Assignment 7

11. Let $N(t)$ be the number of shooting stars observed up to time t. Let one minute be the unit of time. Then $\{N(t): t \geq 0\}$ is a Poisson process with $\lambda=1 / 12$. We have that

$$
P(N(30)=3)=\frac{e^{-30 / 12}(30 / 12)^{3}}{3!}=0.21 .
$$

13. Let $N(t)$ be the number of wrong calls up to t. If one day is taken as the time unit, it is reasonable to assume that $\{N(t): t \geq 0\}$ is a Poisson process with $\lambda=1 / 7$. By the independent increment property and stationarity, the desired probability is

$$
P(N(1)=0)=e^{-(1 / 7) \cdot 1}=0.87 .
$$

4. Let X be the time between the first and second heart attacks. We are given that $P(X \leq 5)=$ $1 / 2$. Since exponential is memoryless, the probability that a person who had one heart attack five years ago will not have another one during the next five years is still $P(X>5)$ which is $1-P(X \leq 5)=1 / 2$.
5. The number of documents typed by the secretary on a given eight-hour working day is Poisson with parameter $\lambda=8$. So the answer is

$$
\sum_{i=12}^{\infty} \frac{e^{-8} 8^{i}}{i!}=1-\sum_{i=0}^{11} \frac{e^{-8} 8^{i}}{i!}=1-0.888=0.112
$$

9. The answer is

$$
E[350-40 N(12)]=350-40\left(\frac{1}{18} \cdot 12\right)=323.33
$$

1. Yes, it is a probability density function of a beta random variable with parameters $\alpha=2$ and $\beta=3$. Note that $\frac{1}{B(2,3)}=\frac{4!}{1!2!}=12$. We have

$$
E(X)=\frac{2}{5}, \quad \operatorname{Var} X=\frac{6}{6\left(5^{2}\right)}=\frac{1}{25}
$$

3. Let $\alpha=5$ and $\beta=6$. Then f is the probability density function of a beta random variable with parameters 5 and 6 for

$$
c=\frac{1}{B(5,6)}=\frac{10!}{4!5!}=1260
$$

For this value of c,

$$
E(X)=\frac{5}{11}, \quad \operatorname{Var} X=\frac{30}{12\left(11^{2}\right)}=\frac{5}{242}
$$

11. Let X be the grade of a randomly selected student.

$$
P(X \geq 90)=P\left(Z \geq \frac{90-72}{7}\right)=1-\Phi(2.57)=0.0051 .
$$

Similarly,

$$
\begin{gathered}
P(80 \leq X<90)=P(1.14 \leq Z<2.57)=0.122, \\
P(70 \leq X<80)=P(-0.29 \leq Z<1.14)=0.487, \\
P(60 \leq X<70)=P(-1.71 \leq Z<-0.29)=0.3423, \\
P(X<60)=P(Z<-1.71)=0.0436 .
\end{gathered}
$$

Therefore, approximately 0.51% will get $\mathrm{A}, 12.2 \%$ will get $\mathrm{B}, 48.7 \%$ will get $\mathrm{C}, 34.23 \% \mathrm{D}$, and $4.36 \% \mathrm{~F}$.

