
TRICORE: Parallel Triangle Counting on GPUs

Yang Hu† Hang Liu‡ H. Howie Huang†
†The George Washington University
‡University of Massachusetts Lowell

huyang@gwu.edu,Hang Liu@uml.edu,howie@gwu.edu

Abstract—Exact triangle counting algorithm enumerates the
triangles in a graph by identifying the common neighbors of
two vertices of each edge. In this work, we present TRICORE,
a scalable GPU-based triangle counting system that consists of
three major techniques. First, we design a binary search based
algorithm that can increase both the thread parallelism and
memory performance on Graphics Processing Units (GPUs), both
of which are absent from prior work. Second, in contrast to
prior attempts which require multiple graph representations, i.e.,
compressed sparse row (CSR), edge list, and bitmap, to be present
in the GPU memory, TRICORE evenly partitions and distributes
the partitioned CSR data across all the GPUs, and uses a
streaming buffer to load the edge list from the CPU memory on
the fly. This design enables TRICORE to process the graphs that
are orders of magnitude larger than the GPU memory. Third, we
further develop a dynamic workload management technique to
balance the workload across GPUs. Our evaluation demonstrates
that TRICORE on a single GPU can count the triangles in the
billion-edge Twitter graph within 24 seconds, that is, 22× faster
than the state-of-the-art CPU project which uses CPUs that are
8× more expensive. When processing big graphs (up to 33.4
billion edges) that are ∼22× larger than the memory size of a
single GPU, it achieves 24× speedup when scaling from 1 to 32
GPUs.

I. INTRODUCTION

Exact triangle counting serves as a building block for an

array of graph algorithms such as clustering coefficients [63]

and k-truss [58]. Also, exact triangle counting can be easily

extended to other triangulation algorithms such as triangle

listing, 3-profiles [23], and counting cycles of a specific

size [6]. In practice, triangle counting is also used for a wide

range of applications, such as, detection of spams [10] and

thematic structures [22], link recommendation [55] and social

network analysis [18], [20].

Traditional triangle counting algorithm iterates through each

edge of the graph and intersects (i.e., compares) the neighbor

lists of both source and destination vertices. Once a common

neighboring vertex is found, a triangle is enumerated. As such,

the theoretical computation complexity of triangle counting is

O(|E|1.5), where |E| is the number of edges in the graph

of interest [6], [51], [30]. Given real-world graphs can easily

go beyond trillion-edge [49], [31], [37], triangle counting is

regarded computationally prohibitive [51], [12], [64], [57].

Contemporary GPUs, such as Nvidia Volta V100 [5] that

can provide 14 Tera-Floating Points Operation Per Second

(TFLOPS) and 900 Gigabytes/s (GB/s) throughput [60], are

ideal platforms to accelerate triangle counting algorithm. We

observe a plethora of projects [27], [59], [13] have already

explored this direction. However, these efforts face severe

hindrances to unleash the potential of GPUs. For example,

[27] has largely followed a CPU-based approach, i.e., merge-

based triangle enumeration. As such, it first needs to pay non-

trivial overhead to evenly partition the neighbors of source and

destination vertices [26] across a warp of GPU threads. After-

wards, each thread in the warp will encounter strided memory

access since the former step schedules consecutive threads to

process non-adjacent neighbor list partitions. In addition, all of

these projects are restricted to a single GPU and they require

multiple formats of the graph to be present in the GPU’s

memory. Even the GPU with the largest memory available,

the Maxwell P100, has only 24GB of memory. Even worse,

some of them, e.g., [13], [12], have to reserve considerable

GPU memory space for intermediate data structures, further

limiting the size of the graphs that can be handled by GPUs.

In this context, scaling triangle counting to distributed

memory systems is of vital importance to fully take advantage

of GPUs. Unfortunately, triangle counting needs the two-hop

neighbors of each vertex in order to enumerate triangles, which

places stringent requirements on inter-machine communica-

tions and workload balancing. For instance, the most recent

Graph Challenge [1] champion (i.e., [46]) which relies on

traditional 1-D partition [17], [16] and vertex delegation [47]

mechanisms to distribute graphs, experiences non-trivial inter-

machine communications and thereby shows poor scalability

(4.2× speedup from 16 to 256 machines).

To address these challenges, we have developed a new

scalable triangle counting framework – TRICORE – which is

able to scale our triangle counting to a large number of GPUs

and process big graphs that are orders of magnitude larger than

GPU memory with up to 24× speedup over the state-of-the-art

attempts. It consists of the following major techniques.

First, we design a novel binary search-based triangle count-

ing algorithm for GPUs with rigorous theoretical support.

Specifically, our approach uses one neighbor list as the lookup

list and the other as the binary search tree. Afterwards, it

checks the binary search tree to see if each lookup element

exists in the tree. Further, TRICORE caches the first few levels

of the binary search tree in the fast GPU shared memory,

resulting in another 18% reduction of (expensive) global

memory transactions.

This algorithm addresses the warp divergence and ineffi-

cient memory access issues, both of which are faced by the

conventional merge-based algorithm. Our theoretical analysis

shows that in spite of slightly worse time complexity, parallel

binary search-based algorithm performs significantly better

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

Fig. 1: Various Graph Representations and Hybrid CSR. Our input is a simple undirected graph G = (V,E) and output is the triangle
number in this graph. The main structured representations of a graph are shown in Figure 1. Note that the adjacency list format (CSR) is a
compressed matrix but also can be seen as half of edge list with a begin position to distinguish the source node of edges. Adjacency array
format has similar features but puts neighbor lists in multiple arrays and uses pointers instead of begin position arrays.

than merge-based intersection on GPUs. In short, the new bi-

nary search approach reduces the memory transactions by 6×,

which makes TRICORE 6× and 2.7× faster than the state-of-

the-art GPU implementations [27], [13], respectively, and 2.5×
and 1.9× faster than the latest CPU implementations [51],

[64], respectively.

Second, we further propose a three-pronged optimization

in order to allow TRICORE to accommodate the extremely

large graphs with a collection of GPUs in a distributed system.

First, TRICORE only stores the CSR format of the graph

in GPU memory. To load the edges from CPU memory to

GPU memory, TRICORE uses a ring of streaming buffers.

In particular, such a process of edge loading is completely

overlapped with the counting of triangles. Second, TRICORE

adopts an external memory algorithm to partition the CSR

format of the graph into communication-free sub-partitions.

Third, TRICORE designs a new dynamic scheduling technique

to balance workload across a large number of GPUs. Taken

together, TRICORE can solve graphs whose sizes are orders of

magnitude larger than a single GPU memory space. TRICORE

also achieves close to linear scalability from 1 to 32 GPUs.

We evaluate TRICORE in three different settings: a single

GPU, multi-GPU on a single machine, and many GPUs across

multiple machines. First, our single Nvidia Titan X based

TRICORE outperforms the state-of-the-art single GPU and 48-

core CPU projects by 2.2× and 8.5×, respectively. Note that

the total cost of Titan X GPU and the host CPU is 8× cheaper

than the 48-core CPU. Second, TRICORE on two Titan X

GPUs can obtain a comparable performance to the latest Graph

Challenge Champion [46], which uses 256 machines. This

is also 4.4× faster than the existing distributed CPU-based

triangle counting (i.e., PDTL) on six machines. Last, we use

a cluster of 32 Nvidia K20 GPUs to process the graphs that

are up to ∼22× larger than the memory size of a single GPU,

and achieve 24× speedup when scaling from 1 to 32 GPUs.

The rest of paper is organized as follows. Section II de-

scribes background and related work. Section III presents the

main challenges of achieving good performance of triangle

counting on single GPU and multiple GPUs, and gives an

overview for all solutions in our system. Section IV and V

discuss the techniques proposed in this paper. The experiments

and results are presented in Section VI. Section VII concludes.

