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ABSTRACT

Recent top-k computation efforts explore the possibility of revis-

ing various sorting algorithms to answer top-k queries on GPUs.

These endeavors, unfortunately, perform significantly more work

than needed. This paper introduces Dr. Top-k, a Delegate-centric

top-k system on GPUs that can reduce the top-k workloads signifi-

cantly. Particularly, it contains three major contributions: First, we

introduce a comprehensive design of the delegate-centric concept,

including maximum delegate, delegate-based filtering, and β dele-

gate mechanisms to help reduce the workload for top-k up to more

than 99%. Second, due to the difficulty and importance of deriving

a proper subrange size, we perform a rigorous theoretical anal-

ysis, coupled with thorough experimental validations to identify

the desirable subrange size. Third, we introduce four key system

optimizations to enable fast multi-GPU top-k computation. Taken

together, this work constantly outperforms the state-of-the-art.
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1 INTRODUCTION

Formally, top-k algorithms find the top k elements from an input

vector V . Here, the criteria could be the top k largest or smallest,

or any other conditions of interest. For simplicity, we assume the

default criterion in this paper to be the top k largest. k-selection
algorithm slightly differs from the top-k algorithm, as k-selection

only identifies the kth largest element from V . These two algo-

rithms serve as building blocks for a variety of applications, such as,

High Performance Computing (HPC) [26, 51], Information Retrieval

(IR) [8, 11], deep learning training [3, 48, 49], big data [14, 15, 27],

and data mining [25, 34, 54]. A textbook implementation of top-k
exploits priority queue, i.e., min-heap. That is, a priority queue at
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the size of k will slide through the input vector. For each encoun-

tered element that is larger than the minimum from the priority

queue, we substitute the minimum of the priority queue by this

encountered element. Eventually, this priority queue captures the

top-k largest elements for the input vector V .

Recently, the interest in deploying top-k computation on GPUs

has surged for three major reasons. First, GPUs offer superior pro-

cessing power and memory throughput comparing to the other

processing hardware [17, 23, 47]. For instance, the most recent

A100 GPU [28] features an astonishing 312 Tera Floating Point Op-

erations Per Second (TFLOPS) computing capability and 2,039 GB/s

memory throughput. Second, both the existing leading supercom-

puters [45] and future exascale ones (e.g., Aurora [46], Frontier [32]

and El Capitan [41]) use GPUs as the major computing resources.

Third, the majority of the applications that exploit top-k , such as

IR [24], deep learning [1], data mining [36, 53], and database appli-

cations, e.g., PG Strom [35], Ocelot [7], and MapD [38] are offloaded

atop GPUs, deploying top-k on GPUs could avoid copying data back

and forth between GPU and CPU for top-k computation.

While priority queue-based top-k is the most efficient approach

for single- or multi-core systems [55], it requires to maintain many

local priority queues to expose massive parallelism to GPUs. Unfor-

tunately, maintaining such many priority queues would experience

expensive global synchronization overhead when merging these

local priority queues into a final global one. Consequently, perti-

nent top-k applications do not adopt priority queue-based top-k .
Instead, they use sort-and-choose approach for top-k computing

on GPUs [6, 18, 33, 44, 48]. However, as shown in Figure 17, the

GPU-based sort-and-choose top-k [6] takes much longer time than

GPU-based top-k algorithms.

Revising sorting algorithms to compute top-k becomes a popular

trend because, at most, only a subset of data needs to be sorted in

the top-k problem. Along this direction, bitonic top-k [42] presents

a revised bitonic sort algorithm [20] that focuses on the top-k ele-

ments when merging 2k elements together. Since this rudimentary

design can only reduce the workload by half, [42] further proposes

to read 8k elements and reduce it to k while using GPU shared

memory to cache the intermediate results. Due to the limited ca-

pacity of shared memory on GPUs, bitonic top-k can only work

for very small k (i.e., k ≤ 256). Another notable attempt [2] revises

bucket sort by discarding all buckets that do not include the kth

elements at each iteration, similarly for radix top-k . Despite these
designs in [2] have the chance of reducing more workloads, they

would suffer from unstable workload reductions (see Figure 6).

To reduce more workload in a stable manner, we introduce Dr.

Top-k, a delegate-centric system that partitions the input vector



into subranges, extracts the delegate from each subrange, and uses

the top-k of the delegates to rapidly reduce the workload for the

overall top-k computation on the input vector. It is essential to

note that the popular IR algorithm, i.e., Block Maximum WAND

(BMW) [11] also uses the delegate concept for search engine de-

signs. In contrast, Dr. Top-k has a more comprehensive design and

innovative usage for the delegate concept. Taken together, it can

help state-of-the-art top-k algorithms to improve their performance

significantly with the following three contributions:

First, we introduce a comprehensive delegate-centric design,

which includes maximum delegate, top-k delegate-based filtering,

and β delegatemechanisms to help reduce theworkload for top-k up

to more than 99%. Specifically, we (i) partition the input vector into

a collection of subranges and extract the maximum delegate from

each subrange to construct a delegate vector, and (ii) perform top-k
on the delegate vector. Since only those subranges whose maximum

delegates belong to the top-k of the delegate vector can contribute

to the top-k for the input vector, we further (iii) concatenate those

qualified subranges to construct a concatenated vector, and (iv)

perform top-k on the concatenated vector. To further reduce the

workload for step (iv), we use the minimum of the top-k of the

delegate vector to filter out smaller elements from the qualified

subranges. Not limited there, we extend the maximum delegate to β
delegate to reduce the workload for concatenation and second top-k .
In particular, we will extract the top β delegates, instead of merely

the maximum, from each subrange. Afterward, we introduce a new

rule using which we only concatenate subranges whose entire β
delegates are taken.

Second, we deduce the optimal subrange size with both theoreti-

cal soundness and experimental validation. Note, a proper subrange

size is crucial for Dr. Top-k to achieve a good performance; on the

one hand, a small subrange size would lead to too many subranges.

In this context, the delegate vector construction and first top-k
would suffer from heavy workloads. On the other hand, when the

subrange size is too large, we would have too few subranges. In this

case, the majority of these subranges will be eligible for the second

top-k . We hence skip too few subranges, leading to limited work-

load reduction for concatenation and second top-k . In Section 5.2,

our theoretical analysis derives that the total time consumption

of Dr. Top-k is a convex function of subrange size, which we also

verify in our experiment. We further extract the optimal subrange

size for a wide range of |V | and k .

Third, we deploy Dr. Top-k atop multiple GPUs with four key

system optimizations. First, we introduce a warp-centric delegate

vector construction mechanism to achieve near-peak GPU global

memory throughput. Second, although our delegate-centric design

can help all existing top-k algorithms, we identify that the best Dr.

Top-k assisted top-k algorithm changes along with the climbing

of k . We further introduce a flag-based strategy to avoid random

memory access during in-place radix top-k . Third, we identify that

delegate vector construction suffers from low thread utilization and

an exceeding usage of CUDA (an acronym for Compute Unified De-

vice Architecture) shuffle instructions when k becomes relatively

large. As a result, we introduce a novel coalesced load to shared

memory and strided compute approach to improve the thread utiliza-

tion, as well as curb the usage of CUDA shuffle instructions. This

optimization has reduced the delegate vector construction time

consumption from 31.4 ms in Figure 10 to 9.5 ms in Figure 15 for

k = 224 and |V | = 230. Finally, we scale top-k across multiple GPUs

to handle gigantic input vectors, and achieve sustained scalability.

During evaluation, we notice that the recent top-k efforts [2, 42]

only test their systems on synthetic datasets, limiting the impacts

of top-k . This paper hence builds a benchmark that contains three

real-world applications, i.e., k-nearest neighbor search [21], website

degree centrality [12], and COVID fear related Twitter dataset [19]

for top-k . Our evaluation shows that Dr. Top-k can outperform the

state-of-the-art on both synthetic and real-world datasets.

