ags
primary and secondary (e.g., marked vertex 6 in Figure 5(a)), which
are used for next inter-path state synchronization.

Following the generation of the dependency tree, BPGraph drives
GPU threads to execute asynchronously over consecutive accessing
of edges along paths. In particular, when executing source-to-target
query requests, each path is asynchronously dispatched to GPUs as
a single processing workload unit. GPU thread or cooperative group
sequentially checks the corresponding paths, and synchronizes

Enabling E�icient Uncertain Graph Processing via Novel Path Sampling ICS ’22, June 28–30, 2022, Virtual Event, USA

along the dependency (Figure 5(b)). For example, during processing
s-t pair (0-6), GPU threads propagate the starting vertex along paths,
and identify 0->2->5->6 and 0->1->6 during �rst round. Under the
following round, other parts of path among 0-6 are identi�ed after
synchronizing primary and secondary vertices, e.g., paths 0->4->5-
>3->6 are along %3 and %6 during 2nd round , and path 0->2->4->5-
>3->6 are along %0,%4 and %5 during 3rd round. Note that, same as
previous uncertain graph processing work [8, 25, 37, 47, 69], these
simple paths with length shorter than the diameter of the graph
ensure no vertex that appears more than once in the sequence,
naturally eliminating circles along the paths.

In addition, we introduce a consecutive formation as three arrays
for caching identi�ed paths: 1) the increasing number of paths of
varying lengths; 2) each path’s �rst edge o�set; 3) edges storing
along paths, with the source and destination of edges represented
by two consecutive vertices; e.g., 4 edges of path 0->2->5->6 is
stored as [0 2 5 6].

Incremental Path Sampling. Figure 4 has shown the overall
path sampling process in BPGraph. From path identi�cation (b)
to edge sampling (c) in Figure 4, di�erent paths share common
edges, for example, edges (0,2), (2,4), and (4,5) are in both ?0C⌘7
and ?0C⌘8. If each path is sampled independently, it will result
in duplicate sampling. A straightforward method is to group the
edges of previously identi�ed paths into a new edge list and sample
these edges in parallel. However, re-organizing identi�ed paths into
edges brings extra random accessing overhead and necessitates pre-
allocating large cache space for the edges.

Instead, we design an incremental hierarchical path sampling
strategy to reap the bene�ts of GPU cooperative group program-
ming. Other than sampling every path or edge, this strategy elimi-
nates many redundant sampling workloads from early edge �lters
(e.g., edge (3,1)). Cooperative group (cg) allows kernels to dynami-
cally organize groups of threads, ensuring synchronize groups of
threads smaller than thread blocks, and software reuse in the form
of “collective" group-wide function interfaces [21]. The core idea
of our incremental path sampling is to sample incrementally and
judge whether to add the sampled equilong sub-paths to paths. The
lengths of these sub-paths correspond to the GPU multi-threading
resources available at runtime, i.e., cg tiles. In particular, to store
the common sub-paths, a shared cached array is kept in global
memory to mark whether or not the sub-paths have been sampled.
Each thread block is partitioned into multiple “tiles” via cooperative
group function tiled_partition(), in which the template parameter of
this function is determined by the lengths of sub-paths. One path
sampling workload is assigned to one group. If the sub-paths are
not sampled, threads in each tile sample edges based on their prob-
ability and adds their partial status bits to other threads by �nding
sh�() operation. The rank thread 0 sums up the distance and relia-
bility value of this path. Before cooperative group synchronization
(sync()), BPGraph generates the existence bits of each path one by
one by merging and pre�x sum over edges. After �ltering the avail-
able paths, by executing user-de�ned kernel functions in parallel
(Listing 1), the reliability value and weights of vertex from source
vertex to the target vertex of paths are updated asynchronously.

To this end, the application results and their reliability value are
achieved via a selective method to aggregate values along di�erent
length of distance paths.

(1) Thread-Level Path Sampling. When the length of paths
are in small size (<32), the sub-warp kernel processes several
identi�ed paths in a single warp and requires fewer threads
(32, 16, 4) with tiled_partition<num_thread>.

(2) Warp-Level Path Sampling.When the length of paths are
in medium size (<1024), sampling kernel requires less than
themaximum thread block size (1,024) with coalesced_threads.

(3) Grid-Level Path Sampling. When the length of paths are
in large size (> 1024), the grid kernel processes paths in
several thread blocks and sampling requires more than 1,024
threads with thread_block and even grid_group on devices.

4.3 Scalable BPGraph Implementation on
Multiple GPUs

With the size of uncertain graph increasing, scaling BPGraph to
multi-GPU systems (shown in Figure 6(a)) will become more de-
sirable and bene�cial. BPGraph tackles the scalability challenge for
processing large-scale uncertain graph via a streaming graph parti-
tion and workload migration design. To fully utilize the aggregated
GPU memory, BPGraph distributes the entire uncertain graph into
the multi-GPU memories. Figure 6 illustrates the essential com-
munication and synchronization requirements of the multi-GPU
version of BPGraph.

Streaming Uncertain Graph Partition and Allocation (∂
in Figure 6). There are many well-known certain graph parti-
tioning approaches, such as vertex partition in GraphX[61] and
GraphLab[19], Metis [31] and grid partition in GridGraph [68]. In
BPGraph, we uses edge partitioning method [27] to achieve the fast
and �exible uncertain graph partition.

Assuming there are ⇡ devices, all edges are partitioned into
#⌧%* disjoint partitions %8 (1  8  ⇡), where ⇢ =

“⇡
8=1 %8 . Us-

ing the edge partitioning approach, CSR-formatted inputs can be
e�ciently partitioned via fast scanning the row indices of graphs.
In our experiments, partitioning million-edge graph only takes
1.5-4.2 milliseconds. The corresponding partition of distance and
edge probability value are cached in each GPU, which allows each
GPU synchronizes their own copy of vertex array using GPUDi-
rect PeerToPeer communication by only updating their own potion
of results. By exploiting the optimized CUDA I/O primitives (cu-
daMemAdvise and cudaMemPrefetchAsync), loading of uncertain
graph partitions in streams bene�ts from e�cient data prefeching
and a signi�cant reduction in page fault before kernel launching.
Further, following the previous design, the primitives of coopera-
tive group enable global synchronization patterns across multiple
GPUs within CUDA . We design multi-device cooperative group for
multi-accelerator management via the initialization cudaLaunchCo-
operativeKernelMultiDevice and enabling synchronization of thread
groups.