II. BACKGROUND AND RELATED WORK

This section first discusses the preliminary background

for TRICORE – GPU architecture, current triangle counting

algorithms, and merge-based intersection. Subsequently, we

present the landscape of the related work.

A. Graphics Processing Unit

For triangle counting, GPUs offer two advantageous fea-

tures. First, GPUs have thousands of simplified CUDA (Com-

pute Unified Device Architecture) cores, thus can run a large

number of threads. For example, Nvidia K40c GPUs (used in

this paper) feature 2,880 CUDA cores and support millions of

threads [43]. Second, their memory bandwidth is high, e.g.,

288GB/s in K40c vs. 68GB/s on Xeon E5-2683 [3]. Below,

we rigorously discuss GPU thread and memory hierarchies.

Thread hierarchy. A GPU contains several streaming

multiprocessors (SMX), and each SMX contains hundreds

of CUDA cores. The CUDA programming model provides

several thread mapping abstractions. Namely, a thread uses

one core to execute, and 32 consecutive threads form a warp.

A set of consecutive warps further arrive at a Cooperative
Thread Array (CTA). All the CTAs together are called a Grid
which accounts for all the threads on a GPU. In particular,

each SMX executes one warp of threads in Single Instruction

Multiple Data (SIMD) fashion. Given that, when a warp is

executing through a branch, it has to wait even if only part

of the threads of the warp take a particular branch, which is

termed as branch divergence.

Fig. 2: Memory access patterns.

Memory hierarchy. All the SMXs share the same GPU

global memory and L2 cache. Besides, each SMX further owns

a private, manually controllable on-chip shared memory that

is accessible by all the threads in one CTA. It is worth noting

that GPUs contain much smaller caches than CPUs. Using the

GPU and CPU used by this paper as an example, each K40c

SMX features a 64KB shared memory and shares the 1.5 MB

L2 cache with all other SMXs. In contrast, Xeon E2683 CPU

equips a 35 MB last level cache (LLC) [3] . As a result, data

reuse opportunity is challenging on GPUs especially for data-

intensive tasks such as triangle counting. GPU full memory

bandwidth can only be achieved via coalesced memory ac-
cesses, i.e., all threads in the warp access consecutive memory

addresses. In contrast, strided memory accesses that are caused

by scheduling each thread in a warp to read far apart addresses

will result in much lower throughput.

Mathematically, a stride of k will lead to k−1
k throughput

degradation. Coalesced access is a special case where k = 1.

As shown in Figure 2, the stride of Figure 2(a) and 2(b) are 1
and 3. Thus Figure 2(b) experiences 2

3 throughput reduction.

B. Triangle Counting Algorithm

A graph G = (E, V), where E and V represent the

edges and vertices, respectively, can be stored in a variety

of representations, such as edge list and CSR. Figure 1(b)

and 1(c) exemplify the two formats, respectively. A triangle

is defined as a group of three vertices with one edge between

each pair of vertices. For example, vertices 0, 1 and 3 from

Figure 1(a) form a triangle Δ0,1,3.

Algorithm 1 Vertex-iterator

1: G = (E, V)
2: foreach u ∈ V in parallel do
3: foreach v ∈ N(u) do
4: count+=Intersection(u, v);
5: end for
6: end for

Algorithm 2 Edge-iterator

1: G = (E, V)

2: foreach (u, v) ∈ E in parallel do
3: count += Intersection(u, v);

4: end for

Current triangle counting algorithm, i.e., compact-
forward [35], [51], [24], [27], [7], consists of two major

steps: orientation and computation. On one hand, orientation

step pre-processes the input (undirected) graph – the focus

of this work – which reduces half of the edges in order

to eliminate redundant computation, e.g., triangle Δ0,1,3

and Δ0,3,1 are actually identical but will be found twice.

On the other hand, computation exploits intersection to

count triangles on the preprocessed graph. For sake of

brevity, we use d(v) and N(v) to denote the degree and

all neighbors of vertex v, respectively. The intersection()
function counts |N(u) ∩ N(v)|, which is the number of

shared neighbors between vertex u and v of an edge (u, v).
As shown in Figure 1(a), there exist two shared neighbors 3

and 6 among the neighboring lists of vertex 0 and 1 from the

edge (0, 1), which means there are two triangles Δ0,1,3 and

Δ0,1,6. Eventually, the sum of all the counts returned by the

intersection is the total number of triangles in a graph.

Algorithm 1 and 2 are vertex- and edge-iterator triangle

counting algorithms with the only difference being that the

former initializes the parallelism from each vertex while

the latter from each edge. TRICORE prefers edge-centric

stemming from the consideration of workload balancing. In

particular, the workload of each edge (u, v) is d(u) + d(v),
that is, the summation of out-degrees of the two vertices. In

comparison, with vertex-centric, the workload of each vertex

v turns out to be d2(v) + Σui∈N(v)d(ui). Intuitively, these

equations imply that the workload imbalance is linear and

quadratic to the skewness of degree distribution [19], [27],

respectively. However, edge-centric mechanism requires edge

list to be present in memory for higher parallelism [27], which

limits the graph size that can be accommodated.

Hash-based algorithm [35] exploits hash instead of inter-

section to count triangles but experiences the same complexity

of O(|E|3/2) as mainstream intersection-based algorithms.

Prior works [35], [51] also show that in experiments the

merge/intersection based algorithm is practically better than all

others, such as hash-based one. This also explains the reason

TRICORE chooses to optimize intersection-based algorithms.

C. Merge-Based Intersection

Merge-based intersection is commonly recognized as the

state-of-the-art approach to identifying common neighbors

for triangle counting [59]. Its time complexity is O(d(u) +
d(v)) [24] where d(u) and d(v) are the degrees of vertex

u and v, respectively. Figure 1(e) illustrates the merge-based

intersection for edge (0, 1). During intersection, it uses two

pointers to scan through the neighbor lists of vertex 0 and 1.

If the neighbors from both lists are equal, a triangle is found

and both pointers are incremented. Otherwise, the pointer for

the array with the smaller neighbor ID is increased. In this

example, one has to traverse from the top left to the bottom

right corner. Any vertical or horizontal moves indicate no

matches, while a diagonal move stands for the finding of a

triangle, e.g., vertices 3 and 6. Overall, the time complexity

of merge based triangle counting algorithm is
∑

v∈V
d2(v).

D. Graph Benchmark

Name Abbr. Description |V | |E| Triangle

Facebook FB Facebook user to friend link 96M 620M 3B
Orkut OR Orkut online social network 8M 327M 223M
Twitter TW Twitter follower network 41M 1.4B 34B
Wikipedia WK Links between Wikipedia pages 11M 258M 10B
RMAT RM R-mat (scale 22, degree 64) 4M 253M 2.1B
Random RD GTgraph: uniform degree 4M 511M 349K
Kronecker1 KR1 Kronecker (scale 22, degree 64) 4M 242M 5.3B
Kronecker2 KR2 Kronecker (scale 25, degree 16) 33M 523M 22B

Gsh-2015 GSH Web graph 988M 33.2B 1.78T
Kron-30-16 KR3 Kronecker (scale 30, degree 16) 1.07B 17.0B 2.3T
Kron-31-16 KR4 Kronecker (scale 31, degree 16) 2.14B 34.1B 1.07T

TABLE I: Graph specification.