The remainder of this paper is organized as follows: Section 2

discusses the background and related work which motivate the

overview in Section 3. Section 4 presents the delegate-centric top-k
design and compares it against BMW. Section 5 deploys our top-k
on multi-GPU systems with GPU-specific optimizations. Section 6

evaluates Dr. Top-k and we conclude in Section 7.

2 BACKGROUND AND RELATEDWORK

2.1 Graphics Processing Units

Streamingprocessors and threads.DesignedwithNVIDIAVolta

architecture, V100S [30, 31] is powered by 80 streaming processors

(SMs). Each SM is equipped with 64 CUDA cores, yielding a total

of 5,120 cores running at 1.5 GHz. During execution, a GPU thread

runs on one CUDA core, and an SM schedules a group of 32 con-

secutive threads known as warp in a Single Instruction Multiple

Thread (SIMT) manner. Note, all the threads in a warp can use

shuffle instructions to exchange data. A collection of consecutive

warps further formulate a Cooperative Thread Arrays (CTAs) or a

block. All the CTAs are called a grid.

Memory architecture. V100S is equipped with 32 GB global

memory with 1,134 GB/s as the peak throughput. All the SMs share

an L2 cache of 6,144 KB. Each SM owns a private 96KB configurable

shared memory, also used as the L1 cache. All the threads in a CTA

can use shared memory to communicate with the help of the CUDA

__syncthreads() primitive. It is desirable to use shared memory to

cache intermediate data because it is around one order of magnitude

faster than the global memory [42].

2.2 Related Work

This section discusses the closely related projects forDr. Top-k that

includes priority queue-based top-k [42], sorting-based top-k [6, 48],

bucket top-k [2], radix top-k [2] and bitonic top-k [42].

Priority queue approach. A natural way to compute top-k
would be to maintain a priority queue that only keeps the top-k
elements while scanning through the input vector. While this idea

is well-suited for single- or multi-threaded systems, implementing

it on massively parallel GPUs remains elusive. Mainly, a parallel

implementation would involve the maintenance of many local pri-

ority queues and the eventual merging of these priority queues into

a global one. This adds the challenge of frequent read and write

and global synchronization across the threads when merging them.
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Figure 1: Bucket top-2 computation for an input vector with 16 ele-

ments. The highlighted bucket is of interest at each iteration.

Sort-and-choose is an alternative approach that ismore friendly

for parallel implementation. Basically, we sort the input vector ele-

ments using sorting algorithms, like in THRUST [6] and choose the

top-k elements. But this implementation turns out to do more work

than necessary.At least, there is no need to sort the elements that are

outside of the range of 1st −kth elements. Alabi et. al. [2] also show

their top-k algorithms, e.g., radix and bucket top-k outperforms the

sort-and-choose designs.

Top-k algorithms. Bucket, radix, and bitonic top-k are intro-

duced to alleviate the aforementioned inefficiency problems faced

by sorting. In contrast to their corresponding sort-and-choose ap-

proach, the top-k algorithm distributes the input vector into differ-

ent subranges, like a bucket in bucket top-k , and only focuses on

the subrange that will lead to the kth element of the input vector.

Below we explain how these designs work with examples.

I. Bucket top-k first obtains the min and max values from the

input vector. Afterward, it divides thismin −max value range into

several buckets, with each of which accounting for a disjoint equal

value range. In the second step, this method scans through the input

vector, puts each element into the corresponding bucket, and tracks

the number of elements in each bucket. This way, one can easily

figure out which bucket contains the kth elements. As mentioned

earlier, top-k operation discards the buckets that do not contain

the kth element. This method continues until the bucket of interest

only has one element, i.e., the kth one.

Figure 1 exemplifies how bucket top-k works for an input vector

of 16 elements. We first derive themin andmax as 101 and 3210,

respectively. Therefore, we can divide this value range into four

buckets, that is, [101, 878.25), [878.25, 1655.5), [1655.5, 2432.75),

[2432.75, 3210]. Scanning through the entire input vector, one can

obtain all elements that belong to each bucket as shown in iteration

1 of Figure 1. Sincewe are searching for the 2nd largest element from

the input vector, our next iteration only focuses on the [2432.75,

3210] bucket, which is the largest bucket that contains four elements.

Consequently, iteration 2 of Figure 1 divides the [2432.75, 3210]

value range into four buckets and scans through the elements from

the [2432.75, 3210] bucket of iteration 1 to generate new element

distributions in iteration 2 of Figure 1. While Figure 1 only includes

three iterations due to space constraints, this process is supposed

to continue until the bucket of interest only contains one element.

II. Radix top-k is similar to bucket top-k but exploits the digits

(i.e., radixes) of each element to determine which bucket a value

belongs to. The key is that the position of the bucket needs to indicate

their order so that we can derive the bucket of interest for the next

iteration. Consequently, radix top-k starts from the Most Significant

101 2001 3012 1323 212 1132 2313 2310 3000 3010 3210 1002 333 1020 2321 2003

2001 3012 2313 2310 3010 3210 2321 2003

2313 3012 3210 3010

2001 3012 2310 2313 3010 3210 2321 2003

2001 101 1323 3012 212 1132 2310 2313 3000 3010 1002 3210 1020 333 2321 2003

3012 3210

Increasing sequence k

Decreasing sequence k

Top-2 elements

3012 2313 3010 3210

Input vector

Iteration 1 

Iteration 2  

Iteration 3  

Figure 2: Bitonic top-2 on the same input vector as Figure 1.

Digit (MSD) to the Least Significant Digit (LSD). Following this

manner, for instance, if we process 3 bits at one iteration, we will

need eight buckets, that is, 000, 001, 010, 011, 100, 101, 110, 111. And

all the elements from bucket ‘111’ are larger than those of ‘110’.

Similarly for other buckets. At the end of each iteration, we only

focus on the bucket that contains the kth elements to proceed.

III. Bitonic top-k . Improving from the traditional bitonic sort-

ing algorithm, bitonic top-k [42] proposes to discard k elements

by selecting the top-k elements from a bitonic sequence of size

2k . Therefore, the workload is always reduced by half. Figure 2

demonstrates how bitonic top-2 behaves for the same input vector

in Figure 1. Particularly, this algorithm sorts every two consecutive

elements in the input vector, as shown in Iteration 1. Afterward, it

merges the adjacent two sequences – {101, 2001} and {3012, 1323} –

and gets the top-2 from these four elements, that is, {2001, 3012},

similarly for remaining sequences. This process continues until

Iteration 3, where we obtain the final top-2, as {3012, 3210}.

Some of the other related projects worth mentioning are a GPU-

based bucket sorting [10] that takes samples from different regions

in the input vector to achieve a good workload balancing. The

work partitions the input vector into several subranges, performs a

local sort in each subrange, and selects multiple samples from each

subrange. These samples are collectively processed to guide data

reordering on the original vector so that each bucket would end

up with a similar amount of workloads. The top-k at [22] performs

a priority queue based k-selection algorithm in register memory

in GPUs. As the registers per thread in the GPU are limited to a

few numbers, similar to [42], the performance degrades for k ≥

1024. A recent work [37] uses sampling to make bucket select more

immune of skewed data distribution. Particularly, this work samples

splitters from the original vector. Then, these splitters are sorted

and used to assign bucket ranges. While this work tries to adjust

the bucket boundaries in order to reduce workload in each level,

our work directly reduces the original input vector for not only bucket

top-k but also other ones, e.g., radix and bitonic top-k algorithms.

