Solutions to problems posted:
2. The number of choices Virginia has is equal to the number of subsets of $\{1,2,5,10,20\}$ minus 1 (for empty set). So the answer is $2^{5}-1=31$.
10. $6!=720$.
24. (a) $\frac{\binom{4}{2}\binom{48}{24}}{\binom{52}{26}}=0.390 ;$ (b) $\frac{\binom{40}{1}}{\binom{52}{13}}=6.299 \times 10^{-11}$;
12. $P(A)=1$ implies that $P(A \cup B)=1$. Hence, by

$$
P(A \cup B)=P(A)+P(B)-P(A B),
$$

we have that $P(B)=P(A B)$. Therefore,

$$
P(B \mid A)=\frac{P(A B)}{P(A)}=\frac{P(B)}{1}=P(B) .
$$

13. $P(A \mid B)=\frac{P(A B)}{b}$, where

$$
P(A B)=P(A)+P(B)-P(A \cup B) \geq P(A)+P(B)-1=a+b-1 .
$$

20. The numbers of 333 red and 583 blue chips are divisible by 3 . Thus the reduced sample space has $333+583=916$ points. Of these numbers, $[1000 / 15]=66$ belong to red balls and are divisible by 5 and $[1750 / 15]=116$ belong to blue balls and are divisible by 5 . Thus the desired probability is $182 / 916=0.199$.
21. $\frac{(0.92)(1 / 5000)}{(0.92)(1 / 5000)+(1 / 500)(4999 / 5000)}=0.084$.

$$
\text { 14. } \frac{\binom{5}{4}}{\binom{8}{4}}+\frac{1}{4} \cdot \frac{\binom{5}{3}\binom{3}{1}}{\binom{8}{4}}+\frac{2}{4} \cdot \frac{\binom{5}{2}\binom{3}{2}}{\binom{8}{4}}+\frac{3}{4} \cdot \frac{\binom{5}{1}\binom{3}{3}}{\binom{8}{4}}=0.571
$$

$$
\frac{2}{4} \cdot \frac{\binom{5}{2}\binom{3}{2}}{\binom{8}{4}}
$$

