
Lecture 4 

Statistical Inference. Inference for 
one population mean and one 

population proportion



Uncertainty and confidence
Although the sample mean,   , is a unique number for any particular 
sample, if you pick a different sample you will probably get a different 
sample mean. 

In fact, you could get many different values for the sample mean, and 
virtually none of them would actually equal the true population mean, µ.
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But the sample distribution is narrower than the population distribution, 

by a factor of √n.

Thus, the estimates        

gained from our samples 

are always relatively 

close to the population 

parameter µ.
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If the population is normally distributed N(µ,σ), 
so will the sampling distribution N(µ,σ/√n), 



Red dot: mean value
of individual sample

95% of all sample means will 
be within roughly 2 standard 
deviations (2*σ/√n) of the 
population parameter µ.

Because distances are 
symmetrical, this implies that 
the population parameter µ
must be within roughly 2 
standard deviations from 
the sample average     , in 
95% of all samples.

This reasoning is the essence of statistical inference.
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The weight of single eggs of the brown variety is normally distributed N(65 g,5 g).
Think of a carton of 12 brown eggs as an SRS of size 12.

.

You buy a carton of 12 white eggs instead. The box weighs 770 g. The 
average egg weight from that SRS is thus     = 64.2 g. 

 Knowing that the standard deviation of egg weight is 5 g, what can you 
infer about the mean µ of the white egg population? 

There is a 95% chance that the population mean µ is roughly within 
± 2σ/√n of     , or 64.2 g ± 2.88 g.

population sample

 What is the distribution of the sample means    ?

Normal (mean µ, standard deviation σ/√n) = N(65 g,1.44 g).

 Find the middle 95% of the sample means distribution.

Roughly ± 2 standard deviations from the mean, or 65g ± 2.88g. 
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Confidence interval
The confidence interval is a range of values with an associated 

probability or confidence level C. The probability quantifies the chance 

that the interval contains the true population parameter.

± 4.2 is a 95% confidence interval for the population parameter µ. 

This equation says that in 95% of the cases, the actual value of µ will be 
within 4.2 units of the value of   . 
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Implications

We don’t need to take a lot of 
random samples to “rebuild” the 
sampling distribution and find µ
at its center. 

n

n

Sample

Population

µ

All we need is one SRS of 
size n and relying on the 
properties of the sample 
means distribution to infer 

the population mean µ.



Reworded

With 95% confidence, we can say 

that µ should be within roughly 2 

standard deviations (2*σ/√n) from 

our sample mean    bar.

 In 95% of all possible samples of 

this size n, µ will indeed fall in our 

confidence interval.

 In only 5% of samples would    be 

farther from µ. 
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A confidence interval can be expressed as:

 Mean ± m
m is called the margin of error
µ within     ± m
Example: 120 ± 6

 Two endpoints of an interval 
µ within (    − m) to (    + m) 

ex. 114 to 126

A confidence level C (in %) 

indicates the probability that the 

µ falls within the interval. 

It represents the area under the 

normal curve within ± m of the 

center of the curve.
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Confidence intervals contain the population mean µ in C% of samples. 

Different areas under the curve give different confidence levels C. 

Example: For an 80% confidence 
level C, 80% of the normal curve’s 
area is contained in the interval.

C

z*−z*

Varying confidence levels

Practical use of z: z*
 z* is related to the chosen 
confidence level C.

 C is the area under the standard 
normal curve between −z* and z*.

 

x ± z *σ n

The confidence interval is thus:



How do we find specific z* values?

We can use a table of z/t values. For a particular confidence level, C, 

the appropriate z* value is just above it. 

We can use software. In R:
qnorm(probability,mean,standard_dev) 
gives z quantile for a given probability.

Since we want the middle C probability, the probability we need to input  is (1 - C)/2 

Example: For a 98% confidence level, qnorm(0.01,0,1) = −2.326348 (= neg. z*)

Example: For a 98% confidence level, z*=2.326



Link between confidence level and margin of error

The confidence level C determines the value of z*

The margin of error also depends on z*.

 

m = z *σ n

C

z*−z*

m          m

Higher confidence C implies a larger 

margin of error m (thus less precision 

in our estimates).

A lower confidence level C produces a 

smaller margin of error m (thus better 

precision in our estimates). 



Different confidence intervals for the same 
set of measurements

 96% confidence interval for the 
true density, z* = 2.054, and write

= 28 ± 2.054(1/√3)

= 28 ± 1.19 x 106 

bacteria/ml

 70% confidence interval for the 
true density, z* = 1.036, and write 

= 28 ± 1.036(1/√3)

= 28 ± 0.60 x 106

bacteria/ml

Density of bacteria in solution:

Measurement equipment has standard deviation 
σ = 1 * 106 bacteria/ml fluid.