Dynamic Workload Migration (∑ in Figure 6). Due to the
irregularity and probabilistic nature of uncertain graphs, GPU-
accelerated systems have a di�cult time balancing workloads: 1)
the path identi�cation workload will require dynamically �ltering
redundant unavailable vertices and edges; 2) the path sampling
workload cannot be balanced across di�erent devices due to path
length di�erences. These types of workloads distributed across
devices and SMXsmay result in side loading and some devices being

ICS ’22, June 28–30, 2022, Virtual Event, USA Heng, Lingda, Hang, Donglin, Rui, et al.

Partition #3

Partition Partition Partition Partition

GPU0 GPU1 GPU2 GPUN

PathSet0

Sampled Edges-0

PathSet1

Sampled Edges-1

PathSet2

Sampled Edges-2

PathSetN

Sampled Edges-N

❷ Dynamic Workload Migration

Reliability Result

❸ Coordinated
O!oading

M N P
|E|/D |E| / D |E|/D

Partition #1 Partition #2
vertexO"set

Edge

Host
Memory (0,1,6:2), (0,2,5,6:3)

(0.3, 0.6, 0.3)

Results
Paths

Reliability
…
…

❶ Streaming Partition
& Allocation

Figure 6: Data management and Inter-GPU communication over
multi-GPU systems.
released earlier than others at runtime. To address these scalability
issues, we develop a dynamic workload migration strategy.

During the path identi�cation stage (Figure 4(a)), we design
a dual bu�er to handle the workload balancing, inspired by only
transferring active workload strategy [27]. In particular, each thread
block of GPU constructs two dynamic-sized bu�ers, i.e., in-bu�er
and out-bu�er, which is utilized for synchronization and migration.
For example, if we need to traverse other edges stored in other
devices and migrate the redundant edges of paths from GPU-1 to
GPU-D, the bu�er of GPU-1 will �ll into the path’s current desti-
nation vertex id after determining whether any of the warp lanes
has a responding workload to transfer. Through ring topological
synchronization, the bu�ers of devices are synchronized and the
updated messages are sent along GPU-1, GPU-2,..., GPU-D.

During the path sampling stage (Figure 4(c)), the host CPU es-
timates the sampling workload for each GPU by calculating the
number of edges that it needs to sample (|⇢ |B0<?;4). Then, BPGraph
balances the sampling workload by moving sampling edges from
overloaded GPUs to under-utilized ones.

Coordinated Data O�loading (∏ in Figure 6). Finally, to
maintain the identi�ed paths and reliability results, we construct a
shared zero-copy bu�er to store a separate path array for each GPU
after synchronizing sampled edge set. The path evaluations are
independent with each other. Thus, each GPU samples edges and
�lters paths asynchronously during the sample runtime. BPGraph
chooses shared zero-copy bu�ers to hold the path, sampled edges,
and the evaluated vertex values (distance and reliability values).
During runtime, GPU threads directly update the ⇢36483 in paths
and �lter the pertained part of edges. At the end, all evaluation
results of vertices are collected from individual GPU and written to
the CPU bu�er.

5 Evaluation
Platform. Table 2 shows detailed platform con�guration. We per-
form our GPU evaluation on GPU evaluations an NVIDIA DGX
server with 8 NVIDIA V100 GPUs. The host system of DGX server
consists of two 20-core Intel(R) Xeon(R) CPU E5-2698 v4, and 512GB
DDR4 main memory, running with Ubuntu 18.04 (kernel 4.15.0)
and CUDA 11.0.

Datasets. Table 1 shows the real-world graphs with a broad
range of sizes and features from Stanford Large Network Dataset
Collection2, Network Data Repository3, etc. The soc-twitter and
com-friendster [1] are collected from the real-world social network.

2http://snap.stanford.edu/data/
3http://networkrepository.com/index.php

Table 1: Real-world graph datasets used in this paper. (⌧
represents the raw graph size with probabilistic edge list format.

Dataset Vertices
|+ |

Edges
|⇢ |

Size
(⌧

Prob
Pr(⇢)

Avg. Degree
⇡

netHept[1] 15,233 62,774 921KB 0.04±0.04 4
gnutellaP2P[1] 62,586 147,892 1.8MB 0.23±0.20 2

coauthor-DBLP[50] 540,486 15,245,729 331MB 0.11±0.09 28
kron-logn21[50] 1,544,088 91,042,012 2.3GB 0.33±0.28 58
soc-twitter[30] 28,504,110 531,000,244 14GB 0.46±0.28 18
uk-2005[1] 39,454,748 936,364,284 20GB 0.32±0.25 24

com-friendster[1] 65,608,366 1,806,067,135 41GB 0.52±0.25 29

Table 2: Platform Speci�cation.
NVIDIA DGX Server (8 x GPU V100)

Shading Unit 5120 @ 1530MHz

On-chip Storage L1 Cache/Shared: 48KB x 80
L2 Cache: 6MB

Default Memory HBM, 32GB, 320GB/s

We use 7 publicly available real-world graphs. The edge probabilities
in the �rst 2 datasets come from real-world applications, using the
same con�guration in [37, 62], while the probabilities in the latter
5 datasets are randomly assigned within the speci�ed value range.

Parameter Setting. To generate fair s-t query pairs, we select
10 di�erent source vertices, uniformly at random from the datasets.
Next, the target vertices are chosen from = hops from the source
vertices, uniformly at random, in which = is randomly selected
between 2 and the graph diameter. The reported results of s-t query
are calculated by averaging those of all pairs. Initially, the value
 , i.e., # samples, is 100. It increases at a step of 200 till the results
converge.

Benchmarks. We adopt the three benchmarks, i.e., source-to-
target query, k-nearest neighbors, and any-pair shortest path, which
are popular benchmarks in previous uncertain graph studies. Given
an uncertain graph G(+ , ⇢, %), a possible world ⌧ v G, and a
distance function 3 , we give the formulas of these problems as the
following.

(1) Source-to-target query (ST) is de�ned as returning the distance
with probability greater than a reliability threshold between the
given two vertices B and C . ST query aims to compute the distance
between B and C based on the distance function.

(2) K-nearest neighbors (KNN) is de�ned as returning top-: ver-
tices with minimum distances and reliable probability from the
given vertex B . Given a node B (B 2 +), an integer : > 0 and a
reliability threshold f , the :-nearest neighbors query (k-NN) aims
to �nd a set of nodes ⇠ such that for any A 2 ⇠ , the value of 3 (B, A)
(marked as D) is in the top-: list w.r.t. the function 3 and their
probability ?3 (B,A) (D) =

Õ
⌧ |3⌧ (B,A)=D %A (⌧) > f [49].