In this work, we use both real datasets and synthetic

graphs to evaluate the performance of TRICORE. The detailed

descriptions of graph benchmarks are shown in Table I. Briefly,

real datasets include the social networks, e.g., Twitter [33],

Facebook [25] and Orkut [42], and web graphs such as

Wikipedia [32]. In social networks like Facebook and Orkut,

each vertex is a user and each edge stands for a friendship

between two users. Twitter is a social media graph where

each directed edge represents a user follow relationship. In

web graphs such as Wikipedia, each vertex is a page and each

directed edge represents a hyperlink. We also use three popular

synthetic graph generators to generate graphs with various

degree distributions. For instance, random distribution [39]

ensures all vertices have the same number of out-edges.

R-MAT [19] and Kronecker [4] generate power-law degree

distribution graphs. To demonstrate that TRICORE can handle

large graphs, we also use three large graphs, i.e., GSH [15],

[14], KR3 and KR4 that contain tens of billions of edges.

E. Related Work

This section discusses the landscape of related work in three

aspects – exact, approximate, and distributed triangle counting.

The former two report the count of triangles with the only

difference dwelling on how accurate the count is, while the last

one focuses on counting triangles in a distributed environment.

Exact Triangle Counting is the goal of TRICORE. For

simplicity, we use triangle counting to denote exact triangle
counting in this paper. Triangle counting can be implemented

using generic graph engine [34], [11], [21], or using linear

algebra methods [9], [64], [59]. A representative project can

be found in [51], which gains the speedup mainly via edge

reduction motivated by another theoretical work [35]. Scaling

up to 40 CPU cores, [51] uses a merge-based algorithm

and achieves up to 50× speed up over a single threaded

implementation.

The most relevant work [27] implements a merge-based

algorithm on a single GPU. To enhance the parallelism, this

work adopts their prior method [26] to partition two neighbor

lists of each edge into 32 balanced and disjoint sections,

which are subsequently processed by 32 threads from a warp

concurrently. As noted in Section I, this attempt suffers from

nontrivial overhead of partitioning the neighbor lists and

further strided memory access. To solve this problem, we

introduce a binary search based intersection method, and a

scalable approach to distribute TRICORE across GPUs.

Approximate Triangle Counting. As a trade-off of preci-

sion and time consumption, many works shift to approximate

triangle counting, e.g., [54], [44], [48], [50]. The most impor-

tant technique in this line of research is sampling, that is, how

to achieve high accuracy with much smaller sampled graph.

Notably, Doulion [56] achieves 99% accuracy by speeding

up the process by 130×. While our work delivers better

performance with exact counts, it would be interesting to

combine our technique with the approximation methods, which

we leave as future work.

Distributed Triangle Counting concerns about workload

balancing and communication. A few projects have proposed

load balancing schemes for triangle counting in distributed

environment, whereas they either fail to exactly balance the

workload, or end up with extremely high balancing overhead.

For example, MapReduce triangle counting work [53] uses

rank-by-degree to distribute an equal number of vertices across

machines in a round robin fashion. However, this design can

merely alleviate, not resolve, the workload imbalance issue.

Message Passing Interface (MPI) based triangle counting

works [7], [8] use a static workload partitioning which relies

on a costly process to estimate the workload for each vertex.

Deploying triangle counting on MapReduce [53], [45], [61]

is another form of distributed triangle counting. One notable

work [53] proposes to partition the graph into overlapped

subgraphs in order to ensure one triangle appears in at least

one partition. A follow-up work [45] carefully classifies the

type of triangles during partitioning so that each triangle is

counted only once. However, all these attempts pay significant

overhead to load graph in memory for computation.

In contrast, we identify two essential requisites for a scalable

distributed triangle counting: a balanced and communica-
tion free partitioning method, and a runtime load balancing

Fig. 3: TRICORE framework.

schema. In particular, we extend the external memory par-

titioning method to distribute the CSR format of the graph

across GPUs. Afterwards, TRICORE uses a well-tuned stream

buffer to load the edge list in the GPU memory, which is

completely overlapped with computation. Finally, we build

an on-the-fly workload balancer to address the workload

imbalance issue.

III. TRICORE OVERVIEW

In this section, we introduce the architecture of TRICORE,

a high-performance scalable triangle counting algorithm. To

motivate our designs, we evaluate prior GPU-based triangle

counting projects [27] and come up with two key observa-

tions. First, we identify irregular memory footprint as the

major bottleneck for prior projects. In response, we design

a novel memory friendly intersection algorithm to overcome

this bottleneck. Second, prior endeavors are limited to single

GPU thus require graph data to fit in meager GPU memory.

Worse still, to retain efficiency, they tend to store multiple

formats of the graphs in GPU memory. Consequently, these

attempts can only count triangles on graphs of 3 - 4 GBs.

In contrast, TRICORE not only stores just one graph format

(CSR) in GPU memory, but also partitions this format so that

each GPU only accounts for one part of the CSR. Further,

the edge list format is streamed to GPU memory at runtime

with negligible performance penalty and further facilitates our

dynamic workload balancing designs. Figure 3 presents the

architecture of TRICORE.

Fig. 4: Merge-based intersection.

Observation #1: Prior intersection algorithms suffer from
irregular memory access patterns. We use the merge-based

algorithm [27], shown in Figure 4, as an example. Note that

we use the same graph as shown in Figure 1. Particularly, it

consists of two steps: partitioning the workload (Figure 4(a))

and execution (Figure 4(b)). The first step, which partitions

adjacent lists of vertex u and v into two disjoint parts, requires

nontrivial O(log(|N(u)| + |N(v)|)) operations. In this case,

u and v are vertices 0 and 1, respectively. Afterwards, the

execution also suffers from strided memory access patterns.

For instance, while thread 1 is checking the 1st elements

of those two arrays (i.e., 1 and 0), thread 2 is doing that

on the 4th elements of those two arrays (i.e., 6 and 5).

Thereby, consecutive threads which are thread 1 and 2, are

accessing non-consecutive addresses. Such a strided memory

access pattern will potentially experience orders of magnitudes

lower memory throughput [43], [36]. Another state-of-the-art

work [13] uses bitmap based algorithm which incurs scattered

(random) memory access pattern. A bitmap stores a record

using its value as address to support O(1) computational

complexity search. However, when the threads in a warp

search a list of keys in parallel, they can potentially read

different random addresses, which makes the performance

even worse than strided memory access.

In this paper, we propose a parallel GPU-aware binary

search based intersection algorithm that experiences ∼6×
fewer memory traffic comparing to conventional merge based

algorithm on GPUs. We further cache critical binary tree nodes

in GPU shared memory (L1 cache) to reduce another ∼20%

expensive global memory transactions. Beyond that, we also

provide detailed theoretical proofs to demonstrate why our

parallel GPU-aware binary search based intersection is a better

fit for GPU architecture.

Observation #2: Conventional GPU-based projects con-
sume excessive amount of memory space. As detailed,

in Section II-B, existing work chooses edge-centric design

over vertex-centric one to combat workload imbalance con-

cerns. TRICORE further exploits a finer-grained parallelization,

called warp-edge, which uses a warp to work on an edge

at one time. Because this avoids the warp divergence prob-

lem [26], [28], [41], this mechanism shows more promising

performance.

However, both edge-centric and warp-edge parallelizations

generally require both the edge lists and the adjacency lists

(CSR) formats to be present in the GPU memory [27]. We

have also investigated the possibility of using CSR format

alone to implement edge-centric design. However, with this

data format, if one edge in CSR adjacency list is dispatched

to a thread, this thread has to calculate the source vertex of

the edge, which introduces nontrivial overhead [40]. To avoid

this overhead, we need to store the edge list in memory to

support edge-centric parallelization.

To further exacerbate the situation, an edge list format takes

about twice the storage space of the CSR format. Thus this

design, in total, consumes 3× of the space of a CSR alone

design. Another work [13] suffers the same issue and, worse,

further requires an additional memory space to store a bitmap

data structure. Using Twitter Graph [33] (60M nodes and 1.4B

edges) as an example, the bitmap consumes about 2 - 10 GB

based upon various configurations, while the CSR format takes

about 4GB memory space.