Three measurements: 24, 29, and 31 * 106  bacteria/ml fluid

Mean:    = 28 * 106 bacteria/ml. Find the 96% and 70% CI.
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Impact of sample size
The spread in the sampling distribution of the mean is a function of the 
number of individuals per sample. 

 The larger the sample size, the smaller 
the standard deviation (spread) of the 
sample mean distribution. 

 But the spread only decreases at a rate 
equal to √n.  
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Sample size and experimental design

You may need a certain margin of error (e.g., drug trial, manufacturing 

specs). In many cases, the population variability (σ) is fixed, but we can 

choose the number of measurements (n). 

So plan ahead what sample size to use to achieve that margin of error.

 

m = z * σ
n
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Remember, though, that sample size is not always stretchable at will. There are 

typically costs and constraints associated with large samples. The best 

approach is to use the smallest sample size that can give you useful results.



What sample size for a given margin of error?

Density of bacteria in solution:

Measurement equipment has standard deviation 
σ = 1 * 106 bacteria/ml fluid.

How many measurements should you make to obtain a margin of error 
of at most 0.5 * 106 bacteria/ml with a confidence level of 90%?

For a 90% confidence interval, z* = 1.645.
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Using only 10 measurements will not be enough to ensure that m is no 

more than 0.5 * 106. Therefore, we need at least 11 measurements.



Cautions:
 Data: a SRS
 Formulas for other randomized designs available
 Haphazard data = unreliable conf. int.
 Population need not be normal (our Example 1 wasn’t) but outliers 

pose a threat to validity of conclusions.
 We need to know σ the population variability. We will recall how to 

deal with the usually unknown σ later in this lecture.



Section: Tests of Significance

• The scheme of reasoning
• Stating hypotheses
• Test statistics
• P-values
• Statistical significance
• Test for population mean
• Two-sided test and confidence intervals



We have seen that the properties of the sampling distribution of x bar help us 
estimate a range of likely values for population mean µ.

We can also rely on the properties of the sample distribution to test 
hypotheses.

Example: You are in charge of quality control in your food company. You 
sample randomly four packs of cherry tomatoes, each labeled 1/2 lb. (227 g). 

The average weight from your four boxes is 222 g. Obviously, we cannot 
expect boxes filled with whole tomatoes to all weigh exactly half a pound. 
Thus,

 Is the somewhat smaller weight simply due to chance variation? 

 Is it evidence that the calibrating machine that sorts 
cherry tomatoes into packs needs revision?



Null and alternative hypotheses

A test of statistical significance tests a specific hypothesis using 

sample data to decide on the validity of the hypothesis. 

In statistics, a hypothesis is an assumption or a theory about the 

characteristics of one or more variables in one or more populations.

What you want to know: Does the calibrating machine that sorts cherry 

tomatoes into packs need revision?

The same question reframed statistically: Is the population mean µ for the 

distribution of weights of cherry tomato packages equal to 227 g (i.e., half 

a pound)?



The null hypothesis is a very specific statement about a parameter of 

the population(s). It is labeled H0. 

The alternative hypothesis is a more general statement about a 

parameter of the population(s) that is exclusive of the null hypothesis. It 

is labeled Ha. 

Weight of cherry tomato packs:

H0 : µ = 227 g (µ is the average weight of the population of packs)

Ha : µ ≠ 227 g (µ is either larger or smaller)



One-sided and two-sided tests
 A two-tail or two-sided test of the population mean has these null 
and alternative hypotheses:

H0 : µ = [a specific number]   Ha :  µ ≠ [a specific number]

 A one-tail or one-sided test of a population mean has these null and 
alternative hypotheses:

H0 : µ = [a specific number]   Ha : µ < [a specific number]      OR

H0 : µ = [a specific number]   Ha : µ > [a specific number]

The FDA tests whether a generic drug has an absorption extent similar to 
the known absorption extent of the brand-name drug it is copying. Higher or 
lower absorption would both be problematic, thus we test:

H0 : µgeneric = µbrand Ha : µgeneric ≠ µbrand two-sided



How to choose?

What determines the choice of a one-sided versus a two-sided test is 
what we know about the problem before we perform a test of statistical 
significance.

A health advocacy group tests whether the mean nicotine content of a 
brand of cigarettes is greater than the advertised value of 1.4 mg.

Here, the health advocacy group suspects that cigarette manufacturers sell 
cigarettes with a nicotine content higher than what they advertise in order 

to better addict consumers to their products and maintain revenues.

Thus, this is a one-sided test: H0 : µ = 1.4 mg Ha : µ > 1.4 mg

It is important to make that choice before performing the test or else 
you could make a choice of “convenience” or fall in circular logic.



The P-value

The packaging process has a known standard deviation σ = 5 g.

H0 : µ = 227 g versus Ha : µ ≠ 227 g

The average weight from your four random boxes is 222 g.

What is the probability of drawing a random sample such as yours if H0 is true?

Tests of statistical significance quantify the chance of obtaining a 

particular random sample result if the null hypothesis were true.  This 

quantity is the P-value.