3 CHALLENGES AND OVERVIEW

The state-of-the-art GPU-based top-k designs, as shown in Fig-

ure 3(a), directly work on the input vector when reducing the el-

ements. This data reduction process continues until a desirable

condition is met. Despite that such designs can outperform the

traditional priority queue and sorting-based approaches, they still

face the following two challenges:

• The performance of bucket and radix top-k is unstable. That

is, they are sensitive to the value distribution of the data. For
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Figure 3:Workflow of (a) Bucket/radix/bitonic top-k vs (b)Dr. Top-k.

instance, the radixes of interest might carry most of the ele-

ments from one iteration over to the next. Figure 4 presents

the performance variation of Dr. Top-k on three different

distributions Uniform (UD), Normal (ND) and Customized

Distributions (CD), where the data distributions are rigor-

ously defined in Section 6. We observe both radix and bucket

top-k [2] experience performance variations when changing

data distributions. And bitonic top-k [42] performs stably

across different data distributions.

• While bitonic top-k can stably reduce the workload, it only

reduces the workload by half at one iteration. To further re-

duce the workload, bitonic top-k requires tremendous shared

memory to store the intermediate results. This is problematic

for GPUs due to limited shared memory capacity. Figure 2

demonstrates how bitonic top-k reduces the workload only

by half at an iteration when it selects top-2 elements from

each bitonic sequence of length 4 at an iteration. For instance

at iteration 1, from the first bitonic sequence of 4 elements

{101, 2001, 3012, 1323} top-2 elements i.e. {2001, 3013} are

selected to be written into new vector for next iteration. Sim-

ilarly, remaining bitonic sequences in the vector go through

same process. This leads the vector length to reduce from 16

to 8 at iteration 1.
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Figure 4: The performance inconsistency of different top-k versions

on different distribution defined at Section 6.

Dr. Top-k, as shown in Figure 3(b), introduces the delegate-

centric concept where top-k computation only happens on delegate

and concatenated vectors which are small fraction of the original

input vector. This warrants both stable and larger workload reduc-

tions during top-k computation on Dr. Top-k. (i) Our workload

reduction is stable regardless of the value distribution of the input

vector. That said, for a given k and |V |, the workload is determined

(detailed in Section 5.2). (ii) Dr. Top-k on average reduces a greater

portion of the workload, compared to top-k algorithms such as

3012 2313 3210 2321

3012 3210

2001 101 1323 3012 212 1132 2310 2313 3000 3010 1002 3210 1020 333 2321 2003Input vector

Delegate vector

Top 2 delegates

2001 101 1323 3012 3000 3010 1002 3210
Concatenated 

vector

3012 3210Final top 2

Subrange 0 Subrange 1 Subrange 2 Subrange 3

First top-k

Second top-k

Figure 5: Maximum delegate-based top-2 computation for the same

input vector V in Figure 1.

bucket, radix, and bitonic top-k . This is because the total size of the
delegate and concatenated vectors is smaller than the input vector,

which is the input for the bucket/radix/bitonic top-k algorithms.

This is evident in Section 6.2. It should be noted that instead of being

regarded as an alternative algorithm to the existing top-k algorithms,

Dr. Top-k can help reduce workloads for all existing top-k algorithms,

including bucket, radix, and bitonic top-k as long as we change the

first and second top-k ( 1 , and 2 ) into these algorithms.

4 DR. TOP-K : DELEGATE-CENTRIC TOP-K

4.1 Maximum Delegate

Rule 1. For a given vector V , ∃D ∈ V , such that D is the delegate

vector containing the maximum elements of all subranges Si . If the
maximummi from Si is not among the top-k elements in D, then Si
will not contribute any elements to the top-k of V .

Rule 1 indicates that we can use the delegate of a subrange to de-

cide whether to omit the entire subrange during top-k computation.

Figure 5 presents an example about how to use Rule 1 to find the

top k , (i.e., k = 2) elements from the same input vector as Figure 1.

Essentially, we first divide the input vector into four subranges,

with each of which containing four elements. Second, we extract

the delegate, i.e., maximum element from each subrange to formu-

late a delegate vector, i.e., {3012, 2313, 3210, 2321}. The first top-k
finds 3012 and 3210 as the top 2 elements from the delegate vector.

This implies that only the subranges that contain 3012 and 3210

are qualified for concatenation. Therefore, we concatenate these

two subranges and conduct the second top-k on the concatenated

vector – {2001, 101, 1323, 3012, 3000, 1002, 3210}. Our second top-k
derives the final top-2 as {3012, 3210}.
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Figure 6: Dr. Top-k assisted radix top-k time consumption break-

down with respect to the increase of k for UD dataset on Section 6.

Leveraging Rule 1, we implement the initial version of Dr. Top-

k. Figure 6 demonstrates the time consumption breakdown of Dr.

Top-k accelerated radix top-k for |V | = 230 unsigned integers with

k ranging from 20 to 224. For k ≤ 215, the time consumption delegate
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Figure 7: Dr. Top-k with delegate top-k enabled filtering for the UD

dataset on Section 6.

vector construction is∼4.2ms, whichmeans we achieve 84% of the peak

throughput of the V100S GPU, albeit delegate vector construction

also performs additional shuffle instructions. When k > 215, the

time consumption of Dr. Top-k also increases, which is reflected

in all the four steps of Dr. Top-k.

4.2 Delegate Top-k Enabled Filtering

Although the maximum delegate of a subrange is in the top-k of

the delegate vector, not all the elements in the qualified subrange

will be eligible for the second top-k . This section uses the top-k of

the delegate vector to remove elements from the qualified subrange

during the concatenation, leading to further workload reduction

for the second top-k through the following rule.

Rule 2. The kth element in the delegate vector is the minimum

possible element the final kth element can become.

This rule can be derived as follows: the minimum of the top-

k of the input vector V will be no less than that of the delegate

vector D, i.e.,min(topk(D)) ≤ min(topk(V )). Therefore, only the el-

ements that are larger than themin(topk(D)) are possible to get into
topk(V ), hence are qualified for the concatenation. Here, topk(V )

denotes the top-k elements in V , similarly for topk(D). We can use

the example from Figure 5 to assist the understanding of this Rule 2.

Here, the minimum element from the top-2 of the delegate vec-

tor is 3012. Our prior Dr. Top-k takes the entire subranges whose

maximums are in the first top-k into consideration. This is, in fact,

wasteful. For instance, the elements that are smaller than 3012 in

both subranges 0 and 2, that is, 2001, 101, 1323, 3000, 3010, and 1002,

will never become one of the elements in the final top-2. Hence,

none of them should be copied to the new concatenated vector.

Eventually, the concatenated vector is merely {3012, 3210}.

To implement this delegate top-k enabled filtering approach, we

disseminate the minimum of the top-k from the delegate vector

across all threads. Afterward, the threads are dispatched to work

on the qualified subranges identified by the first top-k . When per-

forming scan on those qualified subranges, only the elements that

are larger than the minimum of the top-k of the delegate vector

are stored in the concatenated vector. As the number of eligible

elements from each subrange is unknown beforehand, each thread

needs to use atomic operation [13, 16] to obtain the position to

store the eligible element.

Figure 7 demonstrates the effectiveness of delegate top-k enabled

filtering for the same dataset in Figure 6. Comparing Figures 7 and 6,

one can observe that the benefits of this optimization for the second

2001 101 1323 3012 212 1132 2310 2313 3000 3010 1002 3210 1020 333 2321 2003Input vector

Delegate vector

Top 3 delegates

Concatenated
vector

Final top 3

Subrange 0 Subrange 1 Subrange 2 Subrange 3

3012 3210Top 2 delegate

Final top 2

Neither concatenation nor second top-k is needed.