In this work, TRICORE preserves the edge-centric comput-

ing model with partitioning the CSR format graph in 2-D

vertical manner so that each CSR, i.e., CSR0, ... CSRk in

Figure 3 can fit in GPU memory. Meanwhile, all GPUs use

a streaming buffer to, on-the-fly, load the edge list in GPU

memory for intersection. The size of the streaming buffer is

tuned so that loading and computing are perfectly overlapped.

IV. TRICORE: PARALLEL BINARY SEARCH-BASED

INTERSECTION ON GPU

This section starts with our novel binary search-based in-

tersection algorithm. Afterwards, we detail our optimizations.

Eventually, we provide the theoretical analysis to explain why

this algorithm bests traditional merge-based intersection.

A. Binary Search-based Intersection

This proposed binary search-based intersection algorithm

takes the two neighbor lists of an edge as inputs. In particular,

it selects one neighbor list as the lookup list while the other

as binary search list. During intersection, it checks whether

each entry of the lookup list appears in the binary search list.

The basic idea is illustrated in Figure 5. In practice, instead of

constructing a real binary search tree, we simply use a sorted

array for the binary search list. In each iteration, it compares

the lookup element to the middle of the binary search list,

such as the root vertex 5 in the binary search tree. While

descending, the search-space halves. For instance, the process

of lookup vertex 1 checks vertex 5, 3 and 0 iteratively. The

detailed code is shown in Algorithm 3.

Algorithm 3 Parallel binary search-based intersection for A∩B

1: Assuming |A| < |B| and count = 0;
2: foreach x ∈ A in parallel do
3: bottom = 0, top = |B| − 1;
4: while bottom < top− 1 do
5: mid = (top+ bottom) >> 1;
6: if x < B[mid] then
7: top = mid;
8: else if x > B[mid] then
9: bottom = mid;

10: else � x == B[mid]
11: count++; break;
12: end if
13: end while
14: end for

TRICORE always uses the longer neighbor list as a binary

search tree while the shorter one as the lookup list to minimize

the time complexity which we will discuss shortly. By using

binary search, the time complexity of the intersection function

of e = (u, v) is O(m∗log n) where m = min{d(u), d(v)} and

n = max{d(u), d(v)}. As a result, the overall time complexity

T =
∑

e∈E
O(m(e) · log n(e)). The worst case complexity is

reached when the graph is a complete graph, thus with
√|E|

vertices and |E| edges, then takes O(|E|3/2 · log√|E|) time

cost when the graph is a clique.

In terms of time complexity, We have to admit that bi-

nary search-based intersection is often worse than merge-

based designs on CPUs. Specifically, for an arbitrary edge

(u, v), we still use the notation m = min{d(u), d(v)},

n = max{d(u), d(v)}. Merge and binary search-based inter-

sections present O(m+ n) and m · log(n) time complexities,

respectively. The following observations are straightforward:

• m � n: Binary search provides better time complexity.

• m ∼ n: Merge-based intersection excels.

Fig. 5: Binary search-based intersection: one array for the lookup list while the other for the binary search tree. Note, the binary search tree
is simply implemented as a sorted array.

Firstly, the orientation step from compact-forward design [35],

[51], [24], [27], [7] tends to modify the graphs towards the

latter condition. Further, binary search-based design has higher

worst case complexity O(|E|1.5 log |E|) when the graph is a

clique. Another reason that forces binary search-based algo-

rithm to lose the edge on CPU is its poor cache behavior. That

is, merge-based algorithm always reads the two neighbor lists

sequentially, assuming one CPU thread works on one edge.

In contrast, binary search algorithm tends to jump through the

binary search list in a strided manner.

B. Parallel Binary Search on GPU

Despite of those drawbacks on CPUs, binary search-based

algorithm shows unique advantages on GPUs largely due

to GPU’s particular features, such as SIMD architecture,

coalesced memory access design, and manually controllable

shared memory. This section unveils the parallelization and

memory access patterns of our binary search-based intersec-

tion algorithm on GPUs.

In practice, a group of p = 32 threads, i.e., a warp, is

used to work on each query edge e = (u, v) as we have

already discussed in Observation #2. An intersection between

two neighbor lists with lengths m and n (m < n) yields

m independent binary search lookups on binary search list

with length of n. In each iteration, 32 lookups are executed

simultaneously by a warp. This design makes our binary

search-based algorithm immediately better than the merge-

based counterpart.

Coalesced memory access. Binary search-based intersec-

tion introduces more friendly memory access patterns than

that of merge-based design in two ways. First, as shown in

Figure 5, accessing lookup key arrays is both sequential and

consecutive as four adjacent threads will load four consecutive

lookup keys. Further, because each lookup key follows the

same order to check the binary search tree, accessing the

binary search tree array also experiences high cache hit

ratio. Along with a shared memory caching technique we

will discuss later, the performance counter shows optimized

binary search intersection reduces the load transactions by 5×
comparing to merge-based approach.

Workload balancing. With the binary search intersection

approach, workload imbalance can be tackled much easier –

there is no need for partitioning and distributing workload

across threads in the warp. Still using the two neighbor lists as

an example in Figure 5, we assign a group of four threads to

work on four lookup keys in parallel. Our result further shows

that majority of the searches often reach the leaf nodes of the

binary search tree. Therefore the workloads across threads are

almost balanced.
GPU shared memory optimization. As we have already

mentioned, each lookup key accesses the same binary search

tree repeatedly. One immediate optimization is to cache such

a tree in GPU shared memory in order to avoid expensive

global memory access. However, due to the size limit of GPU

shared memory, fitting the entire tree in the shared memory

would introduce low thread occupancy issue and jeopardize

the overall performance.
Instead, we cache the top levels of the tree in the shared

memory as they are the most frequently accessed ones. For

example in Figure 5, the root node of the binary search tree

which stores vertex 5 is accessed by all lookups. In general,

elements from levels that are closer to root are more likely to

be accessed repeatedly. In particular, in level k, the possibility

of each element being accessed is 1
2k−1 because the total

number of elements in level k is 2k−1 and only one element

will be accessed by one lookup key at each level. We thus

cache the first k levels of the tree in GPU shared memory. The

binary search-based intersection now consists of two phases.

First, all threads search on the cached array in shared memory

until a match is found. Otherwise, they continue to do so on

a subrange in the global memory.

�0
�10
�20
�30
�40
�50

RD RM WK FB OR FR TW KR1 KR2G
lo
ba
l�m

em
�
ac
ce
ss

�
re
du
ct
io
n�
(%
)

Fig. 6: Percentage of GPU global memory access transactions reduced
by shared memory optimization.

Figure 6 demonstrates the global memory access reduction

(i.e., gld transactions) introduced by the shared memory

optimization. The caching technique brings averagely 18%

memory transaction reduction with the maximum from KR1

to be 40.2%. We also notice a slight increase (i.e., 2.4%)

for the RD synthetic graph. The reason lies in that this

optimization works well for the graphs with a considerable

number of high degree vertices, especially the real graphs

with skewed distribution. Our analysis finds that for this small

degree graph, the number of memory transactions needed for

preloading the first few levels of the tree into shared memory

is much larger than what is required for eventual lookups.

Obviously, the caching technique would not beneficial in this

case. Fortunately, many real world datasets follow the power-

law degree distribution, different from this synthetic RD graph

with uniform (small) degree distribution.