This is a way of assessing the “believability” of the null hypothesis given 

the evidence provided by a random sample.



Interpreting a P-value

Could random variation alone account for the difference between 
the null hypothesis and observations from a random sample? 

 A small P-value implies that random variation because of the 
sampling process alone is not likely to account for the observed 
difference. 

 With a small p-value we reject H0. The true property of the 
population is significantly different from what was stated in H0.

Thus, small P-values are strong evidence AGAINST H0.

But how small is small…?



P = 0.1711

P = 0.2758

P = 0.0892

P = 0.0735

P = 0.01

P = 0.05

When the shaded area becomes very small, the probability of drawing such a 
sample at random gets very slim. Oftentimes, a P-value of 0.05 or less is 
considered significant: The phenomenon observed is unlikely to be entirely 
due to chance event from the random sampling.

Significant 
P-value

???



Tests for a population mean

µ
defined by H0

 

x 

Sampling 
distribution

 

z =
x − µ

σ n

σ/√n

To test the hypothesis H0 : µ = µ0 based on an SRS of size n from a 

Normal population with unknown mean µ and known standard deviation 

σ, we rely on the properties of the sampling distribution N(µ, σ√n).

The P-value is the area under the sampling distribution for values at 

least as extreme, in the direction of Ha, as that of our random sample.

Again, we first calculate a z-value 

and then use Table A.



P-value in one-sided and two-sided tests

To calculate the P-value for a two-sided test, use the symmetry of the 

normal curve. Find the P-value for a one-sided test, and double it.

One-sided 
(one-tailed) test

Two-sided 
(two-tailed) test



Does the packaging machine need revision?

 H0 : µ = 227 g versus Ha : µ ≠ 227 g

 What is the probability of drawing a random sample such 
as yours if H0 is true?
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From table A, the area under the standard 

normal curve to the left of z is 0.0228.

Thus, P-value = 2*0.0228 = 4.56%.
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The probability of getting a random 

sample average so different from

µ is so low that we reject H0. 

The machine does need recalibration.



The significance level α

The significance level, α, is the largest P-value tolerated for rejecting a 

true null hypothesis (how much evidence against H0 we require). This 

value is decided arbitrarily before conducting the test. 

 If the P-value is equal to or less than α (P ≤ α), then we reject H0.  

 If the P-value is greater than α (P > α), then we fail to reject H0.

Does the packaging machine need revision? 

Two-sided test. The P-value is 4.56%. 

* If α had been set to 5%, then the P-value would be significant.

* If α had been set to 1%, then the P-value would not be significant.



When the z score falls within the 

rejection region (shaded area on 

the tail-side), the p-value is 

smaller than α and you have 

shown statistical significance.
z = -1.645

Z   

One-sided 
test, α = 5%

Two-sided 
test, α = 1%



Rejection region for a two-tail test of µ with α = 0.05 (5%)

upper tail probability p 0.25     0.20     0.15     0.10     0.05     0.025   0.02     0.01     0.005   0.0025 0.001   0.0005 

(…)

z* 0.674   0.841   1.036   1.282   1.645   1.960   2.054   2.326   2.576   2.807   3.091   3.291   
Confidence interval C 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

A two-sided test means that α is spread 
between both tails of the curve, thus:

-A middle area C of 1 − α = 95%, and

-An upper tail area of α /2 = 0.025.

Table C

0.0250.025



Confidence intervals to test hypotheses
Because a two-sided test is symmetrical, you can also use a 
confidence interval to test a two-sided hypothesis.

α /2 α /2

In a two-sided test, 

C = 1 – α.

C confidence level 

α significance level

Packs of cherry tomatoes (σ = 5 g): H0 : µ = 227 g versus Ha : µ ≠ 227 g

Sample average 222 g. 95% CI for µ = 222 ± 1.96*5/√4 = 222 g ± 4.9 g

227 g does not belong to the 95% CI (217.1 to 226.9 g). Thus, we reject H0.



Ex: Your sample gives a 99% confidence interval of                                      .

With 99% confidence, could samples be from populations with µ = 0.86? µ = 0.85?

 

x ± m = 0.84 ± 0.0101

99% C.I.

Logic of confidence interval test

 

x 

Cannot reject
H0: µ = 0.85

Reject H0 : µ = 0.86

A confidence interval gives a black and white answer: Reject or don't reject H0. 

But it also estimates a range of likely values for the true population mean µ.

A P-value quantifies how strong the evidence is against the H0. But if you reject 

H0, it doesn’t provide any information about the true population mean µ.



Section: Use and abuse of tests  

 Choosing the level of significance
 Significance vs. practical significance
 Lack of significance may be informative
 Dangers of searching for significance
 Assumptions about the data



Choosing the significance level α

 α=0.05 is accepted standard, but…
 if the conclusion that Ha is true has “costly” implications, smaller α may be 

appropriate
e.g.,

 What are the consequences of rejecting the null hypothesis 
(e.g., global warming, convicting a person for life with DNA evidence)?

