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Abstract

Finding a fast solver for the Poisson equation is im-
portant for many scientific applications. In this work,
we design and develop a matrix decomposition based
Conjugate Gradient (CG) solver, which leverages Graphics
Processing Unit (GPU) clusters to accelerate the calculation
of the Poisson equation. Our experiments show that the
new CG solver is highly scalable and achieves significant
speedup over a CPU-based Multi-Grid (MG) solver.
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I. INTRODUCTION

The Poisson equation is widely used in scientific and
engineering fields, and remains computationally challenging.
For example, in computational fluid dynamics, this equation
is part of the Navier-Stokes equations which can be utilized
to describe a wide range of dynamic fluid phenomena. In
this work, we focus on solving the Poisson equation on an
integrated domain. In our previous work [1], we use an MG
solver on traditional CPU clusters to calculate the Poisson
equation. Because Poisson equation is a second derivative
partial differential equation, the MG solver may take a lot of
CPU time. In this work, we design and develop a GPU-based
CG solver that leverages row-oriented matrix decomposition
and achieves good scalability and speedup over the MG solver.

In the simulation, we consider a three-dimensional driven
cavity problem [2]. The baseline flow solver used in this study
is ‘Vicar3D’ which is developed by our group at JHU [1]. The
Poisson equation (3D) can be written as:
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To solve this Poisson equation numerically, the first step is
discretizing the 3-D Poisson equation into a set of difference
equations on the domain. Due to the simulation requirement,

we discretize Eq. (1) based on non-uniform mesh domain:
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Further, this equation can be written as:

apxpi+1,j,k + amxpi−1,j,k + apypi,j+1,k + amypi,j−1,k +

apzpi,j,k+1 + amzpi,j,k−1 + acpi,j,k = rhsi,j,k (3)

where the parameters are the following:
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where (i, j, k) are the indices in (x, y, z) direction respectively.
Combining all the difference equations, we can get:

A~x = ~b, (4)

where ~x is the solution vector of which element is pi,j,k and
the element of ~b is rhsi,j,k.

II. FAST CG SOLVER

As the problem size grows, one has to decompose the prob-
lem into smaller sub-problems and solve them in parallel. In
our solver, we first look into the most popular decomposition
methods, domain decomposition and functional decomposition
[3]. Domain decomposition splits the whole domain into sev-



eral smaller sub-domains and iteratively searches the solution
by coordinating the calculation of adjacent sub-domains [4][5].
As a first attempt, we implement the domain decomposition-
based CG method [5]. However, the convergence speed is
very slow, because our problem does not have a physically
separable domain. On the other side, functional decomposition
aims to process the functions on the domain in parallel, and
it is not applicable for the Poisson equation.

To this end, we design and develop Matrix Decomposition
(MD) to solve Eq. (1), where we construct only one large
sparse matrix A that is factorized into several smaller canon-
ical forms. Each canonical form contains an equal number
of the rows from matrix A. At first glance, the row-oriented
matrix decomposition would not scale because every row of
the matrix would have to reach from the beginning to the end
of vector ~x and ~b in Eq. (4). However, since A is a sparse
matrix, every row of A reaches only part of vector ~x and ~b.
Therefore, this row-oriented matrix decomposition can scale
and outperform the typical LU, Block LU, Column-oriented
or Cholesky decompositions [6] for the following reasons:

• Row-oriented decomposition avoids the inter-machine
communication because every row of A is the stencil of
one cell in the domain of Eq. (1), which is computed on
one machine.

• Row-oriented decomposition stores only the non-zero el-
ements. The block LU or Column-oriented decomposition
will need to store either zeros or index information.

• Row-oriented decomposition can employ multiple GPUs,
each of which will solve a number of rows in parallel.
On the other hand, the LU decomposition can scale only
to two GPUs, and the Cholesky decomposition requires
A to be symmetric which is not always the case.

We employ diagonal preconditioner (Jacobi preconditioner)
for our problem because it requires no extra storage and
computation for the preconditioner. At meantime, due to
the decretizing time step is not very small in ’Vicar3D’,
diagonal preconditioner is enough for stablize A of Eq. (4).
Furthermore, we utilize three GPU-based optimizations in the
solver: GPU affinity [7], GPU P2P communication [8] and
GPU stream launching [8].

III. EXPERIMENTS

We have implemented our solver in C and CUDA code.
We evaluate the solver and the new combined code on
Forge, a 153-teraflop supercomputer at the National Center
for Supercomputing Applications (NCSA) that is a part of
National Science Foundation’s Extreme Science and Engi-
neering Discovery Environment (XSEDE) program. The GPU
devices installed in Forge are Nvidia Tesla M2070 cards. In
this experiment, we mainly study the scalability of our solver
on one machine and on multiple machines. We test different
problem sizes from 1283 to 5123. Note that we are running
the cubic problem domains, and in the following, we use 128
to represent the 1283 problem, 256 for the 2563, and so on. In
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Fig. 1. Speedup on one machine

the evaluation, we use double precision for calculation. The
precision requirement for both our CG solver and MG solver
is 10−3. We use gcc 4.4, mpicxx (mpich 1.4), and nvcc 4.0
for compiling.

Figure 1 shows the performance when our CG solver
employs different numbers of GPU devices on a single Forge
node. Note that since the 512 problem cannot fit in one or
two GPU devices, it runs from three to eight GPUs. For the
large problems, our solver achieves close to linear speedup,
e.g., the 512 problem has the highest speedup of 7.35 among
all problem sizes, since the overhead ratio for small problems
is larger than big problems.

Further, we compare the performance of the new CG solver
and our existing CPU-based MG solver. For the uniform
problem size of 512, our CG solver consumes 154 seconds
when employing 40 GPU devices, while the previous MG
solver consumes 9.4 hours when utilizing 128 CPUs. In other
words, our new solver is able to improve the simulation
performance by 219 times.
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