Ma 612 Mathematical Statistics
 Final Examination

due Tuesday May 15, 2012, by 5:00pm

(1) Let X_{1}, \ldots, X_{n} be iid random variables with:

$$
P\left(X_{j}=1\right)=\theta=1-P\left(X_{j}=0\right)
$$

with n a fixed constant and $0<\theta<1$.
(a) Let T_{k} denote the uniform minimum variance unbiased estimator (UMVUE) of θ^{k}. Give an explicit formula for T_{k}, for $k=$ $1,2, \ldots, n$.
(b) Suppose we are interested in estimating the odds ratio $r=\frac{\theta}{1-\theta}$. Note that r does not have an unbiased estimator (you do not have to show this). What is the MLE of r ? What is the bias of this MLE?
(2) Let X_{1}, \ldots, X_{n} be a random sample from the density:

$$
f(x \mid \theta)=e^{-(x-\theta)} \mathbf{1}_{\{x>\theta\}}
$$

(a) Show that the family has a monotone likelihood ratio and identify the statistic $T(x)$.
(b) Determine the uniform most powerful test (UMP) of testing

$$
\begin{cases}H_{0}: & \theta \leq \theta_{0} \\ H_{a}: & \theta>\theta_{0}\end{cases}
$$

Show how to select a constant C such that the test has level α.
(3) Let $X X_{1}, \ldots, X_{n}$ be a random sample from the exponential distribution $f(x \mid \theta)=\frac{1}{\theta} e^{-\frac{x}{\theta}}, x>0, \theta>0$. Find:

$$
\mathbf{E}\left[\frac{\sum_{i=1}^{n} i X_{i}}{\sum_{i=1}^{n} X_{i}}\right]
$$

(Hint: Basu)
(4) Do 8.55 on page 413 from your textbook. (please note if you reproduce the solution manual you will earn negative points).
(5) Let X be a discrete random variable with the pdf:

$$
f(x \mid \theta)=\binom{r+x-1}{x} \theta^{x}(1+\theta)^{-(r+x)}, x=0,1,2, \ldots
$$

where r is a known positive integer and θ is a parameter ${ }^{1}$. You can calculate the mean and variance of X as $\mathbf{E}(X)=r \theta$ and $\operatorname{Var}(X)=$ $r \theta(1+\theta)$.
We are interested in estimating θ using the loss function:

$$
L(\theta, \delta)=\frac{(\theta-\delta)^{2}}{\theta(1+\theta)}
$$

For this purpose we assume that the prior distribution on θ is:

$$
\pi(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1+\theta)^{-(\alpha+\beta)} \mathbf{1}_{\{\theta>0\}}
$$

(a) Find the Bayes estimator δ^{π} of θ with respect to the above prior distribution.
(b) Find the risk function $R_{\delta \pi}(\theta)=\mathbf{E}\left[L\left(\theta, \delta^{\pi}(X)\right)\right]$ of the Bayes estimator found in (a).
(6) Let X_{1}, \ldots, X_{n} be a random sample from the distribution

$$
f(x \mid \theta)=\frac{3 \theta^{3}}{x^{4}} \mathbf{1}_{\{x>\theta\}} .
$$

Find the method of moments estimator of θ, prove its consistency and obtain its limiting distribution as $n \rightarrow \infty$.

[^0]
[^0]: ${ }^{1}$ This is the Negative Binomial distribution reparametrized with $\theta=(1-p) / p$, where p is the probability of success on an individual trial