 Are you conducting a preliminary study? If so, you may want a larger α so that 
you will be less likely to miss an interesting result.

Some conventions:
 We typically use the standards of our field of work.

 There are no “sharp” cutoffs: e.g., 4.9% versus 5.1 %. Oftentimes, describing 
the evidence using the P-value itself may be enough

 It is the order of magnitude of the P-value that matters: “somewhat significant,”
“significant,” or “very significant.”

Caution about significance tests



Practical significance

Statistical significance only says whether the effect observed is 
likely to be due to chance alone because of random sampling.

Statistical significance may not be practically important. That’s because 
statistical significance doesn’t tell you about the magnitude of the 
effect, only that there is one. 

An effect could be too small to be relevant. And with a large enough 
sample size, significance can be reached even for the tiniest effect.

 A drug to lower temperature is found to reproducibly lower patient 
temperature by 0.4°Celsius (P-value < 0.01). But clinical benefits of 
temperature reduction only appear for a 1° decrease or larger. 



Interpreting lack of significance

 Consider this provocative title from the British Medical Journal: “Absence 
of evidence is not evidence of absence”. 

 Having no proof of whom committed a murder does not imply that the 
murder was not committed. 

Indeed, failing to find statistical significance in results means that 
we do not reject the null hypothesis. This is very different from 
actually accepting it. The sample size, for instance, could be too 
small to overcome large variability in the population.

When comparing two populations, lack of significance does not imply 
that the two samples come from the same population. They could 
represent two very distinct populations with the similar mathematical 
properties.



Interpreting effect size: It’s all about context

There is no consensus on how big an effect has to be in order to be 
considered meaningful. In some cases, effects that may appear to be 
trivial can in reality be very important. 

 Example: Improving the format of a computerized test reduces the average 
response time by about 2 seconds. Although this effect is small, it is 
important since this is done millions of times a year. The cumulative time 
savings of using the better format is gigantic. 

Always think about the context. Try to plot your results, and compare 
them with a baseline or results from similar studies.  



The power of a test
The power of a test of hypothesis with fixed significance level α is the 
probability that the test will reject the null hypothesis when the 
alternative is true. 

In other words, power is the probability that the data gathered in an 
experiment will be sufficient to reject a wrong null hypothesis. 

Knowing the power of your test is important:

 When designing your experiment: to select a sample size large enough to 
detect an effect of a magnitude you think is meaningful. 

 When a test found no significance: Check that your test would have had 
enough power to detect an effect of a magnitude you think is meaningful.



Test of hypothesis at significance level α 5%:
H0: µ = 0 versus Ha: µ > 0

Can an exercise program increase bone density? From previous studies, we 
assume that σ = 2 for the percent change in bone density and would consider a 
percent increase of 1 medically important. 
Is 25 subjects a large enough sample for this project?

A significance level of 5% implies a lower tail of 95% and z = 1.645. Thus:
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All sample averages larger than 0.658 will result in rejecting the null hypothesis.



What if the null hypothesis is wrong and the true population mean is 1?

The power against the alternative

µ = 1% is the probability that H0 will 

be rejected when in fact µ = 1%. 
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We expect that a 

sample size of 25 

would yield a 

power of 80%.

A test power of 80% or more is considered good statistical practice. 



Factors affecting power: Size of the effect

The size of the effect is an important factor in determining power. 
Larger effects are easier to detect. 

More conservative significance levels (lower α) yield lower power. 
Thus, using an α of .01 will result in lower power than using an α of .05.

Increasing the sample size decreases the spread of the sampling 
distribution and therefore increases power. But there is a tradeoff 
between gain in power and the time and cost of testing a larger sample.

A larger variance σ2 implies a larger spread of the sampling distribution, 
σ/sqrt(N). Thus, the larger the variance, the lower the power. The 
variance is in part a property of the population, but it is possible to 
reduce it to some extent by carefully designing your study.



Ho: µ = 0
σ = 10
n = 30
α = 5%

1. Real µ is 3  => power = .5

2. Real µ is 5.4  => power = .905

3. Real µ is 13.5  => power = 1

http://wise.cgu.edu/power/power_applet.html

red area 
is β

 larger differences 
are easier to detect

http://wise.cgu.edu/power/power_applet.html�


Ho: µ = 0
σ = 10

Real µ = 5.4
α = 5%

1. n = 10  => power = .525

2. n = 30  => power = .905

3. n = 80  => power = .999

 larger sample sizes 
yield greater power



Ho: µ = 0
Real µ = 5.4

n = 30
α = 5%

1. σ is 5  => power = .628

2. σ is 10  => power = .905

3. σ is 15  => power = 1

 smaller variability 
yields greater power



Type I and II errors

 A Type I error is made when we reject the null hypothesis and the 

null hypothesis is actually true (incorrectly reject a true H0).