(3) Any-pair shortest path (APSP) is de�ned as returning paths
with the minimum distance and reliable probability. Given any-
pair nodes (and) (S,T⇢V) and a reliability threshold f , it aims to
compute the set of the shortest distance paths between 8B 2 (and
8C 2) based on distance function 3 . Meanwhile, the probability of
each path need to �t the reliability threshold, i.e., ??0C⌘ (B,C) (D) > f .

For the KNN problem, BPGraph �rstly generates multiple sets
of neighbors of node B and then evaluates them with reliability and
shortest distance until �nding a full set of top-: neighbors. The
APSP problem in the uncertain graphs is di�erent from certain

Enabling E�icient Uncertain Graph Processing via Novel Path Sampling ICS ’22, June 28–30, 2022, Virtual Event, USA

BitEdge
ProbTree
BPGraph w/o GPU
BPGraph

Ti
m

e
(s

)

0

2

4

6

8

10

Sample instances

200 400 600 800 1000

(a) netHept

BitEdge
ProbTree
BPGraph w/o GPU
BPGraph

Ti
m

e
(s

)
0

5

10

15

Sample instances

200 400 600 800 1000

(b) gnutellaP2P

BitEdge
ProbTree
BPGraph w/o GPU
BPGraph

Ti
m

e
(s

)

0

50

100

150

200

Sample instances

200 400 600 800 1000

(c) coauthor-DBLP

BitEdge
ProbTree
BPGraph w/o GPU
BPGraph

Ti
m

e
(s

)

0

500

1000

Sample instances

200 400 600 800 1000

(d) kron-logn21

ProbTree
BPGraph w/o GPU
BPGraph

Ti
m

e
(s

)

0

5,000

10,000

Sample instances

200 400 600 800 1000

(e) soc-twi�er

Figure 7: GPU-accelerated performance comparison. Lower is be�er.

ones. BPGraph counts all input source-to-target pairs. User-de�ned
constraint criteria is utilized to �lter active paths, e.g., in Figure
4(d), the third column values of paths need to be greater than 0.5.
User-de�ned �ltering criteria is con�gured as a distance constraint
to limit the number of edges along paths.

State-of-the-arts.We evaluate our system by comparing with
three state-of-the-art methods, and report the number of samples
required for convergence, running time, and memory usage for
all systems. Our datasets and source code will be publicly avail-
able. The four state-of-the-art algorithms are as following Table
3. For comprehensive and more fair comparisons, we also imple-
ment GPU-accelerated MC-Sampling, BitEdge Sampling method,
in which we generate and traverse the possible worlds resided
in the GPU memory. Meanwhile, the state-of-the-art CPU-based
algorithm BitEdge, ProbTree, and DistR is enhanced using OpenMP
to leverage multi-core CPUs on our evaluation platform which are
able to execute 40 threads simultaneously.

Table 3: Methods in Evaluation.

Abbr. Framework
MonteCarlo (MC) Monte-Carlo sampling regarding to uncer-

tain graph processing, we report the basic
entirety sampling based on this sampling
method [47].

BitEdge (BE) Simultaneous sampling method simultane-
ously processing massive possible worlds
with compact bit-aware marked edges [69].

ProbTree (PT) ProbTree sampling method by partitioning
graphs and generates a small uncertain sub-
graph for querying purposes [37].

DistR (DR) Distributed reliability-aware uncertain
graph sampling method (DistR) based on
partition sampling [8].

5.1 Comparison with State-of-the-art
Table 4 illustrates the performance of BPGraph and state-of-the-arts.
We compare their performance for three applications: s-t reliabil-
ity query, k-nearest neighbor (KNN), and any-pair shortest path.
BPGraph runs on a single GPU in these experiments while others
run on multi-core CPUs.

As Table 4 shows, BPGraph signi�cantly outperforms other meth-
ods in all applications. For the s-t query, BPGraph is on average 39⇥
and 30⇥ faster than entirety sampling methods, i.e., MC sampling

and BitEdge Sampling, respectively. Compared to the partition sam-
pling method (ProbTree), BPGraph is 26⇥ faster. For KNN and short-
est path, BPGraph presents even higher speedups, e.g., it achieves
an average speedup of 69⇥ and 43⇥ compared to MC sampling and
ProbTree respectively. It is because these two applications have
much larger workloads due to recursive traversal and sampling.
For the reason of BPGraph’s superior performance, it is because
1) BPGraph only traverses the graph once and also samples useful
edges only, 2) the high-parallelism computing capability of GPU
over multi-core CPUs, and 3) the high memory bandwidth of the
NVIDIA V100 GPU over the CPU.

To further compare to ProbTree, we evaluate its index building
overhead, and breakdown the execution time of ProbTree. The
evaluation of ProbTree on netHept and gnutellaP2P shows that the
index building takes 79% and 84% of the total execution time, respec-
tively. Since ProbTree partitions raw graphs into fully-connected
cliques, the index building overhead comes from both partitioning
and the reliability information re-computation, which is signi�-
cantly reduced by the simple path identi�cation in BPGraph.

Moreover, to show the bene�ts of path sampling, we implement
a version of CPU-based BPGraph without utilizing GPUs. Figure 7
compares the performance of BPGraph on GPU with one source-
target pair query, BPGraph on CPU, BitEdge (BA) and ProbTree (PT),
which performs best among three state-of-the-art methods. Even
without GPU acceleration, BPGraph on CPU still achieves better
performance than ProbTree, which indicates the e�ectiveness and
e�ciency of our proposed path sampling method. Also, we can see
that the performance of BPGraph on GPU achieves over 6.15-23.5⇥
improvement compared with BPGraph on CPU.

5.2 Evaluation on Memory Cost
Figure 8 studies the memory consumption in BPGraph, which has
the lowest memory overhead compared with other methods. For
instance, BPGraph consumes 16GB memory space on twitter graph,
which is 32% of the memory overhead of ProbTree. This is because
BPGraph only stores useful edges and paths. Compared to the en-
tirety and partition methods, BPGraph does not need to cache all the
possible paths, and we only store the traversal paths in the breadth
�rst ordered tree via an indexing way, and format each path as a
consecutive array storing the successive vertex IDs, which signif-
icantly reduces the caching space. For kron-logn21, path caching
consisting of the structural and probabilistic data totally consumes
4.2GB memory (13.12% resident memory). For largest graphs uk-
2005, it requires 30.4GB of GPU memory in BPGraph and therefore

ICS ’22, June 28–30, 2022, Virtual Event, USA Heng, Lingda, Hang, Donglin, Rui, et al.

