Assignment 8

6. The following table gives p(x, y), the joint probability mass function of X and Y; $p_X(x)$, the marginal probability mass function of X; and $p_Y(y)$, the marginal probability mass function of Y.

	у						
х	0	1	2	3	4	5	$p_X(x)$
2	1/36	0	0	0	0	0	1/36
3	0	2/36	0	0	0	0	2/36
4	1/36	0	2/36	0	0	0	3/36
5	0	2/36	0	2/36	0	0	4/36
6	1/36	0	2/36	0	2/36	0	5/36
7	0	2/36	0	2/36	0	2/36	6/36
8	1/36	0	2/36	0	2/36	0	5/36
9	0	2/36	0	2/36	0	0	4/36
10	1/36	0	2/36	0	0	0	3/36
11	0	2/36	0	0	0	0	2/36
12	1/36	0	0	0	0	0	1/36
$p_{\mathbf{Y}}(\mathbf{y})$	6/36	10/36	8/36	6/36	4/36	2/36	

7. p(1, 1) = 0, p(1, 0) = 0.30, p(0, 1) = 0.50, p(0, 0) = 0.20.

9. (a)
$$f_X(x) = \int_0^x 2 \, dy = 2x, \quad 0 \le x \le 1; \quad f_Y(y) = \int_y^1 2 \, dx = 2(1-y), \quad 0 \le y \le 1.$$

(b) $E(X) = \int_0^1 x f_X(x) \, dx = \int_0^1 x(2x) \, dx = 2/3;$
 $E(Y) = \int_0^1 y f_Y(y) \, dy = \int_0^1 2y(1-y) \, dy = 1/3.$
(c) $P\left(X < \frac{1}{2}\right) = \int_0^{1/2} f_X(x) \, dx = \int_0^{1/2} 2x \, dx = \frac{1}{4},$
 $P(X < 2Y) = \int_0^1 \int_{x/2}^x 2 \, dy \, dx = \frac{1}{2},$
 $P(X = Y) = 0.$

11.
$$f_X(x) = \int_0^2 \frac{1}{2} y e^{-x} dy = e^{-x}, \quad x > 0; \quad f_Y(y) = \int_0^\infty \frac{1}{2} y e^{-x} dx = \frac{1}{2} y, \quad 0 < y < 2.$$

8. For $i, j \in \{0, 1, 2, 3\}$, the sum of the numbers in the *i*th row is $p_X(i)$ and the sum of the numbers in the *j*th row is $p_Y(j)$. We have that

$$p_X(0) = 0.41,$$
 $p_X(1) = 0.44,$ $p_X(2) = 0.14,$ $p_X(3) = 0.01;$
 $p_Y(0) = 0.41,$ $p_Y(1) = 0.44,$ $p_Y(2) = 0.14,$ $p_Y(3) = 0.01.$

Since for all $x, y \in \{0, 1, 2, 3\}$, $p(x, y) = p_X(x)p_Y(y)$, X and Y are independent.

11. We have that

$$f_X(x) = \int_0^\infty x^2 e^{-x(y+1)} \, dy = x e^{-x}, \quad x \ge 0;$$

$$f_Y(y) = \int_0^\infty x^2 e^{-x(y+1)} \, dx = \frac{2}{(y+1)^3}, \quad y \ge 0,$$

where the second integral is calculated by applying integration by parts twice. Now since $f(x, y) \neq f_X(x) f_Y(y)$, X and Y are not independent.

23. Note that

$$f_X(x) = \int_{-\infty}^{\infty} g(x)h(y) \, dy = g(x) \int_{-\infty}^{\infty} h(y) \, dy,$$
$$f_Y(y) = \int_{-\infty}^{\infty} g(x)h(y) \, dx = h(y) \int_{-\infty}^{\infty} g(x) \, dx.$$

Now

$$f_X(x)f_Y(y) = g(x)h(y)\int_{-\infty}^{\infty} h(y) \, dy \int_{-\infty}^{\infty} g(x) \, dx$$

= $f(x, y)\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(y)g(x) \, dy \, dx$
= $f(x, y)\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx = f(x, y).$

This relation shows that X and Y are independent.

10. (a)
$$\int_0^\infty \int_{-x}^x ce^{-x} dy dx = 1$$
 implies that $c = 1/2$.
(b) $f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)} = \frac{(1/2)e^{-x}}{\int_{|y|}^\infty (1/2)e^{-x} dx} = e^{-x+|y|}, \quad x > |y|,$

$$f_{Y|X}(y|x) = \frac{(1/2)e^{-x}}{\int_{-x}^{x} (1/2)e^{-x} \, dy} = \frac{1}{2x}, \quad -x < y < x.$$

(c) By part (b), given X = x, Y is a uniform random variable over (-x, x). Therefore, E(Y|X = x) = 0 and

$$\operatorname{Var}(Y|X = x) = \frac{[x - (-x)]^2}{12} = \frac{x^2}{3}.$$