The probability of making a Type I error is the significance level α

 A Type II error is made when we fail to reject the null hypothesis 

and the null hypothesis is false (incorrectly keep a false H0).

The probability of making a Type II error is labeled β.

The power of a test is 1 − β.



Running a test of significance is a balancing act between the chance α

of making a Type I error and the chance β of making a Type II error. 
Reducing α reduces the power of a test and thus increases β.

It might be tempting to emphasize greater power (the more the better). 

 However, with “too much power” trivial effects become highly significant. 

 A type II error is not definitive since a failure to reject the null hypothesis 

does not imply that the null hypothesis is wrong. 



Section
Inference for the mean of a population
Change: Population s.d. sigma unknown.
 The t distribution
 One-sample t confidence interval
 One-sample t test
 Matched pairs t procedures
 Robustness of t procedures



Sweetening colas

Cola manufacturers want to test how much the sweetness of a new 
cola drink is affected by storage. The sweetness loss due to storage 
was evaluated by 10 professional tasters (by comparing the sweetness 
before and after storage):

Taster Sweetness loss
 1 2.0
 2 0.4
 3 0.7
 4 2.0
 5 −0.4
 6 2.2
 7 −1.3
 8 1.2
 9 1.1
 10 2.3

Obviously, we want to test if 
storage results in a loss of 
sweetness, thus: 

H0: µ = 0 versus Ha: µ > 0

This looks familiar. However, here we do not know the population parameter σ. 
 The population of all cola drinkers is too large.
 Since this is a new cola recipe, we have no population data.

This situation is very common with real data.



When σ is unknown

When the sample size is large, 
the sample is likely to contain 
elements representative of the 
whole population. Then s is a 
good estimate of σ. 

Population
distribution

Small sampleLarge sample

But when the sample size is 
small, the sample contains only 
a few individuals. Then s is a 
more mediocre estimate of σ.

The sample standard deviation s provides an estimate of the population 
standard deviation σ.



A study examined the effect of a new medication on the seated 
systolic blood pressure. The results, presented as mean ± SEM for 
25 patients, are 113.5 ± 8.9. 

What is the standard deviation s of the sample data?

Standard deviation s – standard error s/√n

For a sample of size n,

the sample standard deviation s is:

n − 1 is the “degrees of freedom.”

The value s/√n is called the standard error of the sample mean or simply 

standard error of the mean (SEM).

Scientists often present sample results as mean ± SEM.
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SEM = s/√n <=>  s = SEM*√n
s = 8.9*√25 = 44.5



The t distribution:
The goal is to estimate or test for unknown µ in situation when σ is also 

unknown .
Solution: estimate σ by s and use intelligently in formulas.
Challenge: the distribution of the test statistic will change and will no longer be 

z-distribution.

Suppose that an SRS of size n is drawn from an N(µ, σ) population. 

 When σ is known, the sampling distribution is N(µ, σ/√n).

 When σ is estimated from the sample standard deviation s, the sampling distribution 

follows a t distribution t(µ, s/√n) with degrees of freedom n − 1. 

is the one-sample t statistic.

 

t =
x − µ
s n



When n is very large, s is a very good estimate of σ and the 
corresponding t distributions are very close to the normal distribution.

The t distributions become wider for smaller sample sizes, reflecting the 
lack of precision in estimating σ from s.



Standardizing the data

Here, µ is the mean (center) of the sampling distribution, 
and the standard error of the mean s/√n is its standard deviation (width).
You obtain s, the standard deviation of the sample, with your calculator.

t

 

t =
x − µ
s n

As with the normal distribution, the first step is to standardize the data. 

Then we can use the Table A.8 to obtain the area under the curve.

µ

s/√n

t(µ,s/√n)
df = n − 1

t(0,1)
df = n − 1

 

x 0

1



The one-sample t-confidence interval
The level C confidence interval is an interval with probability C of 
containing the true population parameter. 

We have a data set from a population with both µ and σ unknown. We 
use    to estimate µ, and s to estimate σ, using a t distribution (df n−1).

C

t*−t*

m m

 

m = t * s n

Practical use of t : t*

C is the area between −t* and t*.

We find t* in the line of Table A.8 
for nu = n−1 and probability (1-C)/2.

The margin of error m is:

 

x 



Red wine, in moderation 
Drinking red wine in moderation may protect against heart attacks. The 
polyphenols it contains act on blood cholesterol and thus are a likely cause. 

To see if moderate red wine consumption increases the average blood level of 
polyphenols, a group of nine randomly selected healthy men were assigned to 
drink half a bottle of red wine daily for two weeks. Their blood polyphenol levels 
were assessed before and after the study, and the percent change is presented 
here:

Firstly: Are the data approximately normal?
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What is the 95% confidence interval for the average percent change?

