Ma 612 Mathematical Statistics Final Examination

due Tuesday May 15, 2012, by 5:00pm

(1) Let X_1, \ldots, X_n be iid random variables with:

$$P(X_j = 1) = \theta = 1 - P(X_j = 0),$$

with n a fixed constant and $0 < \theta < 1$.

- (a) Let T_k denote the uniform minimum variance unbiased estimator (UMVUE) of θ^k . Give an explicit formula for T_k , for k = 1, 2, ..., n.
- (b) Suppose we are interested in estimating the odds ratio $r = \frac{\theta}{1-\theta}$. Note that r does not have an unbiased estimator (you do not have to show this). What is the MLE of r? What is the bias of this MLE?
- (2) Let X_1, \ldots, X_n be a random sample from the density:

$$f(x|\theta) = e^{-(x-\theta)} \mathbf{1}_{\{x>\theta\}}$$

- (a) Show that the family has a monotone likelihood ratio and identify the statistic T(x).
- (b) Determine the uniform most powerful test (UMP) of testing

$$\begin{cases} H_0: & \theta \le \theta_0 \\ H_a: & \theta > \theta_0 \end{cases}$$

Show how to select a constant C such that the test has level α .

(3) Let $X X_1, \ldots, X_n$ be a random sample from the exponential distribution $f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0, \theta > 0$. Find:

$$\mathbf{E}\left[\frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}\right]$$

(Hint: Basu)

- (4) Do 8.55 on page 413 from your textbook. (please note if you reproduce the solution manual you will earn negative points).
- (5) Let X be a discrete random variable with the pdf:

$$f(x|\theta) = \binom{r+x-1}{x} \theta^x (1+\theta)^{-(r+x)}, x = 0, 1, 2, \dots$$

where r is a known positive integer and θ is a parameter¹. You can calculate the mean and variance of X as $\mathbf{E}(X) = r\theta$ and $Var(X) = r\theta(1+\theta)$.

We are interested in estimating θ using the loss function:

$$L(\theta, \delta) = \frac{(\theta - \delta)^2}{\theta(1 + \theta)}$$

For this purpose we assume that the prior distribution on θ is:

$$\pi(\theta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1+\theta)^{-(\alpha+\beta)} \mathbf{1}_{\{\theta>0\}}$$

- (a) Find the Bayes estimator δ^{π} of θ with respect to the above prior distribution.
- (b) Find the risk function $R_{\delta^{\pi}}(\theta) = \mathbf{E}[L(\theta, \delta^{\pi}(X))]$ of the Bayes estimator found in (a).
- (6) Let X_1, \ldots, X_n be a random sample from the distribution

$$f(x|\theta) = \frac{3\theta^3}{x^4} \mathbf{1}_{\{x > \theta\}}.$$

Find the method of moments estimator of θ , prove its consistency and obtain its limiting distribution as $n \to \infty$.

¹This is the Negative Binomial distribution reparametrized with $\theta = (1 - p)/p$, where p is the probability of success on an individual trial