
A brief introduction to R

Ionuţ Florescu

Dept. of Mathematical Sciences

Stevens Institute of Technology

May 15, 2009

1 What is R? Where to obtain it?

R is a software package, one of the most versatile and useful in existence. In
principal it is thought as a statistical software, however its versatility makes it
useful for virtually any problem that requires use of software for its analysis.

1.1 Differences and similarities with other statistical

software.

There is one important difference between R and any other professional soft-
ware. R IS FREE. Normally, when one uses free versions one expects to
use a stripped down, no good version of a commercial software. The rea-
soning in the commercial world we live in usually is: if it is valuable – it
should cost money. R is an exception. It actually is more powerful that
its commercial predecessor (S and Splus) and it is absolutely free. Even
more, one can obtain support for it by subscribing to R-help mailing list,
https://stat.ethz.ch/mailman/listinfo/r-help, which has over 200 posts every
day. Amazingly, this free support was by far my best experience with support
of any software I have ever used. If the question is interesting you should
expect an answer very quickly. Careful what you post though, the people
who maintain and answer questions are well known statistics professors and
take very harshly at silly questions which could be easily answered by reading
the introductory guides.

1

https://stat.ethz.ch/mailman/listinfo/r-help

Figure 1: R main page

1.1.1 Matlab

In spirit R is similar with Matlab through the uses of objects such as vectors
and matrices rather than one dimensional variables. It is superior to Matlab
when dealing with specific statistical analysis such as we see in the current
course. However, linear algebra (matrix decomposition and numerical anal-
ysis of PDE is debatably faster with Matlab).

1.1.2 Splus

Commercial software similar with R. Very expensive. Predecessor to R. Go-
ing into point and click direction to try and differentiate itself from R. Not
advised.

1.1.3 SAS

SAS is a commercial version used for statistical analysis. It is a strong
software that essentially is different in approach and analysis from R. It is

2

complementing R. Better and much faster at dealing with large datasets
(millions of observations). Harder to program nested algorithms than R.

1.1.4 Spreadsheet software EXCEL, SPSS, Minitab etc.

These are all point and click programs. Not recommended for serious anal-
ysis. They can work with small data sets but crash quickly. They were
designed to understand statistical concepts in undergraduate courses as well
as manipulate data in a simple way. However, I would say their level is
appropriate for high school students.

They are unbeatable however at quick and simple data manipulation. I
use EXCEL to keep grades for this course and to calculate the final percent-
age. I also use it to quickly sort up to moderately sized data (up to 100000
observations).

1.1.5 Symbolic software: Mathematica, Maple etc.

These programs serve a different purpose than R. Mathematicians use these
programs to essentially deal with non-random problems. Since statistics is
by definition studying randomness they are not appropriate.

1.1.6 C, C++, JAVA

These are low level languages. Any program you write in any of the software
mentioned thus far you should be able to program using low level language.
The development of the program will take much longer, thus they are not
suitable for use in a class such as the one presented. They, however have no
equal when the speed of execution is an issue.

Conclusion: R pretty much has no equal. A good statistician should
know how to use R, SAS and a low level language preferably C.

1.2 Obtaining R. Useful tools.

For a detailed description please see the file “R Installation and Administra-
tion” on the course web site or on the R web site directly (see Figure 1 on
page 2).

You can find a wealth of information about R on the Manuals page and
on the Wiki page for R.

3

http://cran.r-project.org/manuals.html
http://wiki.r-project.org/rwiki/doku.php

The installation is straightforward and I expect students at Stevens to
have no trouble with it. The last version at the time of this writing is 2.9
but the R versiuons evolve all the time adding new and better functionality.
You should always install the last version.

In addition a very useful tool is an editor. For the Windows environment
you could use Tinn-R, or if you use Notepad++ there is an extension called
npptor that allows it to edit R code. http://sourceforge.net/projects/npptor/.
For Linux you can use R commander (Rcmdr). If you use Eclipse for devel-
oping purposes you can set it up to work with R here is a document that
may help: Setting up Eclipse with R.pdf. For MAC you have to find your
own editor since I do not like that OS.

I personally use Tinn-R. I find it the easiest to use and it does its job very
well in my opinion. I will explain its basic installation and configuration.

1.2.1 Installing Tinn-R under Windows

.
You can obtain Tinn-R from Sourceforge. The authors’ web address is

http://www.sciviews.org/Tinn-R/. You can access the download webpage
from there.

The story about installing new versions is even more important with the
editor since it depends on the main R program. At the time of this writing
the Tinn-R version is 2.2.0.2. The installation and configuration may change
from version to version so make sure that you read the documentation.

First install R. You may configure it however you want, I recommend
installing the html version of help as it provides a familiar interface.

Then install Tinn-R. Use the default and do not forget to chose to asso-
ciate it with .r files.