Sample average = 5.5; s = 2.517; df = n − 1 = 8

(…)

The sampling distribution is a t distribution with n − 1 degrees of freedom. 

For df = 8 and C = 95%, t* = 2.306.

The margin of error m is: m = t*s/√n = 2.306*2.517/√9 ≈ 1.93.

With 95% confidence, the population average percent increase in 
polyphenol blood levels of healthy men drinking half a bottle of red wine 
daily is between 3.6% and 7.6%. Important: The confidence interval shows 

how large the increase is, but not if it can have an impact on men’s health.



The one-sample t-test

As in the previous chapter, a test of hypotheses requires a few steps:

1. Stating the null and alternative hypotheses (H0 versus Ha)

2. Deciding on a one-sided or two-sided test

3. Choosing a significance level α

4. Calculating t and its degrees of freedom

5. Finding the area under the curve with Table A.8

6. Stating the P-value and interpreting the result



ns
xt 0µ−

=

One-sided 
(one-tailed)

Two-sided 
(two-tailed)

The P-value is the probability, if H0 is true, of randomly drawing a 

sample like the one obtained or more extreme, in the direction of  Ha.

The P-value is calculated as the corresponding area under the curve, 

one-tailed or two-tailed depending on Ha:



 The table A.8 contains only a few values.
 To find exact p-values use R
 The function to be used is:

 pt(quantile, df)



Sweetening colas (continued)
Is there evidence that storage results in sweetness loss for the new cola 
recipe at the 0.05 level of significance (α = 5%)?

H0: µ = 0 versus Ha: µ > 0 (one-sided test)

 The critical value tα =  1.833.
t > tα thus the result is significant.

 2.398 < t = 2.70 < 2.821 thus 0.02 > p > 0.01.
p < α thus the result is significant.

The t-test has a significant p-value. We reject H0. 
There is a significant loss of  sweetness, on average, following storage.

Taster Sweetness loss
1 2.0
2 0.4
3 0.7
4 2.0
5 -0.4
6 2.2
7 -1.3
8 1.2
9 1.1
10 2.3
___________________________
Average 1.02
Standard deviation 1.196
Degrees of freedom n − 1 = 9

0 1.02 0 2.70
1.196 10

xt
s n

µ− −
= = =



Sweetening colas (continued)

In R, you can obtain the precise 
p-value once you have calculated t:

Using the function pt(2.7, 9) 

which gives 0.9878032 and taking 1-
this value (WHY?) we obtain 
0.01219685

1.02 0 2.70
1.196 10

1 9

xt
s n

df n

µ− −
= = =

= − =
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Matched pairs t procedures
Sometimes we want to compare treatments or conditions at the 
individual level. These situations produce two samples that are not 
independent — they are related to each other. The members of one 
sample are identical to, or matched (paired) with, the members of the 
other sample.

 Example: Pre-test and post-test studies look at data collected on the 
same sample elements before and after some experiment is performed.

 Example: Twin studies often try to sort out the influence of genetic 
factors by comparing a variable between sets of twins.

 Example: Using people matched for age, sex, and education in social 
studies allows canceling out the effect of these potential lurking 
variables.



In these cases, we use the paired data to test the difference in the two 

population means. The variable studied becomes Xdifference = (X1 − X2), 

and

H0: µdifference= 0 ;  Ha: µdifference>0 (or <0, or ≠0) 

Conceptually, this is not different from tests on one population.



Sweetening colas (revisited)

The sweetness loss due to storage was evaluated by 10 professional 
tasters (comparing the sweetness before and after storage):

Taster Sweetness loss
 1 2.0
 2 0.4
 3 0.7
 4 2.0
 5 −0.4
 6 2.2
 7 −1.3
 8 1.2
 9 1.1
 10 2.3

We want to test if storage 
results in a loss of 
sweetness, thus: 

H0: µ = 0 versus Ha: µ > 0

Although the text didn’t mention it explicitly, this is a pre-/post-test design and 
the variable is the difference in cola sweetness before minus after storage.

A matched pairs test of significance is indeed just like a one-sample test.



Does lack of caffeine increase depression?

Individuals diagnosed as caffeine-dependent are 

deprived of caffeine-rich foods and assigned 

to receive daily pills. Sometimes, the pills 

contain caffeine and other times they contain 

a placebo. Depression was assessed.

 There are 2 data points for each subject, but we’ll only look at the difference.

 The sample distribution appears appropriate for a t-test.

Subject
Depression 

with Caffeine
Depression 

with Placebo
Placebo - 
Cafeine

1 5 16 11
2 5 23 18
3 4 5 1
4 3 7 4
5 8 14 6
6 5 24 19
7 0 6 6
8 0 3 3
9 2 15 13

10 11 12 1
11 1 0 -1

11 “difference” 
data points.
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Does lack of caffeine increase depression?

For each individual in the sample, we have calculated a difference in depression 
score (placebo minus caffeine).