C. Memory Complexity Analysis

This section analyzes the memory complexities of both bi-

nary search and merge-based algorithms to demystify why the

former one always outperforms the latter one on GPUs. Note

triangle counting operations are mainly memory intensive,

thereby memory complexity can closely indicate its perfor-

mance. For the reader’s convenience, as shown in Table II,

we again mention that for edge (u, v), we assume m =
min{d(u), d(v)}, n = max{d(u), d(v)}, and we use a group

of p threads to work on this edge in both algorithms. Each

transaction can load as many as B data records. The best case

to access N consecutive data entries takes N/B transactions

while the worst case takes N transactions. Note we assume a

linear relationship between B and p, i.e., B = c·p. Specifically,

to align with GPU convention, we use a warp with p = 32 as

a group, and B = 16 as half-warp coalesced memory read.

Notation Description

(u, v) An edge
d(u), d(v) Degree of the two vertices
m, n The smaller and larger degrees of d(u) and d(v)
p Number of threads for finer-grained parallelization
B Size of each memory transaction
s1, s2 The factors of strided access
C Number of nodes cached in shared memory
k Levels of cached binary tree

TABLE II: The notations used in this paper.

Table III summarizes the time and memory transaction

complexities of merge- and binary search- based intersection

methods. In particular, the merge-based algorithm suffers

from strided memory access with the strided factors s1 =
min{B,m/p} and s2 = min{B, n/p} (s1 and s2 are the stride

lengths of accesses on both neighbor lists) which causes s1 and

s2 times more transactions correspondingly. Partitioning takes

p · log n random memory accesses. Thus, the algorithm takes

s1m/B + s2n/B + p · logm memory transactions.

Algorithm #Operations #Memory transactions

Merge-based m + n + p · logn s1m/B + s2n/B + p · logm
Binary search m · logn m/B + m(logn− k) + C

TABLE III: #Operations and #memory transactions of merge- and
binary search- based intersection algorithms.

Binary search algorithm generates three possible memory

traffics: the shorter neighbor list, the longer neighbor list,

and caching. For the shorter neighbor list, it uses coalesced

memory access pattern which takes m/B transactions. For

the longer one, it costs m · log n random accesses in the worst

case. Assuming the shared memory can cache C elements,

the first k = logC levels of the binary search tree can be

accessed from the global memory only once, leading to m · k
transactions reduced with p overhead instead. Taken together,

binary search-based algorithm takes m/B+m(log n−k)+C
memory transactions in the worst case.

�0

�50

�100

�150

�200

FB OR TW WK RM RD KR1 KR2

B
in
ar
y�
se
ar
ch

�

ov
er

�
m
er
ge

�
(%
)

Baseline
Transactions
Instructions
Runtime

Fig. 7: Binary search-based algorithm over merge-based algorithm in
terms of #memory transactions, #instructions and runtime.

For any intersection (u, v), since m and n, the degrees of

both vertices, can decide the memory costs, we explore three

cases of them to evaluate the advantages and disadvantages of

both algorithms. Here, a common threshold θ is exploited to

classify edges by the degrees of its vertices.

1. Both m and n are small numbers. In general, if m and

n are smaller than θ, the stride factor s1 and s2 are also small.

In this case, the overhead of partitioning the intersections from

merge-based algorithm takes the majority of the runtime. In

the binary search algorithm, most of the memory transactions

to the binary search tree can be cached by the shared memory

with the average cost on caching reducing to a small number

since all C reads can be done by a small number of coalesced

memory reads. In summary, binary search-based algorithm

will excel in this case.

2. m is small number while n is large number. When

d(u) � d(v), one of the two vertices has large degree while

the other has small degree. As we discussed, binary search will

yield much better complexity than merge-based intersection.

Thus, binary search takes fewer operations and instructions

than merge-based algorithm on these graphs.

3. Both m and n are large numbers. This case takes

the majority of total time cost on a collection of real-world

graphs from this work. In a nutshell, binary search-based

intersection still provides surprisingly better performance even

it suffers from higher computation complexity (i.e. loads more

number of data elements). The reason is that binary search

intersection provides more efficient global memory access on

both neighbor lists. In addition, since the lookup lists are also

sorted, threads of a warp at any iteration are more likely to

search in the same range of the binary search tree, leading to

low thread divergence and largely coalesced memory access.

Thus, the average memory access on binary search tree can

be approximately reduced to 1/p of its original transaction

counts. Overall, this case, which dominates the total time

consumption, yields the highest memory efficiency benefits.

As shown in Figure 7, we also profile the binary search and

merge -based implementations on GPU for the real datasets.

Using merge-based algorithm as baseline, binary search, on

average, executes merely 10% more instructions, partly due to

the caching mechanism. However, binary search only conducts

∼ 1
5 of the total global memory transactions from merge-based

algorithm, resulting in 5.9× speedup.

V. SCALABLE TRICORE

A. Big Graph Challenge

Triangle counting algorithm has O(|E|1.5) computational

complexity, which can be time consuming when graph size

increases. Scaling to multiple GPUs, TRICORE faces two

more challenges when distributing computations. First, the

proposed TRICORE (Section III) requires both edge list and

CSR formats of the entire graph to be present in the memory

of every participating GPU, which restricts the size of the

graph that can be addressed. Second, workload imbalance

also surfaces while distributing computations across GPUs. In

particular, this imbalance issue is distinct from conventional

ones that appear in BFS [36], [38], [31] and PageRank [62].

This section addresses the aforementioned challenges in

order to extend TRICORE to big graphs. First, for edge

list, we propose to stream it into the GPU while counting

triangles. The key of this design is to minimize the overhead of

streaming in edge list. Besides, when CSR format of the graph

cannot fit in GPU memory, we further adopt an I/O-efficient,

external memory triangle counting framework [29] to partition

the CSR across multiple GPUs. And the key of this design is to

avoid communications across various CSR partitions. Lastly,

we propose a dynamic workload management component to

balance workload across GPUs.

B. Memory Consumption Reduction

This section describes our designs to reduce memory con-

sumption for edge list and CSR formats, respectively.

Edge list space consumption reduction. The good news

is that TRICORE does not need the entire edge lists in

memory to do triangle counting since different query edges

are independent. Therefore, we store the CSR format of the

graph in the GPU and exploit a small buffer in GPU memory to

stream the edge list in GPU during the computation. Clearly,

the size of the streaming buffer is an important parameter:

we do not want this size to be too large in order to saturate

the GPU computation power because that will drain the small

GPU memory space as well. Fortunately, as shown in Figure 8,

TRICORE can achieve peak performance with merely a 4 MB

streaming buffer on both K40c and Titan X GPUs for a variety

of graphs. Further, this peak performance sustains from 4 MB

to hundreds of MB – indicating a wide range of options for

streaming buffer sizes. As such, we use a trivial 16MB GPU

memory buffer and an equal sized pinned memory from the

CPU to stream the edge list from CPU to GPU, which enables

TRICORE to accommodate graphs that are 3× of the size from

existing projects [27], [13]. Edge lists are divided into |E|/b
chunks and each of them has the same number of edges. With

multiple GPUs, each GPU keeps the same CSR in its memory

and stream in different edge chunks for triangle counting.

In summary, this technique allows us to handle the edge list

with a small buffer, which is important to enable GPU-based

triangle counting on large graphs. Meanwhile, it incurs almost

no adversarial performance penalties.

CSR space consumption reduction. We further adopt a 2-D

partitioning scheme that is used by external memory triangle

counting algorithm [29] to enable TRICORE for graphs whose

CSR cannot fit in GPU memory. In simple terms, this design

partitions graph by both source and destination vertices of each

Eligible
buffer size

Fig. 8: Relative performance with respect to various buffer sizes.
The legend with ’*’ means the result is on Titan X, otherwise it is
on K40c. For example, TW and TW* mean the results of TW on
K40c and Titan X, respectively.

edge. The global triangle counting task is divided into sub-

tasks, each sub-task can be seen as a local triangle counting

task on a subgraph which can fit in any certain memory size.