2001 3012 2310 2313 3010 3210 2321 2003

3012 3010 3210

(a) =2 delegate for top-3 computation. (b) =2 delegate for top-2 computation.

3012 3010 3210

3012 3010 3210

Figure 8: Top-k with β delegate on the same input vector in Figure 1.

Particularly, it shows different workload reductions for (a) β = 2

delegate for top-3 query and (b) β = 2 delegate for top-2 query.

top-k is substantial, especially when k ≥ 219. Using k = 224 as an

example, we reduce the second top-k time consumption from 28.7

ms in Figure 6 to 6.1 ms.

4.3 β Delegate

While delegate top-k enabled filtering can tremendously reduce the

workload for second top-k , it still has two weaknesses that require

further improvements: First, one might need to perform extensive

atomic operations to build the concatenated vector. Second, we still

need to scan through the qualified subranges to omit the elements

that are smaller than the minimum of the top-k of the delegate

vector. Now we introduce β delegate that allowsDr. Top-k to safely

avoid the entire subrange without scanning any elements which

would be qualified for second top-k if without β delegates. Below,

we formally introduce the β delegate rule.

Rule 3. In a subrange Si , we select the top β elements as β dele-

gates. If not all of the β delegates in Si would qualify as top-k of the

delegate vector D, the rest of the elements from this subrange will not

qualify for the top-k of the input vector V . Note, β ∈ N and β > 1.

Figure 8 describes how to use Rule 3 to answer the top-3 and

top-2 queries with β = 2. In this case, our delegate vector contains

two delegates from each subrange. For top-3 in Figure 8(a), since

we only take one delegate from subrange 0 and both delegates

from subrange 2, we obtain the concatenated vector as {3012, 3010,

3210}. Note, even the concatenated vector is the same as the top 3

delegates, we still need to scan through the entire subrange 3 to

omit the ineligible elements. Finally, the second top-k computes on

the concatenated vector to figure out the final top-3. Figure 8(b)

presents a special benefit of β delegate. That is, we might not need

the concatenation and second top-k computation. In this case, since

the top-2 of the delegate vector does not take all the β delegates

from any subrange, Rule 3 suggests that neither concatenation nor

second top-k is necessary.

Note, β delegate will lead to more workloads for the first top-

k and delegate vector construction. To reduce the workload for

the first top-k , we let the first top-k skip the final iteration when

locating the exact bucket or radix of interest. Because β delegate

and delegate top-k enabled filtering can substantially reduce the

workload for concatenation and second top-k , this skipping, which

helps first top-k noticeably, will lead to negligible performance

drop for the subsequent concatenation and second top-k steps.

For performance improvements on delegate vector construction,

Section 5.3 will introduce our novel optimizations shortly.
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(b) k = 225

Figure 9: The performance dynamics with respect to the change of

β when (a) varying k at |V | = 230, and (b) varying |V | at k = 225.

An appropriate β is important forDr. Top-k, our empirical study

in Figure 9 suggests that β = 2 performs the best. For better visu-

alization, we normalize the performance of various tests towards

β = 1. In Figure 9(a), we find that β = 2 is the desirable configura-

tion which increases the performance up to 1.41 when k = 224 from

β = 1. Although Figure 9(b) observes slightly better performance

when β = 3 for smaller |V | = 229 and 230, we find β = 2 always

yield good performance across both figures.
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Figure 10: Dr. Top-k with β delegate and delegate top-k enabled fil-

tering optimization for UD dataset on Section 6.

Figure 10 shows the time consumption breakdown of β dele-

gate optimization. Using k=224 as an example, although β delegate

spends 31.4 ms for delegate vector construction and 8.9 ms for first

top-k , it reduces the time consumption for concatenation and sec-

ond top-k from 16.8 ms and 6.1 ms of Figure 7 to 2.3 ms and 4 ms,

respectively. Overall, we reduce the time consumption from 58 ms

of Figure 7 to 46.7 ms for k = 224.

4.4 Discussion: Dr. Top-k vs BMW Algorithm

This section compares our Dr. Top-k algorithm with a closely re-

lated IR algorithm, BMW [11], which is a variant of the popular

Weak AND (WAND) algorithm [8]. Briefly, the BMW algorithm

aims to find the top-k most related documents for a query term.

Figure 11 presents an example for BMW algorithm. For clarity,

we first describe the settings of our example: (i) there are ten docu-

ments, i.e., d0 - d9; (ii) the query contains three terms: “the search

engine”, and (iii) the score of a term in a document is the number

of occurrence of the query term in that document. BMW first puts

the documents that contain each term together, subsequently sorts

them by the document ID and partitions them into blocks, e.g., the

term “the” contains two blocks b0 = {d0 - d4}, and b1 = {d6 - d8}. For

each block, BMW stores the maximum score, e.g., the maximum

score of block b0 is 5. Assuming BMW is working on document d3,

“the”
(max = 5)

Term

“search”
(max = 4)

“engine”
(max = 8)

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9Doc ID

b0, max = 5 b1, max = 2

b2, max = 3 b3, max = 4 b4, max = 4

b5, max = 8 b6, max = 7

Postings list of each term if (max(b0) + max(b3) + max(b5) > λ)
then 

//An eligible document.

//Step 1: Decompress b0,b3,b5;

//Step 2: Extract the accurate scores 
//  of document d3 for the terms
//  {“the search engine”}, and 
//  perform full evaluation.

fullyEvaluate(document d3);

else 
//Skipping these documents.

move pointer to min(ptr0, ptr1, ptr2);

ptr0

ptr1

ptr2

Figure 11: BMW algorithm for a query {“the search engine”}.

the right side of Figure 11 is the pseudocode of BMW. Specifically,

BMW first evaluates whether the block maximums of the three

blocks that contain document d3 would be bigger than the thresh-

old λ. If this condition is true, BMW will perform a full evaluation

on document d3 and move on to the next document d4. Otherwise,

BMW will skip all the documents that exactly share the same block

maximum with document d3. In this context, using each block’s

maximum to estimate whether we should skip a document is similar

to Dr. Top-k, which uses the maximum of a subrange for delegate.

Distinction. While BMW leverages the block maximum to skip

computations when extracting the top-k documents, Dr. Top-k

designs and exploits the delegate concept more comprehensively

from three aspects. First, Dr. Top-k introduces a delegate-centric

processing concept while BMW still uses a regular element-centric

concept. Here a regular element is a document. Particularly, Dr.

Top-k uses the delegate to decide whether an entire subrange (i.e.,

a block in BMW) is eligible or not. However, BMW processes one

document at a time. Using document d3 in Figure 11 as an example,

even d3 is qualified, BMW still needs to perform the eligibility check

for d4. Further, for ineligible documents, BMW can only skip the

documents that share the same or fewer terms than d3. Second, we

further introduce β delegate to help removemore subranges and del-

egate top-k enabled filtering to reduce some regular elements from

the qualified subranges. Both of these designs are novel compared

to BMW. Third, as we will discuss shortly in Section 5, Dr. Top-k

also includes subrange size tuning and GPU-aware optimizations,

which are also novel compared to the BMW algorithm.

5 DR. TOP-K IMPLEMENTATION AND
OPTIMIZATIONS

5.1 GPU-based Dr. Top-k Design

Warp-centric delegate vector construction first divides the en-

tire input vector into smaller subranges at the length of 2α , where

α is an integer. Afterward, each warp of GPU threads is assigned

to extract each subrange delegate in three phases. Using maximum

delegate as an example, every thread first records the maximum

element when scanning through a specific subrange. Second, all

the threads in each warp use shuffle instruction, i.e., __shfl_sync(),

to communicate and derive the maximum element in the current

subrange. During the third phase, Dr. Top-k writes each subrange’s

maximums and the subrange IDs to the delegate vector in the global

memory. The size of the delegate vector is
|V |
2α .