There were 11 “difference” points, thus df = n − 1 = 10. 
We calculate that     = 7.36; s = 6.92

H0: µdifference = 0 ; H0: µdifference > 0 

53.3
11/92.6

36.70
==

−
=
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Subject
Depression 

with Caffeine
Depression 

with Placebo
Placebo - 
Cafeine

1 5 16 11
2 5 23 18
3 4 5 1
4 3 7 4
5 8 14 6
6 5 24 19
7 0 6 6
8 0 3 3
9 2 15 13

10 11 12 1
11 1 0 -1

For df = 10,   3.169 < t = 3.53 < 3.581    0.005 > p > 0.0025

Caffeine deprivation causes a significant increase in depression.
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Robustness
The t procedures are exactly correct when the population is distributed 
exactly normally. However, most real data are not exactly normal.

The t procedures are robust to small deviations from normality – the 
results will not be affected too much. Factors that strongly matter:

 Random sampling. The sample must be an SRS from the population.

 Outliers and skewness. They strongly influence the mean and 
therefore the t procedures. However, their impact diminishes as the 
sample size gets larger because of the Central Limit Theorem.

Specifically:
 When n < 15, the data must be close to normal and without outliers.
 When 15 > n > 40, mild skewness is acceptable but not outliers.
 When n > 40, the t-statistic will be valid even with strong skewness. 



Power of the t-test
The power of the one sample t-test against a specific alternative value 
of the population mean µ assuming a fixed significance level α is the 
probability that the test will reject the null hypothesis when the 
alternative is true. 

Calculation of the exact power of the t-test is a bit complex. But an 
approximate calculation that acts as if σ were known is almost always 
adequate for planning a study. This calculation is very much like that for 
the z-test. 

When guessing σ, it is always better to err on the side of a standard 
deviation that is a little larger rather than smaller. We want to avoid a 
failing to find an effect because we did not have enough data. 



Does lack of caffeine increase depression?

Suppose that we wanted to perform a similar study but using subjects who 

regularly drink caffeinated tea instead of coffee. For each individual in the 

sample, we will calculate a difference in depression score (placebo minus 

caffeine). How many patients should we include in our new study? 

In the previous study, we found that the average difference in depression level 

was 7.36 and the standard deviation 6.92. 

We will use µ = 3.0 as the alternative of interest. We are confident that the effect was 

larger than this in our previous study, and this amount of an increase in depression 

would still be considered important. 

We will use s = 7.0 for our guessed standard deviation. 

We can choose a one-sided alternative because, like in the previous study, we 

would expect caffeine deprivation to have negative psychological effects. 



Does lack of caffeine increase depression?

How many subjects should we include in our new study? Would 16 subjects 
be enough? Let’s compute the power of the t-test for

against the alternative µ = 3. For a significance level α 5%, the t-test with n 
observations rejects H0 if t exceeds the upper 5% significance point of 

t(df:15) = 1.729. For n = 16 and s = 7:

H0: µdifference = 0 ; Ha: µdifference > 0 
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The power for n = 16 would be the probability that     ≥ 1.068 when µ = 3, using 

σ  = 7. Since we have σ, we can use the normal distribution here:

The power would be 
about 86%.
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Inference for non-normal distributions
What if the population is clearly non-normal and your sample is small? 

 If the data are skewed, you can attempt to transform the variable to 
bring it closer to normality (e.g., logarithm transformation). The t-
procedures applied to transformed data are quite accurate for even 
moderate sample sizes.

 A distribution other than a normal distribution might describe your 
data well. Many non-normal models have been developed to provide 
inference procedures too. 

 You can always use a distribution-free (“nonparametric”)
inference procedure (more in a second class in statistics) that does 
not assume any specific distribution for the population. But it is 
usually less powerful than distribution-driven tests (e.g., t test).



Transforming data

The most common transformation is the 
logarithm (log), which tends to pull in 
the right tail of a distribution. 

Instead of analyzing the original variable 
X, we first compute the logarithms and 
analyze the values of log X. 

However, we cannot simply use the 
confidence interval for the mean of the 
logs to deduce a confidence interval for 
the mean µ in the original scale.

Normal quantile plots for 
46 car CO emissions



Nonparametric method: the sign test 

A distribution-free test usually makes a statement of hypotheses about 
the median rather than the mean (e.g., “are the medians different”). 
This makes sense when the distribution may be skewed. 

A simple distribution-free test is the sign test for matched pairs.

Calculate the matched difference for each individual in the sample.
Ignore pairs with difference 0. 
The number of trials n is the count of the remaining pairs. 
The test statistic is the count X of pairs with a positive difference. 
P-values for X are based on the binomial B(n, 1/2) distribution.