In specific, each sub-task needs to load two CSR partitions

and one edge list partition to GPU memory, which is read

from a bigger secondary storage such as disk, Solid-State

Drive (SSD), or CPU memory. This differs from external

memory triangle counting efforts in the sense that the GPU

triangle counting kernel cannot actively invoke memory copy

from CPU memory to GPU through GPU threads. Instead,

all GPU memory copy operations have to be done before the

computation on GPUs. Therefore, our algorithm scans through

a collection of edges from the edge list to decide the to be

loaded CSR partitions. Further, all sub-tasks are independent

to each other, thus can be distributed to multiple GPUs.

C. In Memory Multi-GPU Implementation

The aforementioned distributed implementation can tackle

big graphs. However, if the graph can fit in multi-GPUs of the

same machine, using a distributed system is not necessary.

Note, equipping multiple GPUs on a single machine is a

very popular case. This section, as a complement, introduces

another method to balance workload for the single-node multi-

GPU triangle counting.

In this case, we use a work stealing scheduling method

to balance the workload across participating devices. Each

stealing takes a chunk of edge list which has the same size

with the streaming buffer. The method starts with static work

distribution and enables workload stealing when any GPU

finishes its job and workload imbalance surfaces. As shown

in Figure 9, each GPU is initially assigned 3 edge list chunks

to work with. Once GPU 1 and 3 finish their tasks, they steal

task from other unfinished GPUs, e.g., chunk 6 from GPU 2

to GPU 1, also GPU 3 steals two tasks from GPU 4.

Fig. 9: Dynamic balancing. When a GPU finished its tasks, it finds
unfinished tasks on other GPUs and launch in the reversed order.

�1

�10

�100

�1000

FB OR TW WK RM RD KR1 KR2

R
un
tim

e�
(s
ec
on
d,

�
lo
gs
ca
le
)

Green-K40
Green-Titan

Shun-28Core
Shun-48Core

PDTL-1Node
PDTL-6Node

TriCore-1K40
TriCore-6K40

TriCore-1Titan
TriCore-2Titan

Fig. 10: The runtime of TRICORE and three related projects: Green [27] (on single K40c and single Titan X GPU), Shun [51](on 28-core
CPU and 48-core CPU) and PDTL [24] (on single node and 6 nodes of 16-core CPU). TRICORE-1K and TRICORE-6K are our results on
one and six K40c GPUs respectively. Similarly, TRICORE-1Titan X and TRICORE-2Titan X are our results on one and two Titan X GPUs
respectively. All these GPU results are on a single machine.

D. External GPU Memory Distributed Implementation

We further discuss the distributed system implementation

which relies on Message Passing Interface (MPI) [52] to

manage GPUs and process extremely large graphs. Assuming

we have N GPUs in a distributed system, our design needs

two kinds of process, namely, GPU-process and scheduler-

process. On one hand, we use each GPU-process to manage

one GPU, with a total of N GPU-processes. On the other hand,

we set one scheduler-process to coordinate all GPU-processes

and make all GPUs busy. In detail, every time when the

scheduler-process receives idle signal from one GPU-process,

it immediately sends next sub-task ID to this GPU so that this

GPU will work on the assigned sub-task.

Since each sub-task can have varied amount of workloads,

the main challenge of this distributed system is still workload

imbalance. Note that partition will not introduce communica-

tions, thus communication will not be a problem. As the num-

ber of sub-tasks is much larger than the number of GPUs, we

can thus intelligently schedule the sub-tasks across GPUs to

resolve the imbalance issue. Assuming each node has a similar

amount of GPUs, Peripheral Component Interconnect-express

(PCI-e) bandwidth, and secondary storage I/O bandwidth, our

distributed settings can achieve close to ideal scalability.

VI. EXPERIMENTS

TRICORE is implemented in 2,000 lines of C++ and CUDA

code. We use CUDA 7.5 toolkit, including nvcc and nvprof,

and GCC 4.8.5 and OpenMP 3.1 to compile the source with

compilation flag set to −O3. In terms of storage format,

we use uint32 and uint64 to represent vertex ID and begin

position, respectively.

TRICORE is rigorously studied with the following configu-

rations: A high-end server with Intel Xeon E5-2683 28-core

processors, another high-end server with four Intel Xeon E7-

8857v2 3.0 GHz 12-core processors and 2 TB of RAM, a

server with dual Intel Xeon E5-2620 6-core CPU and six

NVIDIA Kepler K40c GPUs and 128 GB of RAM, an Alien-

ware desktop installing Intel i7-8700 CPU and two NVIDIA

Titan X GPUs and 16 GB of RAM, as well as a cluster

with each CPU node equipping two Intel Xeon E5-2650v2 8-

core processors with 128 GB of RAM and each GPU node

equipping two Intel Xeon E5-2620 6-core processors with

NVIDIA K20 GPU and FDR InfiniBand network interconnect.

Particularly, K40, K20 and Titan X contain 2,880, 2,496 and

3,584 CUDA cores, respectively, while E5-2683, E5-2650v2,

E5-2620 and i7-8700 CPUs come with 28, 12, 8 and 6

cores respectively. With hyper-threading, all CPUs can support

hardware threads up to 2× the number of physical cores. The

prices of all CPUs and GPUs used for triangle counting are

listed in Table IV. We find that TriCore has a much lower total

cost (including GPU and host CPU), while delivering better

performance than many CPU alternatives.

Processors Price ($)

Dual socket Intel Xeon E5-2650v2 (16-core, 8-core/socket) 900

Dual socket Intel Xeon E5-2683 (28-core, 14-core/socket) 3,800

Quad socket Intel Xeon E7-8857v2 (48-core, 12-core/socket) 12,000

Tesla K20c GPU + Intel Xeon E5-2620 host CPU 800 + 130

Tesla K40c GPU + Intel Xeon E5-2620 host CPU 1,256 + 130

Titan X Pascal GPU + Intel i7-8700 CPU 1,200 + 300

TABLE IV: Costs of GPUs and CPUs.

Orientation. All results of TRICORE and related

works [27], [51], [24] use oriented graphs as input. We

briefly report the impacts of orientation for the best

implementations of CPU and GPU: merge-based algorithm

on CPU, and binary search-based algorithm on GPU. For

all datasets the rank-by-degree orientation brings averagely

53× speedup for merge-based algorithm on CPU, and 10×
speedup for TriCore on GPU.

A. TRICORE Performance

This section studies the performance comparison of TRI-

CORE and three state-of-the-art triangle counting projects

including the ones both on CPUs and GPUs. In specific,

these three projects include one single GPU work – Green

et al. [27], and a single-node work – Shun et al. [51] and

distributed project – PDTL [24]. In terms of testbed, TRICORE

is evaluated with up to six and two K40c and Titan X GPUs,

respectively. Shun runs on both 28-core and 48-core high end

servers. PDTL is examined with up to six 16-core servers.

As shown in Figure 10, for a single K40c case, TRICORE

achieves 3.1× to 9.5× of (minimum on RD and maximum

on KR2) and 5.9× average speedup over Green et al on

a single K40c GPU. The results show that TRICORE can

bring considerable speedup on big graphs and graphs with

skewed distribution, although the benefit is smaller on small

graphs such as RD and WK. TRICORE on a single K40c GPU

achieves 0.87× to 5.7× (minimum on RD and maximum on

TW) and on average 2.5× speedup over Shun et al. This is

also 2.4× to 12.7× (minimum on TW and maximum on FB)

and on average 6.5× faster than PDTL.