Warp-centric concatenation. This step concatenates the eli-

gible subranges into a new concatenated vector where the second

top-k performs on. Particularly, a warp of threads is responsible

for moving the subrange elements into the concatenated vector.

BecauseDr. Top-k uses delegate top-k enabled filtering, the eligible

elements per subrange are unclear. We resort to atomic operations

to calculate the location for each eligible element.

First and second top-k . Once Dr. Top-k formulates delegate

or concatenated vector, it will perform top-k on them. While both

top-k algorithms work on a relatively small vector, the first top-k
presents two unique features. First, this top-k algorithm has to work

on a delegate vector that comes in the format of (key, value) pair.

Here, the key is the delegate element from each subrange, and the

value indicates which subrange this delegate element comes from,

which is essential for the concatenation step. Second, the first top-k
algorithm has to be a top-k operation instead of k-selection because

one needs to extract all the top-k subranges for concatenation. We

hence have to revise the radix and bucket k-selection algorithms

of [2] to support top-k .

Choice of top-k algorithms. Despite the fact that Dr. Top-

k can help all existing top-k algorithms, we notice that the best

Dr. Top-k will favor different top-k algorithms when k changes.

Particularly, (i) when k is small, all top-k algorithms will enjoy com-

parable performance gains over their baseline algorithms. However,

for radix and bucket top-k , they prefer in-place designs that always

work on the input vector V as instead of out-place variants that

copy the derived candidates to a new array for the follow-up iter-

ation. (ii) When k is large, the performance of Dr. Top-k assisted

bitonic top-k will lag behind. Specifically, bitonic top-k needs a

large shared memory space to cache the intermediate results and

achieve desirable performance, which will experience low occu-

pancy hence poor performance whenk > 256. As shown in Figure 4,

when k goes beyond 256, the performance of bitonic top-k degrades

significantly. This makes Dr. Top-k assisted bitonic perform worse

than other Dr. Top-k assisted ones.

Optimized in-place radix top-k . Since existing in-place radix

top-k algorithm [2] requires to modify the ineligible element from

the input vector into a value that is assured to fall out of the value

range of interest (e.g., zero), this results in excessive random mem-

ory accesses. We introduce a single flag variable to indicate the

radixes of interest. This flag tracks the radixes that are eligible for

the next iteration. Subsequently, once an element is loaded from

global memory, we will perform flag == (flag & loadedElement)

between the loaded element and the flag variable. Only when the

condition is evaluated as true, we consider this loaded element as a

qualified element. As shown in Figure 12, our optimized in-place

radix top-k is on average 10.7× faster than the state-of-the-art [2].

5.2 α Tuning

A proper subrange size is crucial for Dr. Top-k to achieve good

performance. On the one hand, a small subrange size would lead

to too many subranges. In this context, the delegate vector con-

struction and the first top-k would suffer from heavy workloads.

On the other hand, when the subrange size is large, there are too

few subranges. In this case, the majority of these subranges will

be eligible for the second top-k . We hence skip too few subranges,
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Figure 12: Dr. Top-k in-place radix top-k speedup over GGKS in-

place radix top-k on uniformly distributed vector of size |V | = 221.

leading to limited workload reduction for concatenation and second

top-k . Rule 4 helps Dr. Top-k derive an optimal subrange size.

Rule 4. For Dr. Top-k,

α = 1
2 · [Const + log2(|V |) − log2(k)]

leads to the optimal subrange size 2α , where |V | is the number of

elements in the input vectorV ,k is the number of top elementsDr. Top-

k aims to find.Const = log2[6 · (Cдlobal +Cshf l )]− log2(6 ·Cдlobal ),
where Cдlobal and Cshf l are the clock cycles for one global memory

access and one CUDA shuffle instruction, respectively.

Proof. The time consumption of Dr. Top-k is:

T = TDeleдate +TF ir stK +TConcat +TSecondK , (1)

whereTDeleдate ,TF ir stK ,TConcat andTSecondK are the time con-

sumption of delegate vector construction, first top-k , concatenation,
and second top-k , respectively.

Global memory access and intra-warp communication are the

key factors determining the time consumption of Dr. Top-k for

two reasons. First, one global memory access or intra-warp shuffle

operation takes a much longer time than a single arithmetic and

logic operation on GPUs, according to Nvidia profiler [29]. Second,

the number of arithmetic and logical operations is similar to that of

global memory accesses across all four stages of Dr. Top-k. Using

delegate vector construction as an example, each thread loads one

element from global memory and compares, i.e., a logic operation,

it with the current maximum in a register. In this case, one memory

access leads to one arithmetic or logic operation. As a result, we

mainly use global memory access and shuffle instructions to esti-

mate the time consumption. We perform our analysis for maximum

delegate for simplicity and assume all global memory accesses have

equal latency, i.e., Cдlobal .

TDeleдate : Delegate vector construction reads |V | elements and

write
|V |
2α delegates. After thread local comparison, each subrange

resorts to CUDA __shfl_sync instruction to derive the maximum for

the entire subrange. Since onewarp contains 32 threads,
∑

1≤i≤5
32
2i
=

31 shuffle instructions are needed. Therefore, the communication

complexity is 31 ·
|V |
2α ·Cshf l , where Cshf l is the cost of a shuffle

instruction. Together, delegate vector construction time is:

TDeleдate = (1 +
1

2α
) · |V | ·Cдlobal

︸���������������������������︷︷���������������������������︸
Global memory access

+
31 · |V |

2α
·Cshf l

︸���������������︷︷���������������︸
Intra−warp comm .

. (2)



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

Figure 13: The runtime of Dr. Top-k with respect to the change of α ,

where k = 213 and the UD dataset from Section 6.

TF ir stK : Now, we analyze the time consumption of our optimized

in-place radix top-k . According to our study, 8-bit per digit yields

the optimal performance for in-place optimized radix top-k . A 32-bit

unsigned integer hence experiences four iterations of scans. At each

iteration, we always load all the elements. An additional iteration

over the vector is used to identify the top-k elements. Finally, we

writek elements, which are also the indices of the eligible subranges.

Therefore, the time consumption of the first top-k is:

TF ir stK =
5 · |V | ·Cдlobal

2α
+ 2 · k ·Cдlobal . (3)

TConcat : The concatenation step reads k indices for the sub-

ranges that are eligible for the second top-k and copies those sub-

ranges from the input to the concatenated vector for the second

top-k . The time consumption for concatenation is:

TConcat = k ·Cдlobal + 2 · k · 2α ·Cдlobal . (4)

TSecondK : The second top-k takes as input the output from the

concatenation step and conducts in-place radix top-k to derive the

eventual top-k . Consequently, this step is mainly about reading the

entire outputs from concatenation. Similar to the analysis for the

first top-k , which reads the concatenated vector by four times, the

time consumption of the second top-k is:

TSecondK = 4 · k · 2α ·Cдlobal . (5)

Taken Equations (2) – (5) together, we arrive at the total time

consumption of Dr. Top-k as shown as in Equation 6.

T = TDeleдate +TF ir stK +TConcat +TSecondK

= 31 · |V | · 2−α ·Cshf l+

(6 · |V | · 2−α + 6 · k · 2α + 2 · k + |V |) ·Cдlobal .

(6)

Given Equation 6 ignores various hardware scheduling, arith-

metic, and logical operation latency, we introduce Δ(α ,k, |V |) (at

Equation 7), which is a positive function of α , k and |V |, to make

up the impacts. We assume the magnitude of Δ(α ,k, |V |) is smaller

than that of T .