After this, start Tinn-R and configure it to work with R. To this end,
choose R/Configure/Permanent(Rprofile.site) from the top menu and click
on it. See Figure 2 bellow. You only need to do this once (first time you run
the program). This will automatically configure everything. Chose to save
the file (Rprofile.site) when prompted and close it. Then start R again when
prompted or chose the button from the menu (see Figure3). This first time
R will automatically connect to internet and download needed packages. It
will ask you to chose a downloading site for this purpose. This is done only

4

http://sourceforge.net/projects/npptor/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html
http://www.gofsharp.com/R/Setting_up_Eclipse_with_R.pdf
http://www.sciviews.org/Tinn-R/

the first time you start R.
That is all.

Figure 2: Tinn-R setup

After each session R asks if you wish to save the data file. If you choose
“Yes”, R will save a R.data and a R.history files which contain the objects
that you created during the session in the current working directory. Thus,
next time when you work from the same directory the functions and variables
that you created will be available to you. If you start R from within the editor
the current working directory is set up to the directory of the current editor
file.

I usually create directories (project directories) where I save the editor
file. Starting R from inside the editor insures that the R.data and R.hist
files for R are also saved in the project directory and they are loaded every
time for the particular project. This insures that each time you work with
functions and data specific to the project and that the data file does not
grow extremely large.

5

2 Basic facts about R

In this section I want to make a brief introduction to the philosophy of R.
For more detail read the manuals and the textbook.

First of all how do you get help from inside the program.
Figure 3 on page 7 details the steps in searching the description of R

functions and objects using the included html help system. I found it very
useful since the description of functions usually includes examples of its use.

2.1 Basic objects

Basic object in R are vectors. The simplest way to cerate a vector is to
specify its elements or concatenate them. This is done with the command
c(). Look at the following code:

> x=c (1 , 2 , 3 , 4)
> x
[1] 1 2 3 4
> y<−c (1 , 2 , 3 , 4)
> y
[1] 1 2 3 4
> y−>c (1 , 2 , 3 , 4)
Error in c (1 , 2 , 3 , 4) <− y : t a r g e t o f ass ignment expands to
non−language ob j ec t

Note that assignment is done using either = or object 1<−object 2; object 1 −> object 2.
In the second case care has to be taken at what is assigned where. Histor-
ically, the second method was the only way to assign variables. Using = is
recent and simpler in some cases.

Notice that by default R does not echo the value stored in x, that is why
we had to call it again. The [1] in front of the output means that next to it
is the value of the first element in the vector x. This makes it easy to see the
indices of certain values. For example:

> x=rnorm (100)
> x

[1] 0.237642561 0.876295252 1.974330233 −1.481039969
[5] 1.351891376 −0.568888051 0.173439260 −2.484203697
[9] −0.926123597 −0.372810408 −0.538202536 −0.060924253

[1 3] −0.152219008 0.499729046 −0.223129476 0.668758491
[1 7] −0.158439432 0.318846848 −1.525156072 0.180975917

6

(a) Starting R from Tinn-R and starting the html help

(b) The main html help page (c) The search page

Figure 3: Getting help in R

7

[2 1] 0.748301774 1.787367985 0.095750077 0.173754937
[2 5] 0.786151309 1.764053131 0.704160617 −0.840505632
[2 9] 0.285558128 −0.032446896 −1.228041496 −0.608433995
[3 3] −1.356020869 −0.315292458 −1.157034611 −0.666455515
[3 7] −0.952164495 0.002923223 −1.042511768 −2.106197568
[4 1] −0.991882428 −1.137833460 0.642215596 0.021005544
[4 5] 0.704502306 0.408772645 0.578284895 0.613572300
[4 9] 0.330036063 −1.273529338 0.870827551 1.168062548
[5 3] 0.332890027 2.574568298 −0.160492916 0.726620457
[5 7] 0.088086003 1.433450143 0.319529910 −1.436210775
[6 1] −0.922078075 −0.459300901 0.069265586 0.877002607
[6 5] 0.584109383 −0.585970333 −0.563005373 2.336329173
[6 9] 0.149144611 −0.028811727 −1.281079465 −0.208302014
[7 3] 1.159875117 −1.637882479 −0.070133186 0.165062552
[7 7] −0.928366237 0.218066972 −0.422775329 −0.903656363
[8 1] 0.875540989 −0.638739741 −0.105328419 −0.601101522
[8 5] 1.203358057 0.510160841 1.293336278 1.100393583
[8 9] −0.356183702 −1.717985456 1.499592407 0.763135155
[9 3] 0.156543343 −3.740034195 −0.565474655 0.152592785
[9 7] 2.817728145 0.886599846 −1.977246574 0.758044979

I can see that the 50th element of the vector above is −1.273529338. By the
way the function rnorm(100) generates 100 random numbers all independent
distributed like a normal with mean 0 and variance 1.