Table 4: End-to-end performance comparison between BPGraph and the state-of-the-art approaches. We report the execution time on 100
samples (K=100). (We report the time in seconds and mark the speedup of BPGraph over best algorithms in parentheses, and the index

building time of PT is also considered for fair comparison of end-to-end performance.).)

Graph source-target query k-nearest neighbors any-pair shortest path
MC BA PT BPGraph MC BA PT BPGraph MC BA PT BPGraph

netHept 24.3 25.1 13.2 2.4 (5.5) 49.8 45.2 6.4 2.8 (2.3) 35.1 16.8 13.1 1.2 (15.5)
gnutellaP2P 38.2 23.9 11.4 4.3 (2.6) 117.5 74.3 35.9 6.1 (5.9) 45.9 19.6 26.4 2.7 (7.2)
coauthor 368.6 268.2 289.4 10.8 (24.8) 1793.0 1288.6 1031.2 43.1 (23.9) 286.2 238.0 286.0 4.3 (55.3)

kron-logn21 2471.1 1085.4 1635.7 30.6 (35.5) 3303.2 2372.9 5293.5 138.0 (17.2) 2580.5 1294.3 1229.4 20.8 (59.0)
soc-twitter 38816.2 12835.5 9494.2 486.3 (19.5) 43291.6 17416.9 6486.9 1245.2 (5.2) - 13985.4 9620.4 325.1 (29.6)
uk-2005 - - 21081.0 607.6 (34.7) - - 12113.8 1501.2 (8.51) - - 23940.2 894.2 (26.7)

Raw Size DistR ProbTree BPGraph

M
em

or
y

U
sa

ge
 (G

B
)

0

50

Dataset

kron-logn21
soc-twitter

uk-2005

Figure 8: Memory cost comparison between DR, PT and BPGraph.

Result Computation Edge & Path Sampling Path Identification

R
un

tim
e

B
re

ak
do

w
n

(%
)

0

50

100

Dataset

netHept
gnutellaP2P

coauthor

kron-log21

soc-twitter

uk-2005

Figure 9: Execution breakdown of BPGraph over three stages of path
samplingmodel (path identi�cation, edge and path sampling, result
computation).

�ts into V100, while other approaches fail to �t. These results also
verify our theoretical memory consumption analysis in Section 3.2.

5.3 Execution Time Breakdown
Further, we evaluate the computation time breakdown, as shown
in Figure 9. Compared with the breakdown of MC-Sampling shown
in Figure 3, we observe that the sampling phase takes much less
portion of the entire execution in BPGraph. Since we eliminate
all unnecessary edge sampling, which reduces the sampling time,
the portions of path identi�cation and result computation phases
increase in the overall time.

The path identi�cation phase overhead is a key component of the
overall execution time, which generates the whole path set of given
vertices, as shown in Figure 4(b). Table 5 illustrates its overhead
with various number of source-target pairs for four graphs. From
the reports of the uncertain graph soc-twitter, BPGraph executes the
traverse of path identi�cation phase in 8.38-85.20s for the 10-300
source-target queries. The path identi�cation takes 20.3-31.9% of
the total execution time.

5.4 Evaluation on Accuracy
For all sampling based uncertain graph processing approaches, the
solution accuracy is apparently a�ected by the number of samples.
We aim to study the relationship between the number of samples
 and accuracy here, using the s-t query application on the twitter
graph as an example.

We do the accuracy study for BPGraph, BitEdge-Sampling, and
ProbTree. We de�ne the accuracy error as the di�erence percentage
between the approximate solution of sampling methods and the
exact solution of the uncertain graph. The accuracy error of reliabil-
ity is reported with respect to MC sampling, which is computed as:
�22DA02~⇢AA>A () = 1

100
Õ100
8=1

|' (B8 ,C8 ,)�'4G02C (B8 ,C8) |
'4G02C (B8 ,C8) .'4G02C (B8 , C8)

denotes the reliability achieved from B8 to C8 using the exact solution,
and '(B8 , C8 ,) denotes the reliability estimated with samples.

We evaluate the accuracy error values for from 100 to 1000,
with a step of 100. The three methods have fairly low errors at
 = 1000. For BitEdge and ProbTree, they accuracy error improves
from 10.6% to 1.5% and 15.73% to 0.97% when changes from 100
to 1000. On the other hand, the accuracy error of BPGraph changes
from 4.35% to 0.21%. Clearly, BPGraph achieves better accuracy with
the same number of samples. The high accuracy of path sampling
model comes from that the model only cares about the dependency
between vertices on the paths and directly applying the reliabilities
to the target.

Note that Table 4 compares the performance of di�erent ap-
proaches under the same sample number. We have shown that
BPGraph needs less samples to achieve the same accuracy com-
pared with other methods. As a result, BPGraph will have even
better performance if the goal is to let all approaches converge to
the same accuracy.

Table 5: Performance of generating traversal paths.

Number of ST Pairs
|Q|

Datasets
netHept coauthor kron-logn21 twitter

10 0.27s 0.31s 1.38s 8.38s
50 0.85s 1.23s 3.62s 26.20s
100 1.58s 3.26s 11.6s 34.87s
300 3.95s 12.42s 22.8s 85.20s

5.5 Evaluation on Impact of Distance Metrics
Further, to �gure out the impact of distance metrics (illustrated
in Section 2.1), we exploit the 100-sample ST query application
over three typical variations of reliability de�nition, i.e., reachabil-
ity, distance-constraint reachability, and expected shortest distance.
These three metrics are commonly exploited in uncertain graph lit-
erature for distance computation [26][51][25][49]. From the results
in Figure 10, we can see that using three metrics, the overall running
time does not change signi�cantly (<4.6% performance variation).
The reason for this is that the distance calculation consumes less

Enabling E�icient Uncertain Graph Processing via Novel Path Sampling ICS ’22, June 28–30, 2022, Virtual Event, USA

Algo. w/ Reachability
Algo. w/ Distance-Constraint Reachability
Algo. w/ Expected Shortest Distance

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

10

20

30

Dataset
netHept gnutellaP2P coauthor kron-logn21

Figure 10: Runtime of BPGraph over three di�erent variations of s-t
reliabilitymeasurements (illustrated in Section 2.1). Execution time
over 100-sample source-to-target queries are reported.

