Assignment 8

6. The following table gives $p(x, y)$, the joint probability mass function of X and $Y ; p_{X}(x)$, the marginal probability mass function of X; and $p_{Y}(y)$, the marginal probability mass function of Y.

	y						
x	0	1	2	3	4	5	$p_{X}(x)$
2	$1 / 36$	0	0	0	0	0	$1 / 36$
3	0	$2 / 36$	0	0	0	0	$2 / 36$
4	$1 / 36$	0	$2 / 36$	0	0	0	$3 / 36$
5	0	$2 / 36$	0	$2 / 36$	0	0	$4 / 36$
6	$1 / 36$	0	$2 / 36$	0	$2 / 36$	0	$5 / 36$
7	0	$2 / 36$	0	$2 / 36$	0	$2 / 36$	$6 / 36$
8	$1 / 36$	0	$2 / 36$	0	$2 / 36$	0	$5 / 36$
9	0	$2 / 36$	0	$2 / 36$	0	0	$4 / 36$
10	$1 / 36$	0	$2 / 36$	0	0	0	$3 / 36$
11	0	$2 / 36$	0	0	0	0	$2 / 36$
12	$1 / 36$	0	0	0	0	0	$1 / 36$
$p_{Y}(y)$	$6 / 36$	$10 / 36$	$8 / 36$	$6 / 36$	$4 / 36$	$2 / 36$	

7. $p(1,1)=0, p(1,0)=0.30, p(0,1)=0.50, p(0,0)=0.20$.
8. (a) $f_{X}(x)=\int_{0}^{x} 2 d y=2 x, \quad 0 \leq x \leq 1 ; \quad f_{Y}(y)=\int_{y}^{1} 2 d x=2(1-y), \quad 0 \leq y \leq 1$.
(b) $E(X)=\int_{0}^{1} x f_{X}(x) d x=\int_{0}^{1} x(2 x) d x=2 / 3$;

$$
E(Y)=\int_{0}^{1} y f_{Y}(y) d y=\int_{0}^{1} 2 y(1-y) d y=1 / 3
$$

(c) $P\left(X<\frac{1}{2}\right)=\int_{0}^{1 / 2} f x(x) d x=\int_{0}^{1 / 2} 2 x d x=\frac{1}{4}$,
$P(X<2 Y)=\int_{0}^{1} \int_{x / 2}^{x} 2 d y d x=\frac{1}{2}$,
$P(X=Y)=0$.
11. $f_{X}(x)=\int_{0}^{2} \frac{1}{2} y e^{-x} d y=e^{-x}, \quad x>0 ; \quad f_{Y}(y)=\int_{0}^{\infty} \frac{1}{2} y e^{-x} d x=\frac{1}{2} y, \quad 0<y<2$.
8. For $i, j \in\{0,1,2,3\}$, the sum of the numbers in the i th row is $p_{X}(i)$ and the sum of the numbers in the j th row is $p_{Y}(j)$. We have that

$$
\begin{array}{llll}
p_{X}(0)=0.41, & p_{X}(1)=0.44, & p_{X}(2)=0.14, & p_{X}(3)=0.01 \\
p_{Y}(0)=0.41, & p_{Y}(1)=0.44, & p_{Y}(2)=0.14, & p_{Y}(3)=0.01
\end{array}
$$

Since for all $x, y \in\{0,1,2,3\}, p(x, y)=p_{X}(x) p_{Y}(y), X$ and Y are independent.
11. We have that

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{\infty} x^{2} e^{-x(y+1)} d y=x e^{-x}, \quad x \geq 0 \\
& f_{Y}(y)=\int_{0}^{\infty} x^{2} e^{-x(y+1)} d x=\frac{2}{(y+1)^{3}}, \quad y \geq 0
\end{aligned}
$$

where the second integral is calculated by applying integration by parts twice. Now since $f(x, y) \neq f_{X}(x) f_{Y}(y), X$ and Y are not independent.
23. Note that

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} g(x) h(y) d y=g(x) \int_{-\infty}^{\infty} h(y) d y \\
& f_{Y}(y)=\int_{-\infty}^{\infty} g(x) h(y) d x=h(y) \int_{-\infty}^{\infty} g(x) d x
\end{aligned}
$$

Now

$$
\begin{aligned}
f_{X}(x) f_{Y}(y) & =g(x) h(y) \int_{-\infty}^{\infty} h(y) d y \int_{-\infty}^{\infty} g(x) d x \\
& =f(x, y) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(y) g(x) d y d x \\
& =f(x, y) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x=f(x, y)
\end{aligned}
$$

This relation shows that X and Y are independent.
10. (a) $\int_{0}^{\infty} \int_{-x}^{x} c e^{-x} d y d x=1$ implies that $c=1 / 2$.
(b) $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{(1 / 2) e^{-x}}{\int_{|y|}^{\infty}(1 / 2) e^{-x} d x}=e^{-x+|y|}, \quad x>|y|$,

$$
f_{Y \mid X}(y \mid x)=\frac{(1 / 2) e^{-x}}{\int_{-x}^{x}(1 / 2) e^{-x} d y}=\frac{1}{2 x}, \quad-x<y<x .
$$

(c) By part (b), given $X=x, Y$ is a uniform random variable over $(-x, x)$. Therefore, $E(Y \mid X=x)=0$ and

$$
\operatorname{Var}(Y \mid X=x)=\frac{[x-(-x)]^{2}}{12}=\frac{x^{2}}{3} .
$$