H0: population median = 0 vs. Ha: population median > 0

H0: p = 1/2 vs. Ha: p > 1/2



Section

 Inference for a Single Proportion:
 confidence intervals, planning sample size for a 

given margin of error
 test of significance for a single proportion

This will be very similar to what we did for means previously



Sampling distribution of p^ — reminder 

The sampling distribution of a sample proportion    is approximately 
normal (normal approximation of a binomial distribution) when the 
sample size is large enough.

p̂



Conditions for inference on p
Assumptions:

1. The data used for the estimate are an SRS from the population 
studied.

2. The population is at least 10 times as large as the sample used for 
inference. This ensures that the standard deviation of    is close to 

3. The sample size n is large enough that the sampling distribution can 
be approximated with a normal distribution. How large a sample 
size is required depends in part on the value of p and the test 
conducted. Otherwise, rely on the binomial distribution.

 

p(1− p) n
p̂



Large-sample confidence interval for p

Use this method when the number of 
successes and the number of 
failures are both at least 15.

C

Z*−Z*

m m

Confidence intervals contain the population proportion p in C% of 
samples. For an SRS of size n drawn from a large population and with 
sample proportion    calculated from the data, an approximate level C 
confidence interval for p is: 

C is the area under the standard 
normal curve between −z* and z*.
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Medication side effects

Arthritis is a painful, chronic inflammation of the joints. 
An experiment on the side effects of pain relievers 
examined arthritis patients to find the proportion of 
patients who suffer side effects. 

What are some side effects of ibuprofen?
Serious side effects (seek medical attention immediately):

Allergic reaction (difficulty breathing, swelling, or hives),
Muscle cramps, numbness, or tingling,
Ulcers (open sores) in the mouth,
Rapid weight gain (fluid retention),
Seizures,
Black, bloody, or tarry stools,
Blood in your urine or vomit,
Decreased hearing or ringing in the ears,
Jaundice (yellowing of the skin or eyes), or
Abdominal cramping, indigestion, or heartburn,

Less serious side effects (discuss with your doctor):
Dizziness or headache,
Nausea, gaseousness, diarrhea, or constipation,
Depression,
Fatigue or weakness,
Dry mouth, or
Irregular menstrual periods



Upper tail probability P
0.25 0.2 0.15 0.1 0.05 0.03 0.02 0.01

z* 0.67 0.841 1.036 1.282 1.645 1.960 2.054 2.326
50% 60% 70% 80% 90% 95% 96% 98%

Confidence level C

Let’s calculate a 90% confidence interval for the population proportion of 
arthritis patients who suffer some “adverse symptoms.” 

What is the sample proportion    ?

   ))1( ,(   ˆ npppNp −≈
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What is the sampling distribution for the proportion of arthritis patients with 

adverse symptoms for samples of 440?

For a 90% confidence level, z* = 1.645.

Using the large sample method, we 
calculate a margin of error m:

With 90% confidence level, between 2.9% and 7.5% of arthritis patients 
taking this pain medication experience some adverse symptoms.
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Because we have to use an estimate of p to compute the margin of 
error, confidence intervals for a population proportion are not very 
accurate.

 

m = z *
ˆ p (1− ˆ p )

n

Specifically, we tend to be 

incorrect more often than 

the confidence level would 

indicate. But there is no 

systematic amount 

(because it depends on p).

Use with caution!



Interpretation: magnitude vs. reliability of effects

The reliability of an interpretation is related to the strength of the 
evidence. The smaller the p-value, the stronger the evidence against 
the null hypothesis and the more confident you can be about your 
interpretation. 

The magnitude or size of an effect relates to the real-life relevance of 
the phenomenon uncovered. The p-value does NOT assess the 
relevance of the effect, nor its magnitude.

A confidence interval will assess the magnitude of the effect. 
However, magnitude is not necessarily equivalent to how theoretically 
or practically relevant an effect is. 



Sample size for a desired margin of error

You may need to choose a sample size large enough to achieve a 

specified margin of error. However, because the sampling distribution 

of     is a function of the population proportion p, this process requires 

that you guess a likely value for p: p*.

The margin of error will be less than or equal to m if p* is chosen to be 0.5.

Remember, though, that sample size is not always stretchable at will. There are 

typically costs and constraints associated with large samples. 
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Upper tail probability P
0.25 0.2 0.15 0.1 0.05 0.03 0.02 0.01

z* 0.67 0.841 1.036 1.282 1.645 1.960 2.054 2.326
50% 60% 70% 80% 90% 95% 96% 98%

Confidence level C

What sample size would we need in order to achieve a margin of error no 
more than 0.01 (1%) for a 90% confidence interval for the population 
proportion of arthritis patients who suffer some “adverse symptoms.” 
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We could use 0.5 for our guessed p*. However, since the drug has been 

approved for sale over the counter, we can safely assume that no more than 

10% of patients should suffer “adverse symptoms” (a better guess than 50%).

For a 90% confidence level, z* = 1.645.

 To obtain a margin of error no more than 1%, we would need a sample 

size n of at least 2435 arthritis patients.
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