1.
0

1.
0

1.
0

1.
7

1.
5

1.
8

3.
1

2.
8

3.
2

5.
5

4.
1

5.
2

BPGraph-1GPU
BPGraph-2GPU
BPGraph-4GPU
BPGraph-8GPU

Sp
ee
du
p

0

2

4

6

Dataset
soc-twitter uk-2005 com-friendster

Figure 11: Scale-up scalability evaluation of multi-GPUs on the
three large datasets (soc-twitter, uk-2005, com-friendster).
overhead than the random sampling operation, and the computa-
tion is always pushed on the same path collections. Furthermore,
the results of distance-constraint reachability and expected shortest
distance metrics are �ltered from reachability-based results using
additive constraints based on all identi�ed possible paths. Thus,
the calculation of di�erent distance metrics over paths are trivial
compared to the sampling workload.

5.6 Scale-Up Scalability over Multiple GPUs
To observe the e�ect of scaling the uncertain graph processing
procedure of our system BPGraph from one GPU to multiple GPUs,
we evaluate BPGraphwith the large graphs, i.e., soc-twitter, uk-2005
and com-friendster, with up to 8 GPUs and illustrate the speedups
in Figure 11. The performance does scale well as we add more GPUs.
Speci�cally, the performance of multi-GPU execution on soc-twitter
achieves 1.7⇥ speedup from 1 GPU to 2 GPUs, and 5.5⇥ speedup
from 1 GPU to 8 GPUs. Although the evaluated performance does
not scale linearly with more GPUs due to the limitation of PCI-E
bandwidth, BPGraph still achieves a good scalability due to process
larger dataset uk-2005 and com-friendster using more GPUs. We
observe that during BPGraph processes larger uncertain graphs
with more amount of edges, adding more GPUs produces much
greater speedup and larger reductions in processing time.

This speedup of adding more GPUs greatly depends on the de-
pendency of partitioned storage of consecutive edge array. BPGraph
reduces the communication overhead by using vertex status array
to mark the primary/secondary vertices for value synchronization,
which minimizes unnecessary GPU communication tra�c. On the
uk-2005 dataset, BPGraph achieves a better scalability on multiple
GPU, and takes 1498.5s on executing the 100 s-t query tasks using
8 GPUs. BPGraph achieves almost 4.2⇥ speedup using 8 GPUs over
using 1 GPU (6207s). For the larger dataset com-friendster, the result
presents a best speedup of BPGraph, in which BPGraph achieves
5.2⇥, 3.2⇥, 1.8⇥ speedup using 8 GPUs, 4GPUs and 2GPUs over
one single GPU. This is because the comparatively peer-to-peer
communication and cooperative device synchronization gives us
the bene�t of good scalability on large uncertain graph datasets on
multi-GPU servers.

6 Related Work
We review the existing reliability query work for uncertain graphs
and also discuss several GPU-accelerated system designs. Our pro-
posed system BPGraph advances the state-of-the-art in the parallel
design and implementation of uncertain graph processing.

Uncertain Graph Processing. Recently, several e�cient pro-
cessing approaches have been proposed to use either entirety sam-
pling [13, 26, 48] or partition sampling methodology [8, 17, 37, 62].
The entirety sampling techniques have been widely studied for
queries, e.g., reachability [47], k-nearest neighbors [49, 63, 67], (k,
[)-core decomposition [36]. Although many optimizations, e.g.,
Monte Carlo sampling method [26, 48], recursive sampling method
[35], and the representative selection method [47], have been devel-
oped. There still lacks a general framework to e�ciently support
processing large-scale uncertain graph data. On the other hand, the
partition sampling methods [8, 37] utilize compact and partitioned
data structures, which generate a small uncertain subgraph for
querying purposes and answers the reliable results with fewer sam-
ples. However, these state-of-the-art methods still face sub-optimal
performance due to sampling every edge, which signi�cantly toggle
down the entire performance.

GPU-based Graph Processing. The works on high perfor-
mance and scalable GPU-accelerated graph algorithm optimization
[6, 9, 20, 22, 40, 60] and system design [14, 18, 45, 57, 58] have been a
hot topic by exploiting powerful computation ability of accelerators.
Among these GPU-based systems, Medusa [65] proposes to simplify
the programming API for GPU-based graph algorithms. CuSha [28]
proposes G-Shard to improve the ine�ciency of warp execution on
CSR-formatted graphs and concatenated windows to address the
non-coalesced memory access problem. WS-VR [27] provides warp
segmentation method to enhance the GPU device utilization on
dealing with irregular structural graphs, and also scale the system
to multiple GPUs via a vertex re�nement to reduce unavailable data
transfer between GPUs via the PCIe bus. Gunrock [59] proposes a
new vertex-centric programming abstraction built upon the parallel
operations on a vertex or edge frontier, as well as it supports to
scale to multiple GPUs via optimizing the traversal direction and
GPU memory allocation. Groute [4] proposes an asynchronous pro-
cessing model for scheduling computation and communication over
multiple devices on a single node. Groute captures all the irregular
parallelism via pushing computation on each individual vertex and
improve the communication around GPUs. GraphReduce [54] is
the �rst system to support out-of-core graph processing on GPU
of a single node, which proposes streaming shard partition and
hybrid vertex-centric and edge-centric parallelism model to achieve
iterative large graph processing in GPUs.

Distinct from the above system design, BPGraph based on the de-
sign paradigm of uncertain graph processing, not only signi�cantly
reduces the main bottleneck from massive sampling operations
of the state-of-the-art uncertain graph processing framework via
providing a novel path sampling, but also considers the high per-
formance of scaling GPU accelerator by exploiting several novel
strategies to handle SIMT-aware parallel path generation, traversal,
sampling combination and synchronization.

ICS ’22, June 28–30, 2022, Virtual Event, USA Heng, Lingda, Hang, Donglin, Rui, et al.

7 Conclusion and Future Work
In this work, we propose BPGraph, a novel multi-accelerator based
framework for e�ciently processing uncertain graph analytics to
tackle the challenges we have observed from the state-of-the-art
techniques: low computation e�ciency, large memory overhead,
lack of support for modern accelerators with massive parallelism,
and hard for users to simply write highly-e�cient uncertain graph
analytics. At its core, BPGraph is integrated with a newly proposed
runtime path sampling technique to identify unnecessary edges for
sampling given a certain problem, resulting in drastic reduction
in the overall computation. BPGraph provides general support for
users to write a wide range of uncertain graph applications with-
out dealing with the low-level complexity. Results on real-world
uncertain graph applications show that BPGraph can achieve up to
43⇥ (26⇥ on average) speedup over the state-of-the-art frameworks,
and scales well with increasing number of GPUs.