For six K40c on a single machine, the speedups over the

three related project (Green, Shun and PDTL) increase to 24×,

9× and 23× correspondingly. TRICORE on six K40c GPUs

achieves 1.3× to 6× (minimum on RD and maximum on TW)

and on average 2.6× speedup over PDTL on 6 nodes each with

16-core CPU.

TRICORE achieves 1.6× to 4× of (minimum on RD and

maximum on KR2) and 2.2× average speedup over Green

on a single Titan X GPU. We notice that the speedup of

TRICORE over Green et al. declines from K40c to more

powerful Titan X GPUs. The reason is that Green et al. can

only tackle small graphs, for which TRICORE already achieves

good performance on a K40c GPU. Therefore, more powerful

Titan X GPU cannot add too much benefits to TriCore for

these small graphs. Figure 10 also suggests that TRICORE

achieves higher speedups over Green et al. when the graph is

larger. Besides, TRICORE on a single Titan X GPU achieves

2.7× to 22× (minimum on RD and maximum on TW) and

on average 8.5× speedup over Shun on 48-core. TRICORE

on two Titan X GPUs achieves 2.6× to 11× (minimum on

RD and maximum on TW) and averagely 4.4× speedup over

PDTL on six nodes.

B. Comparisons with Graph Challenge Champions

This section compares TRICORE against all the champi-

ons of graph challenge 2017 [1] which centers around two

problem, triangle counting and k-truss. We compare TRICORE

against all those projects focusing on triangle counting [12],

[64], [46]. Briefly, TCKK [64] exploits linear algebra kernels

to count triangles on a single machine, which installs E5-

2698 v3 intel CPU processor with 32-core and 512 gigabytes

memory, with 64 threads. Another work [12] (also referred

as Nv) uses one Nvidia Titan X pascal GPU (host CPU and

RAM are not specified), more details can be found in [13].

The third work, Pearce et al. [46], exploits 256 machines,

each of which equips 24-core Intel E5-2695 v2 CPUs with

128 GB memory. Note, since these projects are not open

source, we directly cite their numbers from their papers and

all datasets are readily available from [2]. Figure 11 presents

the performance of TRICORE, Nv and TCKK on four Graph

500 datasets from scale 22 to 25, and Twitter. TRICORE

outperforms all champions, e.g., 2.7× and 1.9× faster than

Nv and TCKK, respectively.

�30

�60

�90

scale22 scale23 scale24 scale25 TW

1.7 2.0 3.0

196

R
un
tim

e�
(s
ec
on
d) TriCore Nv TCKK

Fig. 11: TRICORE vs Graph Challenge champions. Note, similarly
to Nv, the time of TRICORE is on one Titan X GPU.

To compare against the champion in distributed system [46],

we use two merely GPUs. As shown in Table V, [46] uses 256

compute nodes to finish Twitter in 11.2 seconds while we use

two GPUs to finish the same graph within roughly comparable

time, i.e., 13 seconds. Besides, our scalability from one to two

GPUs is 1.84×.

Project TRICORE TRICORE-2GPU Pearce et al. [46]

Runtime (second) 24 13 11.2

Hardware 1 Titan X 2 Titan X 256 nodes

TABLE V: Runtime (second) of TRICORE vs 2017 Graph Challenge
champions on Twitter graph.

C. Scalability

Figure 12(a) studies the scalability of TRICORE across

multiple GPUs on a single machine on all middle sized graphs.

Briefly, 6 GPUs bring, on average, 4.4× speedup across

those graphs with 3.7× and 4.9× from KR2 and KR1 as

the minimum and maximum speedup. In short, the runtime

decreases by 1.8× as the number of GPU doubles.

Figure 12(b) further evaluates TRICORE’s capability of

processing extremely large graphs with a collection (i.e., 1

- 32) of K20 GPUs in a cluster. Note, since the MPI version

uses dynamic scheduling and thus each node decides which

partition to load on the fly, the runtime includes the time cost

of loading data from disk. In particular, TRICORE yields 24×
speedup on average across these three large graphs with 16×
and 30× of GSH and KR4 as the minimum and maximum

speedups. This is a speedup of 1.9× as the number of GPU

doubles. It is worthy of noting that the sizes of these three

datasets in CSR format are 131GB, 75GB and 143GB, which

are over 15× larger than the memory size of each K20 GPU

which has 5GB memory.

�1

�2

�3

�4

�5

�6

�1 �2 �3 �4 �5 �6

S
pe
ed
up

Number�of�GPUs

Ideal
FB
OR
TW
WK

RM
RD
KR1
KR2

�1
�2
�4
�8

�16
�32

�1 �2 �4 �8 �16 �32

S
pe
ed
up

�
(lo
gs
ca
le
)

GPUs�(logscale)

Ideal
KR3
KR4
GSH

(a). Single node. (b). Multiple nodes.

Fig. 12: Scalability of counting Twitter on GPUs installed in (a) single
machine, and (b) distributed system.

VII. CONCLUSION

This work presents TRICORE, a scalable triangle counting

system on GPUs that is able to compute exact triangle counts

on big graphs. TRICORE makes two main contributions,

namely, a fast GPU-aware triangle counting algorithm and

a scalable framework to process very large graph on many

GPUs. As such, TRICORE can process graphs which are

orders of magnitude larger than GPU memory sizes and

achieve great scalability. Our evaluation of TRICORE on a

number of graphs shows that TRICORE can greatly outperform

existing endeavors including most recent champions in Graph

Challenge.

ACKNOWLEDGMENT

We thank the anonymous reviewers and Hans-Edward

Hoene for their helpful suggestions and gratefully acknowl-

edge the NVIDIA Corporation for the donation of the Titan Xp

GPUs. This work was supported in part by National Science

Foundation CAREER award 1350766 and grants 1618706 and

1717774.

REFERENCES

[1] DARPA HIVE GraphChallenge, https://graphchallenge.mit.edu/darpa-
hive.

[2] Graph Challenge Datasets, http://graphchallenge.mit.edu/data-sets.

[3] Intel Xeon E5 2683 v3 Processor, https://ark.intel.com/products/81055/
Intel-Xeon-Processor-E5-2683-v3-35M-Cache.

[4] Kronecker: Graph 500 Generator, https://graph500.org/?page id=12#
sec-3.

[5] NVIDIA TESLA V100 GPU ACCELERATOR,
http://www.nvidia.com/content/pdf/volta-datasheet.pdf.

[6] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 1997.

[7] S. Arifuzzaman, M. Khan, and M. Marathe. Patric: A parallel algorithm
for counting triangles in massive networks. In Proceedings of the
22nd ACM international conference on Conference on information &
knowledge management, 2013.

[8] S. Arifuzzaman, M. Khan, and M. Marathe. A fast parallel algorithm
for counting triangles in graphs using dynamic load balancing. In Big
Data. IEEE, 2015.

[9] Ariful Azad, Aydin Buluç, and John Gilbert. Parallel triangle counting
and enumeration using matrix algebra. In Parallel and Distributed
Processing Symposium Workshop (IPDPSW), 2015 IEEE International,
pages 804–811. IEEE, 2015.

[10] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-
streaming algorithms for local triangle counting in massive graphs. In
SIGKDD. ACM, 2008.

[11] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and
Torsten Hoefler. To push or to pull: On reducing communication and
synchronization in graph computations. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing, pages 93–104. ACM, 2017.

[12] Mauro Bisson and Massimiliano Fatica. Static graph challenge on gpu.
In High Performance Extreme Computing Conference (HPEC), 2017
IEEE, pages 1–8. IEEE, 2017.

[13] Mauro Bisson and Massimilliano Fatica. High performance exact trian-
gle counting on gpus. IEEE Transactions on Parallel and Distributed
Systems, 2017.