TDr. Top-k = T + Δ(α, k, |V |). (7)

We first prove TDr. Top-k is a convex function, which makes it easy

to obtain the optimal α for Dr. Top-k. According to [50], in order to

demonstrate the convex nature of TDr. Top-k , the second derivative
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Figure 14: Performance of oracle α vs. auto-tuned α .

of TDr. Top-k with respect to α should be positive.

∂2TDr. Top-k

∂2α
= (31 ·Cshf l + 6 ·Cдlobal ) · |V | · ln2(2) · 2−α

+ 6 · k ·Cдlobal · ln
2(2) · 2α + Δ′′(α, k, |V |).

(8)

According to the assumption in Equation 7, the magnitude of

Δ′′(α ,k, |V |) will be smaller than the remaining factors in Equa-

tion 8. For positive values of k , |V |, Cдlobal and Cshf l , we obtain:

∂2TDr. Top-k

∂2α
> 0. (9)

Hence, TDr. Top-k is convex function of α .

Our study in Figure 13 also suggests that Dr. Top-k is a convex

function of α . Particularly, the time consumption of delegate vector

construction and first top-k decrease along with the increase of α .
Meanwhile, concatenation and second top-k increase. Altogether,

the total time consumption decreases then increases with respect

to the increase of α . Finally, since TDr. Top-k is convex, the optimal

value of α can be obtained by:

∂TDr. Top-k

∂α
= 0. (10)

Solving Equation 10, we obtain:

α =
1

2
· [log2( |V |) − log2(k ) + const ] , (11)

where, const = log2(6 ·Cдlobal + 31 ·Cshf l ) − log2(6 ·Cдlobal ) +
Δ′(α ,k, |V |).

Figure 14, from an evaluation perspective, exhibits the perfor-

mance alignment of the auto-tuned α and the oracle α across a

wide range of k for the |V | = 230 unsigned integers dataset, where

we set const = 3 according to performance tuning. �

5.3 Delegate Vector Construction Optimization

After we optimize the first and second top-k computations and

concatenation steps, delegate vector construction becomes the next

bottleneck forDr. Top-k. This is especially true when k is relatively

large. According to Equations 11: α decreases with respect to the

increase of k . For instance, when |V|=230, and k = 224, the optimal

α = 4. This implies that the input vector is partitioned into a large

number of small subranges which would lead to two problems: (i)

the small subrange size fails to saturate a GPU warp; and (ii) too many

subranges will lead to an overwhelming number of shuffle instructions

for delegate communication.



Figure 15: After delegate vector construction optimization, Dr. Top-

k time consumption breakdown for UD dataset on Section 6.

We introduce a novel coalesced loading to shared memory

and strided computing approach to remedy this small subrange

size problem (α ≤ 5). This method consists of two phases: (i) one

warp moves 32 subranges into the shared memory for delegate

extraction. Here, each subrange is loaded from global memory into

the shared memory by a warp in a coalesced manner. Since the

subrange size is small, the shared memory pressure remains low.

Subsequently, (ii) each thread of the warp individually works on

the entire subrange to extract the delegate. This design ensures that

all the threads of a warp have workloads, and no shuffle instruction

is needed to communicate and decide the subrange delegates. This

design helps the β delegate tremendously, which would otherwise

needs approximately β× more shuffle instructions to extract the β
delegates. We use padding to avoid shared memory bank conflict.

Figure 15 shows the improvement brought by the delegate vector

construction optimization for different values of k . Comparing to

Figure 10, one can find out that the delegate vector construction

time is dramatically reduced for larger values of k , making the

sampling time always close to merely the time consumption of

scanning the input vector. Especially, for k = 224, we observe the

time consumption of delegate vector construction decreases from

31.4 ms to 9.4 ms. And the total time consumption is reduced from

46.7 ms of Figure 10 to 24.7 ms.

5.4 Distributed Dr. Top-k

In the distributed GPU setting, we partition the input vectorV into

disjoint sub-vectors of equal length. To fit in the GPU memory,

we require the length of each sub-vector to be no longer than 230:

(i) when (#GPUs) × 230 ≥ |V |, we partition V into #GPU number

of sub-vectors and let each GPU account for one sub-vector. (ii)

When (#GPUs) × 230 < |V |, we partition V into
|V |

230
number of

sub-vectors. In this case, one GPU accounts for more than one sub-

vector; hence will load the unloaded sub-vectors from outside of

GPUs. We schedule each GPU to compute the top-k for its own

sub-vectors to arrive at one top-k per GPU. Subsequently, each GPU

sends its top-k to the primary GPU to calculate the final top-k .

Figure 16 presents the workflow of multi-GPU Dr. Top-k which

contains three major steps: 1 It enables all the participating GPUs

to work on their local sub-vectors to compute local top-k . 2 It

gathers these locally computed top-k’s to the primary GPU. 3

It enables primary GPU to compute the global top-k . For inter-
GPU communication, we use Message Passing Interface (MPI) [43].

Particularly, we use MPI asynchronous (← Asynch. MPI in the

figure) communication among the processes to gather local top-k’s
from all the GPUs to the primary GPU.

While relying on the primary GPU to compute the final top-k
works for a small number of GPUs, e.g., 16 in our evaluation, we

anticipate hierarchical reduction [52] would excel when Dr. Top-k

scales to a large number of GPUs. Particularly, for a multi-node

setting, where each node installs multiple GPUs, the hierarchical

scheduling method first derives the top-k across all the GPUs in

each node. Afterward, all the nodes will send their top-k to the

primary GPU to compute the final top-k .

First top-k First top-k

Concatenation

GPU 0/ Process 0
(Primary GPU)

GPU 1.. n/ Process 1.. N
(Secondary GPUs)

Final top-k

Synch. MPI S

p k First

Concate

kth element

Top-k 
elements

Asynch. MPI

Delegate vec. constr.

Concatenation

Second top-k

Delegate vec. constr.

Second top-k

1

2

3

Figure 16: Workflow of multi-GPU

Dr. Top-k.

It is also worthy of

noting that we attempt

to reduce the workload

for the second top-k by

enabling an MPI commu-

nication for the top-kth

element of the first top-

k (the ↔ symbol in Fig-

ure 16). With the kth del-

egate across all GPUs, we

anticipate this will help

filter out more unpromis-

ing elements hence re-

duce the workload. How-

ever, since thismethod re-

quires all GPUs to have

the maximum of kth el-

ements before launching

the concatenation kernel,

this introduces synchro-

nization overhead. Addi-

tionally, in Figure 15, we

also notice the cost of sec-

ond top-k remains low throughout for a wide range of k , leaving
relatively small room for improvement. In summary, the overhead

of synchronizing the kth elements from first top-ks’ exceeds the
benefits of a smaller concatenated vector, we disable this technique

in our final version of distributed Dr. Top-k.

6 EVALUATION

We implement Dr. Top-k with ∼1,500 lines of C++ and CUDA

code, extending the state-of-the-art bitonic, bucket and radix top-k
projects [2, 42]. We compile the source code using NVIDIA CUDA

10.1 nvcc compiler with the optimization level as O3. We use two

platforms to evaluate the performance of Dr. Top-k. Platform I is a

server with two Intel Xeon “Cascade Lake-SP” CPUs (@3.8 GHz)

and 4 Tesla V100S GPU running Ubuntu Server 18.04. Platform II

consists of i7-8700 CPU @ 3.20GHz with one Titan Xp running

Ubuntu Server 16.04. All the reported execution time is an average

of five runs. The default size of the input vector V is |V | = 230,

and each data entry is an unsigned integer. V is generated by the

following distributions.

• Uniform distribution dataset (UD) is generated follow-

ing U[0, 232-1], meaning the value ranges from 0 to 232 − 1.
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Figure 17: The time consumption of Dr. Top-k versus various top-k

algorithms with respect to the increase of |V |.