Acknowledgment
We would like to thank our shepherd and all anonymous reviewers.
This work is supported by University of Sydney (USYD) faculty
startup funding, SOAR faculty fellowship and Australian Research
Council (ARC) DP210101984. It is also supported by the National
Science Foundation of China (NSFC) Grant No. 62002350, Key-Area
Research and Development Program of Guangdong Province Grant
No. 2019B010154004, and Tencent Youtu Lab. Hang Liu was in part
supported by the NSF CRII Award No. 2000722 and CAREER Award
No. 2046102.

References
[1] http://law.di.unimi.it/webdata/. LAW web dataset. (http://law.di.unimi.it/

webdata/).
[2] Eytan Adar and Christopher Re. 2007. Managing uncertainty in social networks.

IEEE Data Eng. Bull. 30, 2 (2007), 15–22.
[3] Michael O Ball. 1986. Computational complexity of network reliability analysis:

An overview. IEEE Transactions on Reliability 35, 3 (1986), 230–239.
[4] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:

An asynchronous multi-GPU programming model for irregular computations. In
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM, 235–248.

[5] Paolo Boldi, Francesco Bonchi, Aris Gionis, and Tamir Tassa. 2012. Injecting
uncertainty in graphs for identity obfuscation. arXiv preprint arXiv:1208.4145
(2012).

[6] Federico Busato and Nicola Bombieri. 2015. BFS-4K: an e�cient implementation
of BFS for kepler GPU architectures. IEEE Transactions on Parallel and Distributed
Systems 26, 7 (2015), 1826–1838.

[7] Yurong Cheng, Ye Yuan, Lei Chen, andGuorenWang. 2015. The reachability query
over distributed uncertain graphs. In 2015 IEEE 35th International Conference on
Distributed Computing Systems. IEEE, 786–787.

[8] Yurong Cheng, Ye Yuan, Lei Chen, Guoren Wang, Christophe Giraud-Carrier, and
Yongjiao Sun. 2016. Distr: A distributed method for the reachability query over
large uncertain graphs. IEEE Transactions on Parallel and Distributed Systems 27,
11 (2016), 3172–3185.

[9] Hristo Djidjev, Sunil Thulasidasan, Guillaume Chapuis, Rumen Andonov, and
Dominique Lavenier. 2014. E�cient multi-GPU computation of all-pairs shortest
paths. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th Interna-
tional. IEEE, 360–369.

[10] Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C. Seshadhri. 2018. Provable
and Practical Approximations for the Degree Distribution Using Sublinear Graph
Samples. In Proceedings of the 2018 World Wide Web Conference (Lyon, France)
(WWW’18). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, CHE, 449–458. https://doi.org/10.1145/3178876.
3186111

[11] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. 2015. Approximately Count-
ing Triangles in Sublinear Time. In 2015 IEEE 56th Annual Symposium on Founda-
tions of Computer Science. 614–633. https://doi.org/10.1109/FOCS.2015.44

[12] Talya Eden, Dana Ron, and C. Seshadhri. 2020. Faster Sublinear Approximation of
the Number of k-Cliques in Low-Arboricity Graphs. In Proceedings of the Thirty-
First Annual ACM-SIAM Symposium on Discrete Algorithms (Salt Lake City, Utah)
(SODA’20). Society for Industrial and Applied Mathematics, USA, 1467–1478.

[13] George S Fishman. 1986. A comparison of four Monte Carlo methods for esti-
mating the probability of st connectedness. IEEE Transactions on reliability 35, 2
(1986), 145–155.

[14] Zhisong Fu, Michael Personick, and Bryan Thompson. 2014. Mapgraph: A high
level API for fast development of high performance graph analytics on GPUs. In
Proceedings of Workshop on GRAph Data management Experiences and Systems.
ACM, 1–6.

[15] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. 2019. XBFS: eXploring runtime
optimizations for breadth-�rst search on GPUs. In Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and Distributed Computing.
121–131.

[16] Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen
Ding, Xiaoye S Li, and Hang Liu. 2021. Dr. Top-k: delegate-centric Top-k on GPUs.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–14.

[17] Xiulian Gao and Yuan Gao. 2013. Connectedness index of uncertain graph.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 21,
01 (2013), 127–137.

[18] Tong Geng, Tianqi Wang, ChunshuWu, Chen Yang, Shuaiwen Leon Song, Ang Li,
and Martin Herbordt. 2019. LP-BNN: Ultra-low-latency BNN inference with layer
parallelism. In 2019 IEEE 30th International Conference on Application-speci�c
Systems, Architectures and Processors (ASAP), Vol. 2160. IEEE, 9–16.

[19] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
Presented as part of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). 17–30.

[20] Pawan Harish and PJ Narayanan. 2007. Accelerating large graph algorithms on
the GPU using CUDA. In International Conference on High-Performance Comput-
ing. Springer, 197–208.

[21] Mark Harris and Kyrylo Perelygin. 2017. Cooperative groups: Flexible CUDA
thread programming. NVIDIA Developer Blog (2017).

[22] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011.
Accelerating CUDA graph algorithms at maximum warp. In ACM SIGPLAN
Notices, Vol. 46. ACM, 267–276.

[23] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. 2011. E�cient parallel
graph exploration on multi-core CPU and GPU. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference on. IEEE, 78–88.

[24] Ming Hua and Jian Pei. 2010. Probabilistic path queries in road networks: traf-
�c uncertainty aware path selection. In Proceedings of the 13th International
Conference on Extending Database Technology. 347–358.

[25] Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. 2011. Distance-constraint
reachability computation in uncertain graphs. Proceedings of the VLDB Endow-
ment 4, 9 (2011), 551–562.

[26] Arijit Khan and Lei Chen. 2015. On uncertain graphs modeling and queries.
Proceedings of the VLDB Endowment 8, 12 (2015), 2042–2043.

[27] Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. 2015. Scalable simd-e�cient
graph processing on gpus. In 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE, 39–50.

[28] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:
vertex-centric graph processing on GPUs. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. ACM, 239–
252.

[29] Hyeongsik Kim, Abhisha Bhattacharyya, and Kemafor Anyanwu. 2019. Semantic
Query Transformations for Increased Parallelization in Distributed Knowledge
Graph Query Processing. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver, Colorado)
(SC ’19). Association for Computing Machinery, New York, NY, USA, Article 4,
14 pages. https://doi.org/10.1145/3295500.3356212

[30] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In WWW ’10: Proceedings of the 19th
international conference on World wide web (Raleigh, North Carolina, USA). ACM,
New York, NY, USA, 591–600.

