Ma 612 Mathematical Statistics
 Midterm Examination

due via email or hand in to my mailbox on Friday March 30,
(1) The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d., they take values in a finite set

$$
A_{m}=\{1,2, \ldots, m\}
$$

and are uniformly distributed over A_{m}. The random variables $X_{i}^{\prime} s$ could be numbers that you see, e.g., the number of questions in an exam.
(a) Assume that m is not known and you want to estimate it. Write down the estimator obtained (i) by the method of moments and (ii) by maximizing the likelihood.
(b) If \hat{m} is the MLE, show that \hat{m} is biased and consistent for m, i.e., $E_{m}(\hat{m}) \neq m$, but $\hat{m} \rightarrow m$ if m is kept fixed and $n \rightarrow \infty$.
(c) Suppose m and n both tend to infinity at the same rate, i.e., $m=k \cdot n, n \rightarrow \infty$, with k a fixed constant. Show that $(\hat{m}-m)$ converges in distribution and study the limiting distribution.
(2) Let the variables $X_{1}, X_{2}, \ldots, X_{n}$ i.i.d. from the distribution:

$$
f_{1}\left(x \mid \theta_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where $\theta_{1}=\left(\mu, \sigma^{2}\right)^{T} \in \mathbb{R} \times(0, \infty)$, and let $Y_{1}, Y_{2}, \ldots, Y_{n}$ i.i.d. from the distribution:

$$
f_{2}\left(y \mid \theta_{2}\right)=\frac{1}{2 \sqrt{2 \pi \sigma_{1}^{2}}} e^{-\frac{\left(y-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+\frac{1}{2 \sqrt{2 \pi \sigma_{2}^{2}}} e^{-\frac{\left(y-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}
$$

where $\theta_{2}=\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)^{T} \in \mathbb{R}^{2} \times(0, \infty)^{2} . f_{2}$ is called the normal mixture density.
(a) Show that both functions above are legitimate pdf's
(b) Calculate the likelihood functions in both cases $L_{1}\left(\theta_{1} \mid x_{1}, \ldots, x_{n}\right)$, and $L_{2}\left(\theta_{2} \mid y_{1}, \ldots, y_{n}\right)$
(c) Show that the first likelihood function is always bounded on $\mathbb{R} \times$ $(0, \infty)$, but the second is always unbounded on $\mathbb{R}^{2} \times(0, \infty)^{2}$
(d) What does part (c) imply about the MLE estimators?
(3) You want to estimate the mean score μ of a large population of financial engineering students on an aptitude test. You base your work on the following information:
(a) The population contains 80% males and 20% females.
(b) The performance of men and women on the test differs. You expect from past data that the standard deviations of test scores are

$$
\sigma_{M}=2 \quad(\text { men }), \quad \sigma_{F}=4 \quad(\text { women }) .
$$

(c) Test scores vary normally in each subpopulation.

Your task: choose sizes n_{M} and n_{F} for random samples of men and women that minimize the total sample size $n=n_{M}+n_{F}$, subject to the requirement that the standard deviation of your estimate of μ is 0.1.
(a) What is the MLE $\hat{\mu}$ of μ ?
(b) Use the estimator $\hat{\mu}$. What are the required n_{M} and n_{F} ?
(4) Let $X_{1}, X_{2}, \ldots, X_{n}$ be Bernoulli random variables with the following joint distribution, depending on $\theta=\left(\theta_{1}, \theta_{11}, \theta_{10}\right)$;

$$
\begin{gathered}
P\left(X_{1}=1\right)=\theta_{1} \\
P\left(X_{i}=1 \mid X_{1}, \ldots, X_{i-1}\right)= \begin{cases}\theta_{11}, & \text { if } X_{i-1}=1 \\
\theta_{10}, & \text { if } X_{i-1}=0\end{cases}
\end{gathered}
$$

for $i=1,2, \ldots, n$. Find a four dimensional sufficient statistic.
(5) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables uniform on $[0, \theta]$ with $\theta \geq 1$. We wish to estimate $g(\theta)=\theta^{-p}$ for $p>n$.
(a) Show that

$$
T\left(X_{(n)}\right)= \begin{cases}1 & X_{(n)} \leq 1 \\ X_{(n)} & X_{(n)}>1\end{cases}
$$

is a sufficient statistic $\left(X_{(n)}=\max _{i}\left\{x_{i}\right\}\right)$.
(b) Find an unbiased estimator for $g(\theta)$. Calculate the variance of this estimator.
(6) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the population with pdf:

$$
f(x \mid \theta)=(\theta+1) x^{\theta} \mathbf{1}_{[0,1]}(x)
$$

where the parameter space is $\Theta=(-1, \infty)$.
(a) Find an estimator for θ using the method of moments, call this estimator $\tilde{\theta}_{n}$.
(b) Find the limiting distribution of $\sqrt{n}\left(\tilde{\theta}_{n}-\theta\right)$ as $n \rightarrow \infty$.
(c) Find the maximum likelihood estimator $\hat{\theta}_{n}$ for θ.
(d) Find the limiting distribution of $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$ as $n \rightarrow \infty$.
(e) Compare the variances of the limiting distributions for the two estimators. If smaller variance means a better estimator which is the better estimator?
(7) Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be independent random variables with distribution $X_{n} \sim \operatorname{Poisson}\left(\lambda_{n}\right)$ where $\lambda_{n}=2+\sqrt{n-1}-\sqrt{n}$ for every n. Find the limiting distribution of $\sqrt{n}\left(\bar{X}_{n}-2\right)$ where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the average of the first n random variables.
(8) Let X_{1}, \ldots, X_{n} be iid with common density $f(x)=\frac{1}{2} e^{-|x|}, x \in \mathbb{R}$. This density is a simple version of the Laplace density also called the double exponential. Show that

$$
\lim _{n \rightarrow \infty} \sqrt{n} \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} X_{i}^{2}}=Z
$$

with convergence in distribution. Find the distribution of Z.