• Normal distribution dataset (ND) is produced with the

normal distributionN [108, 10], where themean and standard

deviation are 108 and 10, respectively.

• Customized distribution dataset (CD) is produced to in-

crease the number of iterations in bucket top-k . The values
are generated in the range of [0, 232-1] such that every bucket

other than the bucket containing the kth element will always

have at least one element in every iteration and majority of

the element is present in the bucket with the kth element.

Unless stated differently, we present the experiments on platform I

for the UD dataset.

6.1 Dr. Top-k vs. State-of-the-art

This section reports the performance gains brought by Dr. Top-k

to the state-of-the-art with respect to the change of |V | and k .

Dr. Top-k for different input vectorV sizes. Figure 17 demon-

strates the time consumption of different versions of top-k for

k = 1024 on V whose sizes vary from 226 to 230. The general trend

is that Dr. Top-k becomes more beneficial when the input vector size

is bigger, because delegate vectors can help reduce more workloads

when V gets larger. Particularly, when |V | = 230, radix, bucket,

bitonic and sort and choose top-k consume 41.3 ms, 38.4 ms, 127.0

ms and 243.2 ms, respectively. Our Dr. Top-k assisted radix, bucket

and bitonic top-k designs reduce the time to 6.4 ms, 7.0 ms and 7.0

ms, respectively.

Dr. Top-k assisted radix top-k . As shown in Figure 18, in gen-

eral, Dr. Top-k yields bigger performance gains on the normal and

customized distribution datasets. Particularly, we observe 1.7× -

10× and 1.1× - 10.1× speedups, respectively on normal and cus-

tomized distribution, while 1.7× - 6.6× on uniform distribution. It

is also important to note that the impact of Dr. Top-k decreases

with respect to the increase of k . For instance, when k=224, Dr.

Top-k only gives 1.7× speedups for both the uniform and normal

distribution datasets and 1.1× speedup for customized distribution.

This is caused by the fact that Dr. Top-k requires more delegates

to figure out the useful subranges when k becomes larger, leading

the first top-k to consume significant time. Section 6.2 conducts a

thorough study on the workload reduction trend for varying k .

Dr. Top-k assisted bucket top-k . Figure 18 also shows the

speedup of Dr. Top-k assisted bucket top-k over the bucket top-k
alone algorithm on the normal, customized and uniform distri-

butions. The trends are analogous to radix top-k but with two

differences. First, bucket top-k performs fairly well when k = 1
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Figure 18: The speedup of Dr. Top-k over the-state-of-the-art for a

varying k on synthetic datasets.

because bucket top-k first finds the maximum value. Then the query

is completed. Thanks to near bandwidth performance of delegate

vector construction and single delegate needed to be selected for

first top-k for k = 1, Dr. Top-k assisted bucket top-k only needs to

work on the first top-k , leading Dr. Top-k assisted bucket top-k to

perform faster, i.e., by 1.1× for all normal, customized and uniform

distributions. Second, in bucket top-k , the speedup of Dr. Top-k

on customized distribution outpaces the uniform and normal distri-

bution. Particularly, we observe the speedups from 1.1× - 118.6×

for customized distribution while 1.1× - 6.1× and 1.1× - 6.2× for

normal and uniform distribution respectively.

Dr. Top-k assisted bitonic top-k . Figure 18 further includes the
speedup of Dr. Top-k assisted bitonic top-k over the bitonic top-k
stand alone algorithm [42]. Note, the original source code [5] from

bitonic top-k project [42] experiences shared memory overflow

when k goes beyond 256. We modify the source code to enable it for

k > 256. Particularly, the speedup of Dr. Top-k climbs from 1.1×

when k=20 to 473× when k=224. Since the performance of bitonic

top-k is independent from the data distribution, the speedups over

the normal, uniform and customized distributions are the same.

Note, for visualization, we limit the y-axis to [0, 128] in Figure 18.

Hence the speedups that are beyond 128 for bitonic top-k are

marked as numbers in Figure 18.

Dataset Abbr. |V| Application domain

ANN_SIFT1B [21] AN 536,870,912 k-Nearest Neighbor

ClueWeb09 [9, 40] CW 1,073,741,824 Sparse Networks

TwitterCOVID-19 [19] TR 1,073,741,824 Social Networks

Table 1: Real-world datasets.

Real-world datasets contains three datasets: ANN_SIFT1B [21],

ClueWeb09 [39] and TwitterCOVID-19 [19]. (i) ANN_SIFT1B dataset

contains 1 billion vectors, each of which is at 128 dimensions and

describes an image. We use the first vector from the ANN_SIFT1B

dataset to calculate the euclidean distances between this vector

and the 1 billion vectors. Afterward, the distance array is the input

vector for top-k . (ii) The ClueWeb09 is a webpage graph which

contains 4,780,950,910 webpages and 7,939,635,651 links. We derive

the degrees of the webpages and use that as the input vector for

top-k . (iii) TwitterCOVID-19 [19] dataset consists of COVID-fear

related scores of the tweets related to the COVID-19 pandemic from

28 January 2020 to 1 January 2021. The original 132 million public

twitter posts are duplicated on the vector of 1 billion size to achieve

same distribution. Top-k computation can help (i) derive the k-NN of
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Figure 19: The speedup of Dr. Top-k over the-state-of-the-art for a

varying k on real-world graph.

a query vector [21], (ii) rank the vertices by degree [12] and (iii) k least

fearful tweets related to the COVID19 pandemic in [19] dataset. Since

bitonic top-k cannot work on |V | that is not at size of power of 2,

and GGKS radix top-k suffers from |V | ≥ 231, we cut the sizes of (i)

and (ii) datasets into 536,870,912 and 1,073,741,824, respectively.

Figure 19 shows the speedup of Dr. Top-k assisted top-k algo-

rithms over the state-of-the-art projects on the real-world datasets.

In general, for the same top-k algorithm, Dr. Top-k enjoys higher

speedups on CW dataset than AN, because CW is larger. This aligns

with our finding in Figure 20. On average, Dr. Top-k assisted radix,

bucket and bitonic top-k , respectively, perform 6.7×, 4.6 × and

173.7× faster than their corresponding top-k algorithms on CW.

AN dataset observes an average speedup of respectively 4.2×, 3.3×

and 127.1× over the state-of-the-art top-k algorithms. Similarly, TR

dataset observes an average speedup of respectively 4.8×, 4.1× and

170.2× over the state-of-the-art top-k algorithms.

6.2 Dr. Top-k Workload Statistics

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

Figure 20: Workload dynamics of the first top-k , second top-k and

their sum with respect to the increase of |V |. Here, we set k = 219.

Figure 20 plots the workload dynamics for the first top-k , sec-
ond top-k and their sum with respect to varying sizes of the input

vector |V |. Particularly, the workloads are the sizes of the delegate

vector and the concatenated vector for the first and second top-k ,
respectively. We observe that the ratio of the delegate vector over |V |

decreases significantly when |V | increases, so does that for concate-

nated vector. Specifically, the sum of the delegate and concatenated

vector sizes is 76.06% of |V | at |V | = 222 and 0.83% at |V | = 230.

This workload reduction trend demonstrates the scalable nature of Dr.

Top-k, that is, Dr. Top-k performance improves when the problem

size |V| increases.

Figure 21 demonstrates the vector size of the first top-k and

second top-k in Dr. Top-k assisted radix top-k across different k
values. Apparently, for a given input vector size, the increase of k
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Figure 21: Workload dynamics of the first top-k , second top-k and

their sum with respect to the increase of k . Here, we set |V | = 230.

will lead to larger vector sizes for both the first and second top-k .
As the vector sizes increase to a higher ratio of the input vector,

the speedup of Dr. Top-k over the state-of-the-art also decreases.