[31] Dominique LaSalle and George Karypis. 2013. Multi-threaded graph partitioning.
In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
IEEE, 225–236.

[32] Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Leon Song. 2018.
Warp-consolidation: A novel execution model for gpus. In Proceedings of the 2018
International Conference on Supercomputing. 53–64.

[33] Ang Li, Shuaiwen Leon Song, Eric Brugel, Akash Kumar, Daniel Chavarria-
Miranda, and Henk Corporaal. 2016. X: A comprehensive analytic model for
parallel machines. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 242–252.

[34] Ang Li, Shuaiwen Leon Song, Akash Kumar, Eddy Z Zhang, Daniel Chavarría-
Miranda, and Henk Corporaal. 2016. Critical points based register-concurrency

http://law.di.unimi.it/webdata/
http://law.di.unimi.it/webdata/
http://law.di.unimi.it/webdata/
https://doi.org/10.1145/3178876.3186111
https://doi.org/10.1145/3178876.3186111
https://doi.org/10.1109/FOCS.2015.44
https://doi.org/10.1145/3295500.3356212

Enabling E�icient Uncertain Graph Processing via Novel Path Sampling ICS ’22, June 28–30, 2022, Virtual Event, USA

autotuning for GPUs. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 1273–1278.

[35] Rong-Hua Li, Je�rey Xu Yu, Rui Mao, and Tan Jin. 2015. Recursive strati�ed
sampling: A new framework for query evaluation on uncertain graphs. IEEE
Transactions on Knowledge and Data Engineering 28, 2 (2015), 468–482.

[36] Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and
Michalis Vazirgiannis. 2020. The core decomposition of networks: Theory, algo-
rithms and applications. The VLDB Journal 29, 1 (2020), 61–92.

[37] Silviu Maniu, Reynold Cheng, and Pierre Senellart. 2017. An Indexing Framework
for Queries on Probabilistic Graphs. ACM Transactions on Database Systems 42, 2
(2017).

[38] Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R Alam, Thomas C Schulthess,
and Torsten Hoe�er. 2016. A PCIe congestion-aware performance model for
densely populated accelerator servers. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. IEEE
Press, 63.

[39] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a
vertex: a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 25.

[40] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
graph traversal. In ACM SIGPLAN Notices, Vol. 47. ACM, 117–128.

[41] DuaneMerrill, Michael Garland, and AndrewGrimshaw. 2015. High-performance
and scalable GPU graph traversal. ACM Transactions on Parallel Computing 1, 2
(2015), 14.

[42] Marco Minutoli, Prathyush Sambaturu, Mahantesh Halappanavar, Antonino
Tumeo, Ananth Kalyanaraman, and Anil Vullikanti. 2020. Preempt: Scalable
Epidemic Interventions Using Submodular Optimization on Multi-GPU Systems.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article
55, 15 pages.

[43] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167–256.

[44] Evdokia Nikolova, Matthew Brand, and David R Karger. 2006. Optimal Route
Planning under Uncertainty.. In Icaps, Vol. 6. 131–141.

[45] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D Owens. 2015.
Multi-GPU graph analytics. arXiv preprint arXiv:1504.04804 (2015).

[46] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-
SAW: A framework for graph sampling and random walk on GPUs. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15.

[47] Panos Parchas, Francesco Gullo, Dimitris Papadias, and Franceseco Bonchi. 2014.
The pursuit of a good possible world: extracting representative instances of
uncertain graphs. In Proceedings of the 2014 ACM SIGMOD international conference
on management of data. 967–978.

[48] Panos Parchas, Francesco Gullo, Dimitris Papadias, and Francesco Bonchi. 2015.
Uncertain graph processing through representative instances. ACM Transactions
on Database Systems (TODS) 40, 3 (2015), 1–39.

[49] Michalis Potamias, Francesco Bonchi, Aristides Gionis, and George Kollios. 2010.
K-nearest neighbors in uncertain graphs. Proceedings of the VLDB Endowment 3,
1-2 (2010), 997–1008.

[50] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive GraphAnalytics and Visualization. InAAAI. http://networkrepository.
com

[51] Arkaprava Saha, Ruben Brokkelkamp, Yllka Velaj, Arijit Khan, and Francesco
Bonchi. 2021. Shortest paths and centrality in uncertain networks. Proceedings
of the VLDB Endowment 14, 7 (2021), 1188–1201.

[52] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[53] Dipanjan Sengupta and Shuaiwen Leon Song. 2017. EvoGraph: On-the-Fly
E�cient Mining of Evolving Graphs on GPU. In High Performance Computing.
Springer International Publishing, Cham, 97–119.

[54] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan.
2015. GraphReduce: processing large-scale graphs on accelerator-based systems.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 28.

[55] Philip Ta�et and JohnMellor-Crummey. 2019. Understanding Congestion in High
Performance Interconnection Networks Using Sampling. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis (Denver, Colorado) (SC ’19). Association for Computing Machinery, New
York, NY, USA, Article 43, 24 pages. https://doi.org/10.1145/3295500.3356168

[56] Jingweijia Tan, Shuaiwen Leon Song, Kaige Yan, Xin Fu, Andres Marquez, and
Darren Kerbyson. 2016. Combating the reliability challenge of GPU register �le
at low supply voltage. In 2016 International Conference on Parallel Architecture
and Compilation Techniques (PACT). IEEE, 3–15.

[57] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From think like a vertex to think like a graph. Proceedings
of the VLDB Endowment 7, 3 (2013), 193–204.

[58] Ha-Nguyen Tran, Jung-jae Kim, and Bingsheng He. 2015. Fast subgraph matching
on large graphs using graphics processors. In International Conference on Database
Systems for Advanced Applications. Springer, 299–315.

[59] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Ri�el, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 11.

[60] Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, and John D Owens. 2015.
Performance characterization of high-level programming models for GPU graph
analytics. InWorkload Characterization (IISWC), 2015 IEEE International Sympo-
sium on. IEEE, 66–75.

[61] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In First international
workshop on graph data management experiences and systems. 1–6.

[62] Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Rong-Hua Li.
2019. Index-Based Optimal Algorithm for Computing K-Cores in Large Uncertain
Graphs. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 64–75.

[63] Ye Yuan, Lei Chen, and Guoren Wang. 2010. E�ciently answering probability
threshold-based shortest path queries over uncertain graphs. In International
Conference on Database Systems for Advanced Applications. Springer, 155–170.