An integer sequence such as one presented above can be created simpler
with:

> 1 :4
[1] 1 2 3 4
> seq (1 , 4 ,by=1)
[1] 1 2 3 4

The second way is more general. Read the manual.
Note that a vector in R has no dimension. Its values can be accessed as

in the following:

> x=seq (5 , 7 ,by=0.1)
> x

[1] 5 . 0 5 .1 5 .2 5 .3 5 .4 5 .5 5 .6 5 .7 5 .8 5 .9 6 .0 6 .1 6 .2 6 .3 6 .4 6 .5 6 .6 6 .7
> dim(x)
NULL
> length (x)

8

[1] 21
> x [4]
[1] 5 . 3

Once you bind two vectors together they become a matrix:

> cbind (x , 1 : length (x))
x

[1 ,] 5 . 0 1
[2 ,] 5 . 1 2
[3 ,] 5 . 2 3
[4 ,] 5 . 3 4
[5 ,] 5 . 4 5
[6 ,] 5 . 5 6
[7 ,] 5 . 6 7
[8 ,] 5 . 7 8
[9 ,] 5 . 8 9

[1 0 ,] 5 . 9 10
[1 1 ,] 6 . 0 11
[1 2 ,] 6 . 1 12
[1 3 ,] 6 . 2 13
[1 4 ,] 6 . 3 14
[1 5 ,] 6 . 4 15
[1 6 ,] 6 . 5 16
[1 7 ,] 6 . 6 17
[1 8 ,] 6 . 7 18
[1 9 ,] 6 . 8 19
[2 0 ,] 6 . 9 20
[2 1 ,] 7 . 0 21

Elements in a matrix are accessed using :

> z=cbind (x , 1 : length (x))
> z [1 , 2]
[1] 1
> z [1 ,]
x
5 1
> z [, 2]
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

The second and third call displays the first row and the first column respec-
tively.

9

Notice that I didn’t have to create a z variable. The following also displays
the first row:

> cbind (x , 1 : length (x)) [1 ,]
x
5 1

So what happens when the two vectors have different lengths? Observe:

> cbind (1 : 6 , 1 : 4)
[, 1] [, 2]

[1 ,] 1 1
[2 ,] 2 2
[3 ,] 3 3
[4 ,] 4 4
[5 ,] 5 1
[6 ,] 6 2
Warning message :
number o f rows o f r e s u l t i s not a mu l t ip l e o f
vector length (arg 2) in : cbind (1 , 1 : 6 , 1 : 4)

Important. R works with objects. It does not care what dimension they
are. If the operation can be done it is done. If not a warning or an error are
generated. Look at the following example:

> 1+11
[1] 12
> 1:4+11:14
[1] 12 14 16 18
> 1:4+10:14
[1] 11 13 15 17 15 Warning message : l onger ob j ec t length

i s not a mu l t ip l e o f s h o r t e r ob j ec t length in : 1 : 4 + 10:14

In all cases the addition operation was performed. Also note that the follow-
ing does not produce a warning:

> 1:4+1
[1] 2 3 4 5

There are many other things I could try and describe. However, the best
way to learn a language (any language) is to practice it.

One last issue I want to present is the creation of functions. For example

> t e s t . f c t=function (a , b=1){a+b}
> t e s t . f c t (1 , 3)

10

[1] 4
> t e s t . f c t (1)
[1] 2
> t e s t . f c t (, 3)
Error in t e s t . f c t (, 3) : argument "a" i s missing , with no default

> t e s t . f c t=function (a=2,b){ a+b}
> t e s t . f c t (, 3)
[1] 5

The code create a function that adds 2 objects. Note the default argu-
ment. One can call the function to perform addition on vectors:

> t e s t . f c t (1 : 4 , 1 1 : 1 4)
[1] 12 14 16 18
> t e s t . f c t (, 1 1 : 14)
[1] 13 14 15 16

Also note that the second time you run the function the old function is
rewritten. An easy way to check any function is to call its name without
arguments:

> t e s t . f c t
function (a=2,b){ a+b}

I will stop here and advice you to practice. As it is true about anything
it is also true about R: practice makes it perfect.

11

	1 What is R? Where to obtain it?
	1.1 Differences and similarities with other statistical software.
	1.1.1 Matlab
	1.1.2 Splus
	1.1.3 SAS
	1.1.4 Spreadsheet software EXCEL, SPSS, Minitab etc.
	1.1.5 Symbolic software: Mathematica, Maple etc.
	1.1.6 C, C++, JAVA

	1.2 Obtaining R. Useful tools.
	1.2.1 Installing Tinn-R under Windows

	2 Basic facts about R
	2.1 Basic objects