Another fact is that the workload of the first top-k dominates the

entire workload for Dr. Top-k because β delegate will lead to more

delegates. Further, β delegate and delegate-based filtering together

can significantly reduce the workload for the second top-k . Partic-
ularly, the ratio of the sum of both vectors over the input vector

climbs from 0.0015% to 15.91% with the increase of k .
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Figure 22: The performance impacts of delegate top-k enabled fil-

tering vs β delegate.

Figure 22 studies the separate and combined effects of delegate

top-k based filtering and β delegate, given both of them are pro-

posed to reduce the workload for concatenation and second top-k .
Here, we include delegate vector construction optimization. When

k is small, one can observe that delegate top-k enabled filtering

yields better performance gains over β delegate, k = 220 in particu-

lar. However, once k becomes bigger, the β delegate optimization

starts picking up the momentum. Overall, delegate top-k enabled

filtering combined with β delegate always offers the best perfor-

mance. Particularly, for k = 224, the time consumption of delegate

top-k enabled filtering, β delegate and the combined one are 54.2

ms, 35.9 ms 24.7 ms.

6.3 Dr. Top-k Scalability

Table 2 demonstrates the scalability of Dr. Top-k assisted radix top-

k for vector sizes |V| of 230 - 233 on up to 16 V100 GPUs (4 compute

nodes). The table includes the communication overhead among

the GPUs, vector reloading overhead, and total time. Overall, we

can observe that Dr. Top-k achieves desirable scalability in various

settings. When the partitioned sub-vector can fit in 1 - 16 GPUs in

|V | = 230, the speedup goes up to 3.4× on 16 GPUs. In the remaining

columns (|V| ≥ 231) of the table, we observe superlinear speedup.

The reason is that when the # of GPUs is low, we cannot fit all



#GPU (#Nodes)
|V| = 230 |V| = 231 |V| = 232 |V| = 233

Communication
(ms)

Reload
Overhead

(ms)

Total time
(ms) (speedup)

Communication
(ms)

Reload
Overhead

(ms)

Total time
(ms) (speedup)

Communication
(ms)

Reload
Overhead

(ms)

Total time
(ms) (speedup)

Communication
(ms)

Reload
Overhead

(ms)

Total time
(ms) (speedup)

1 (1) 0 0 6.1 (1x) 0 373.14 384.93 (1x) 0 1238.13 1261.51 (1x) 0 2898.54 2944.99 (1x)

2 (1) 0.11 0 3.7 (1.6x) 0.46 0 6.22 (61.7x) 0.06 524.41 536.218 (2.3x) 0.08 1586.81 1788.3 (1.7x)

4 (1) 0.11 0 2.5 (2.4x) 0.29 0 3.7 (104.0x) 0.12 0 8.8 (143.3x) 0.07 1056.02 1067.68 (2.8x)

8 (2) 0.19 0 1.96 (3.1x) 0.29 0 2.71 (141.7x) 0.73 0 4.36 (289.2x) 1.32 0 7.97 (369.4x)

16 (4) 0.31 0 1.80 (3.4x) 0.32 0 2.07 (185.9x) 0.82 0 2.68 (470.5x) 1.43 0 4.01 (734.2x)

Table 2: Scalability of Dr. Top-k with varying |V | and k = 128.

the sub-vectors in GPU before computation. Therefore, Dr. Top-k

loads certain partitions during computation. And the total time

includes sub-vector loading time. Whereas, when the GPU number

increases to 16, the data can fit in GPUs. Thanks to a relatively

low communication cost in asynchronous communication for the

top-k elements, we observe a maximum communication time of

1.43 ms at 16 GPUs |V | = 233 configuration. Similarly, for a large

input vector |V | = 233 and with a single GPU configuration, the

reload overload can go up to 2898.54 ms. Note, we cannot include

the multi-GPU settings for the state-of-the-art tools because they

do not support multi-GPU features.

6.4 Global Memory Transactions Analysis

Radix top-k Bucket top-k Bitonic top-k#global memory
transactions GGKS [2] Dr.Top-k GGKS [2] Dr.Top-k Bitonic [42] Dr.Top-k

#load (×109) 3.07 1.34 4.04 1.44 11.45 1.35

#store (×109) 2.01 0.003 1.36 0.003 2.09 0.007

Table 3: Number of global load and store transactions in different

versions in top-k. We test on UD dataset with |V| = 230 and k = 27.

Table 3 showcases the number of global memory load and store

transactions of different versions of top-k on the UD dataset with

|V| = 230 and k = 27. We use nvprof [29] profiler for profiling the

results. From the table, we observe a reduction of load transac-

tions by 2.3×, 3.1× and 8.5×, respectively when Dr. Top-k assists

radix, bucket and bitonic top-k . Similary, Dr. Top-k helps reduce

the global memory store transaction by 766.8×, 516.9× and 298.6×,

respectively on radix, bucket and bitonic top-k .

6.5 Dr. Top-k on Different GPUs
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Figure 23: Dr. Top-k on V100S Vs Titan Xp.

Figure 23 compares the Dr. Top-k radix top-k on the V100S

and Titan Xp GPUs. Clearly, the time consumption patterns of Dr.
Top-k on both the GPUs are similar for a range of k . Overall, the
performance of Dr. Top-k on V100S is better than in Titan Xp by

a factor of 1.3× - 1.8×. This roughly aligns with the ratio of the

reported peak throughput difference between V100S [31] and Titan

Xp [4] which are 1,134 GB/s and 547.7 GB/s.

6.6 Dr. Top-k vs BMW

Figure 24 presents the ratio = BMW workload
Dr. Top-k workload

, where we use the

sum the workloads of first and second top-k as Dr. Top-k workload.

Overall, we observe the ratio to be, on average, 212× in ND and 6×

in UD, which suggests that Dr. Top-k reduces 212× and 6× more

workload than BMW. The reason is that BMW still works on each

regular item even after deriving the delegate while Dr. Top-k uses

a delegate to skip an entire subrange directly.
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Figure 24: The ratio of fully evaluated workload (after workload re-

duction) of BMW to that of Dr. Top-k.

7 CONCLUSION

We introduce Dr. Top-k with three contributions: First and fore-

most, Dr. Top-k introduces a comprehensive delegate-centric con-

cept to help tremendously reduce the workload for top-k computa-

tions. Second, we introduce a practical way to partition the input

vector into proper sized subranges with theoretical support. Finally,

we deploy our project atop distributed GPUs to handle extreme

large input vectors along with various system optimizations. Taken

together, Dr. Top-k assisted top-k algorithms constantly outper-

form the state-of-the-art.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran the majority of the tests on a server with two Intel Xeon

“Cascade Lake-SP” CPUs (@3.8 GHz)and 4 Tesla V100S GPU run-

ning Ubuntu Server 18.04. One different GPU test on Titan Xp

GPU. The MultiGPU test was run in a single compute node Summit

Supercomputer (IBM Spectrum MPI) on up to 4 GPUs.

Author-Created or Modified Artifacts:

Persistent ID: DOI: 10.1145/3476484,
https://anonymous.4open.science/r/1a9e676c-cb4d- 	

4d0a-a4c4-e61e5a4c66dc/
↩→

↩→

Artifact name: DrTopKSC

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Two Intel Xeon “Cascade Lake-SP”

CPUs (@3.8 GHz) and V100 GPU

Operating systems and versions: Ubuntu Server 18.04

Compilers and versions: nvcc (CUDA 11.1)

Libraries and versions: IBM Spectrum

Input datasets and versions: Synthethic and Real Datasets (Cited

in the paper))

URL to output from scripts that gathers execution environment

information.

https://anonymous.4open.science/r/1a9e676c-cb4d-4d0a 	

-a4c4-e61e5a4c66dc/↩→