[64] Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu. 2019.
DiGraph: An E�cient Path-Based Iterative Directed Graph Processing System
on Multiple GPUs. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems
(Providence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New
York, NY, USA, 601–614.

[65] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simpli�ed graph processing
on GPUs. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014),
1543–1552.

[66] Jian Zhou, Fan Yang, and Ke Wang. 2014. An inverse shortest path problem on
an uncertain graph. Journal of Networks 9, 9 (2014), 2353.

[67] Rong Zhu, Zhaonian Zou, and Jianzhong Li. 2017. Towards e�cient top-k re-
liability search on uncertain graphs. Knowledge and Information Systems 50, 3
(2017), 723–750.

[68] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning..
In USENIX Annual Technical Conference. 375–386.

[69] Zhaonian Zou, Faming Li, Jianzhong Li, and Yingshu Li. 2017. Scalable Processing
of Massive Uncertain Graph Data: A Simultaneous Processing Approach. In IEEE
International Conference on Data Engineering.

[70] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010. Finding top-k
maximal cliques in an uncertain graph. In 2010 IEEE 26th International Conference
on Data Engineering (ICDE 2010). IEEE, 649–652.

http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1145/3295500.3356168

ICS ’22, June 28–30, 2022, Virtual Event, USA Heng, Lingda, Hang, Donglin, Rui, et al.

A Accuracy Analysis of Path-Sampling
Methodology

This section provides theoretically analysis on the accuracy of
uncertain graph methods.

Consider an uncertain graphG = (+ , ⇢, %) with |+ | = = and |⇢ | =
<, where+ and ⇢ denote the set of nodes and edges respectively. %
is a set of probabilities representing the likelihoods of the existence
of edges, i.e., ?4 denotes the probability of 4 2 ⇢. The existence
of an edge is independent with each other. Let ⌧ = (+⌧ , ⇢⌧) be
a possible graph which is obtained by sampling each edge e in G
following the probability ?4 . Obviously, +⌧ = + , ⇢⌧ ⇢ ⇢, and the
probability of ⌧ is given by

Pr[⌧] =
÷
42⇢⌧

?4
÷

42⇢\⇢⌧
(1 � ?4)

Taking into account that the accuracy of results are dependent
on the number of sample worlds, we further theoretically analyze
the accuracy achieved by recent sampling methodologies, entirety,
partition and our path sampling methodologies. There are two parts
that cause accuracy loss: (1) the choice of sampling method; and (2)
the choice of decomposition and preprocessing methods.

Referring to (1) the choice of sampling method, since sampling
is a technique for approximate query processing, it will lose infor-
mation while accelerating the querying process, and less sampling
time leads to larger errors in the reliable results. To achieve a theo-
retical estimation accuracy, the Cherno� bound is widely applied
to determine the number of possible worlds in uncertain graph
literature. Given an uncertain graph G, a distance function 3 , and a
pair of nodes B and C , the accuracy of estimating the value of 3 (B, C)
by MC sampling can be well guaranteed. To achieve an error rate
of n > 0 with a failure probability of f > 0, i.e., the number of
samples needed is: 6(G, B, C, n, X) = max

n
3

n230 (B,C) ,
q (G)2
2n2

o
· ln

⇣
2
X

⌘
,

where 3 0(B, C) is the estimated value of 3 (B, C), and the function
q (G) = max(B,C)2+⇥+ 3 (B, C) is the diameter of G.

In practice, one usually focuses on �nding the pairs with a given
threshold d . Note that in general d is not too small, and thus we
have q (G)2

2n2 � 3
n2d . Therefore, the number of needed samples is

computed as: 6(G, n, X) = q (G)2
2n2 ln

⇣
2
X

⌘
.

Referring to (2) the choice of decomposition and partition methods,
there exists inaccurate impacts in the generated uncertain sub-
graphs due to information loss during graph decomposition (e.g.,
deleting vertices or edges), leading to errors in reliability results.

Entirety Sampling. Entirety sampling estimates the reliable re-
sults from the full uncertain graph, reporting source-to-target reach-
ability as 1 or 0 in each sample. Because the entire number of
possible world are generated, the entirety sampling methodology
without deleting any structures ensures lossless reliability results.

Partition Sampling. Partition sampling methodologies use decom-
positionmethods that result in losing information, such as, indexing
tree index structures with F83C⌘ > 2 (illustrated in Section 2.2).
The uncertain subgraph distilling from index searching becomes
inaccurate, resulting in reliable errors. WhenF83C⌘ = 2, the tree is
a binary tree that ensures full connection between triplets without
cutting any edges [37], resulting in lossless results. The partition

sampling would then be accuracy lossy with bound via building
full connected index tree.

Path Sampling. Because of the non-redundant generated struc-
tures, path sampling is e�cient on achieving reliable results. First,
path sampling improves sampling e�ciency by removing the large
overhead of generating massive possible worlds. As a result, the
sampling error is reduced, alleviating the impact from sampling
insu�cient amount of possible worlds. Second, path sampling is
faster than entirety and partition sampling for executing uncertain
graph applications because it eliminates redundant sampling over-
head. Table 6 depicts the comparison of recent work on sampling
methods.

Table 6: Sampling Method Comparison.

Sampling Method Space Time Query Accuracy
Monte Carlo Quadratic Linear Lossless
BitEdge Quadratic Linear Lossless
ProbTree Quadratic Linear Lossy (with bound)
DistR Linear Linear Lossy (with bound)
BPGraph Linear Linear Lossless

View publication stats

https://www.researchgate.net/publication/360587970

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Uncertain Graph Basics
	2.2 Uncertain Graph Sampling
	2.3 Challenges & Opportunities
	2.4 Our Goal

	3 Novel Path Sampling
	3.1 Overview
	3.2 Computational & Memory Overhead

	4 BPGraph Framework
	4.1 Path-Sampling Centric Programming
	4.2 GPU-based Design for Asynchronous Path Identification and Sampling
	4.3 Scalable BPGraph Implementation on Multiple GPUs

	5 Evaluation
	5.1 Comparison with State-of-the-art
	5.2 Evaluation on Memory Cost
	5.3 Execution Time Breakdown
	5.4 Evaluation on Accuracy
	5.5 Evaluation on Impact of Distance Metrics
	5.6 Scale-Up Scalability over Multiple GPUs

	6 Related Work
	7 Conclusion and Future Work
	References
	A Accuracy Analysis of Path-Sampling Methodology