[14] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.
Layered label propagation: A multiresolution coordinate-free ordering
for compressing social networks. In Sadagopan Srinivasan, Krithi
Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi
Kumar, editors, Proceedings of the 20th international conference on
World Wide Web, pages 587–596. ACM Press, 2011.

[15] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth International World
Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA,
2004. ACM Press.

[16] A. Buluç and K. Madduri. Parallel breadth-first search on distributed
memory systems. In SC. ACM, 2011.

[17] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and
Christian Schulz. Recent advances in graph partitioning. In Algorithm
Engineering, pages 117–158. Springer, 2016.

[18] R. Burt. Structural holes and good ideas1. American journal of
sociology, 2004.

[19] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In SDM, volume 4, 2004.

[20] J. Coleman. Social capital in the creation of human capital. American
journal of sociology, 1988.

[21] Disa Mhembere Da Zheng, Randal Burns, Joshua Vogelstein, Carey E
Priebe, and Alexander S Szalay. Flashgraph: Processing billion-node
graphs on an array of commodity ssds. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies, pages 45–58,
2015.

[22] J. Eckmann and E. Moses. Curvature of co-links uncovers hidden
thematic layers in the world wide web. Proceedings of the national
academy of sciences, 2002.

[23] E. Elenberg, K. Shanmugam, M. Borokhovich, and A. Dimakis. Beyond
triangles: A distributed framework for estimating 3-profiles of large
graphs. In SIGKDD. ACM, 2015.

[24] I. Giechaskiel, G. Panagopoulos, and E. Yoneki. Pdtl: Parallel and
distributed triangle listing for massive graphs. In ICPP. IEEE, 2015.

[25] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou.
Practical recommendations on crawling online social networks. IEEE
Journal on Selected Areas in Communications, 29(9):1872–1892, 2011.

[26] O. Green, R. McColl, and D. Bader. Gpu merge path: a gpu merging
algorithm. In Proceedings of the 26th ICS, 2012.

[27] O. Green, P. Yalamanchili, and L. Munguı́a. Fast triangle counting on the
gpu. In Proceedings of the Fourth Workshop on Irregular Applications:
Architectures and Algorithms, 2014.

[28] S. Hong, S. Kim, T. Oguntebi, and K. Olukotun. Accelerating cuda
graph algorithms at maximum warp. In ACM SIGPLAN Notices, 2011.

[29] Yang Hu, Pradeep Kumar, Guy Swope, and H. Howie Huang. Trix:
Triangle counting at extreme scale. Technical report, Department of
Electrical and Computer Engineering, The George Washington Univer-
sity, 2017.

[30] Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, Jeremy
Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther, Siddharth
Samsi, William Song, et al. Streaming graph challenge: Stochastic block
partition. In High Performance Extreme Computing Conference (HPEC),
2017 IEEE, pages 1–12. IEEE, 2017.

[31] Pradeep Kumar and H Howie Huang. G-store: high-performance graph
store for trillion-edge processing. In High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for,
pages 830–841. IEEE, 2016.

[32] J. Kunegis. Konect: the koblenz network collection. In International
conference on World Wide Web companion. International World Wide
Web Conferences Steering Committee, 2013.

[33] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is twitter, a social network or a news media? In Proceedings of the 19th
international conference on World wide web, pages 591–600. ACM,
2010.

[34] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In OSDI, 2012.

[35] M. Latapy. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical Computer Science, 2008.

[36] H. Liu and H. Huang. Enterprise: breadth-first graph traversal on gpus.
In SC, 2015.

[37] Hang Liu and H Howie Huang. Graphene: Fine-grained io management
for graph computing. In FAST, pages 285–300, 2017.

[38] Hang Liu, H Howie Huang, and Yang Hu. ibfs: Concurrent breadth-first
search on gpus. In Proceedings of the 2016 International Conference
on Management of Data, pages 403–416. ACM, 2016.

[39] K. Madduri and D. Bader. Gtgraph: A suite of synthetic random graph
generators, 2012.

[40] Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-
vector multiplication. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
page 58. IEEE Press, 2016.

[41] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu
graph traversal. In ACM SIGPLAN Notices, volume 47, pages 117–128.
ACM, 2012.

[42] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Measurement and analysis of online
social networks. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, pages 29–42. ACM, 2007.

[43] CUDA Nvidia. Programming guide, 2008.
[44] R. Pagh and C. Tsourakakis. Colorful triangle counting and a mapreduce

implementation. Information Processing Letters, 2012.
[45] H. Park and C. Chung. An efficient mapreduce algorithm for counting

triangles in a very large graph. In International conference on Confer-
ence on information & knowledge management, 2013.

[46] Roger Pearce. Triangle counting for scale-free graphs at scale in dis-
tributed memory. In High Performance Extreme Computing Conference
(HPEC), 2017 IEEE, pages 1–4. IEEE, 2017.

[47] Roger Pearce, Maya Gokhale, and Nancy M Amato. Faster parallel
traversal of scale free graphs at extreme scale with vertex delegates. In
High Performance Computing, Networking, Storage and Analysis, SC14:
International Conference for, pages 549–559. IEEE, 2014.

[48] M. Rahman and M. Al Hasan. Approximate triangle counting algorithms
on multi-cores. In BigData, 2013.

[49] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and
M Tamer Özsu. The ubiquity of large graphs and surprising challenges
of graph processing. Proceedings of the VLDB Endowment, 11(4), 2017.

[50] C Seshadhri, Ali Pinar, and Tamara G Kolda. Wedge sampling for
computing clustering coefficients and triangle counts on large graphs.

Statistical Analysis and Data Mining: The ASA Data Science Journal,
7(4):294–307, 2014.

[51] J. Shun and K. Tangwongsan. Multicore triangle computations without
tuning. In Proceedings of the IEEE ICDE, 2015.

[52] Marc Snir, Steve Otto, Steven Huss-Lederman, Jack Dongarra, and
David Walker. MPI–the Complete Reference: the MPI core, volume 1.
MIT press, 1998.

[53] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last
reducer. In International conference on World wide web, 2011.

[54] C. Tsourakakis. Fast counting of triangles in large real networks without
counting: Algorithms and laws. In ICDM, 2008.

[55] C. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Falout-
sos. Spectral counting of triangles via element-wise sparsification
and triangle-based link recommendation. Social Network Analysis and
Mining, 2011.

[56] C. Tsourakakis, U Kang, G. Miller, and C. Faloutsos. Doulion: counting
triangles in massive graphs with a coin. In SIGKDD. ACM, 2009.

[57] Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. Parallel
triangle counting and k-truss identification using graph-centric methods.
In High Performance Extreme Computing Conference (HPEC), 2017
IEEE, pages 1–7. IEEE, 2017.

[58] Jia Wang and James Cheng. Truss decomposition in massive networks.
Proceedings of the VLDB Endowment, 5(9):812–823, 2012.

[59] Leyuan Wang, Yangzihao Wang, Carl Yang, and John D Owens. A
comparative study on exact triangle counting algorithms on the gpu.
In Proceedings of the ACM Workshop on High Performance Graph
Processing, pages 1–8. ACM, 2016.

[60] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons: dynamic
gpu memory management for training deep neural networks. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 41–53. ACM, 2018.

[61] W. Wang, Y. Gu, Z. Wang, and G. Yu. Parallel triangle counting over
large graphs. In Database Systems for Advanced Applications, 2013.

[62] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D Owens. Gunrock: A high-performance graph
processing library on the gpu. In Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
page 11. ACM, 2016.

[63] D. Watts and S. Strogatz. Collective dynamics of ‘small-world’networks.
nature, 1998.

[64] Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Ham-
mond, and Sivasankaran Rajamanickam. Fast linear algebra-based
triangle counting with kokkoskernels. In High Performance Extreme
Computing Conference (HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

