
Titan: A Toolset That Connects Software Architecture with
Quality Analysis

Lu Xiao, Yuanfang Cai
Drexel University

Philadelphia, PA, USA
lx52@drexel.edu

yfcai@cs.drexel.edu

Rick Kazman
University of Hawaii
Honolulu, HI, USA

kazman@hawaii.edu

ABSTRACT
In this tool demo, we will illustrate our tool—Titan—that
supports a new architecture model: design rule spaces (DR-
Spaces). We will show how Titan can capture both architec-
ture and evolutionary structure and help to bridge the gap
between architecture and defect prediction. We will demo
how to use our toolset to capture hundreds of buggy files
into just a few architecturally related groups, and to reveal
architecture issues that contribute to the error-proneness
and change-proneness of these groups. Our tool has been
used to analyze dozens of large-scale industrial projects, and
has demonstrated its ability to provide valuable direction on
which parts of the architecture are problematic, and on why,
when, and how to refactor. The video demo of Titan can be
found at https://art.cs.drexel.edu/~lx52/titan.mp4

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design

Keywords
Software Architecture, Software maintenance, Software Qual-
ity

1. INTRODUCTION
In our recent work [12], we proposed a new architecture

representation called the Design Rule Space (DRSpace) that
bridges the gap between architecture and defect prediction.
Based on design rule theory [1], a DRspace models software
as design rules and modules that are decoupled by these
design rules. We showed that a software system can be
viewed as multiple overlapping DRSpaces, each reflecting a
meaningful but different perspective of the software. We also
showed that although a software project may have hundreds
of buggy files, they are usually architecturally connected and
can be captured by just a few DRSpaces.

In this demo, we will show how our toolset, called Titan,
can be used to automatically extract the DRSpaces that cap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

ture most error-prone and change-prone files in a project. We
will also show how to flexibly visualize software architecture
from multiple perspectives using TitanGUI.

2. BACKGROUND AND RELATED WORK
In this section, we introduce the background of Titan:

Baldwin and Clark’s [1] design rule theory and design struc-
ture matrix modeling, as well as Wong et al.’s [10,11] design
rule hierarchy and modularity violation algorithms. We will
also briefly compare Titan with related work.

Baldwin and Clark proposed that a modular structure
is formed by inserting design rules—high-level architecture
decisions—that decouple the rest of the system into inde-
pendent modules. Design rules are typically manifested as
interfaces or abstract classes. For example, the factory in-
terface in an abstract factory pattern is a design rule that
decouples clients from concrete factories. Most design pat-
terns feature one or more interfaces that are instances of
design rules.

Based on the concept of design rule, Wong et al. pro-
posed a clustering algorithm called the Design Rule Hierar-
chy (DRH) [11] that automatically detects design rules and
modules, which can be reflected in a hierarchical structure of
a Design Structure Matrix (DSM) [1,11]. In a DRH-clustered
DSM, design rules are arranged in the top layers followed by
decoupled, mutually-independent, modules.

The essence of the design rule concept is that the modules
decoupled by design rules should evolve independently as long
as the design rules remain stable. If two modules change
together when they are designed to be independent from
each other, a modularity violation [10] has occurred. Wong et
al [10] showed that modularity violations were often a signal
of poor design that needed refactoring. For example, our
industrial case study [7] showed that a modularity violation
could be the result of shared secrets between files that should
be better encapsulated.

Our recent work [12] proposed the concept of Design Rule
Space (DRSpace) as a new software architecture model. A
DRSpace is a set of files that are either structurally related
or frequently changed together, as evidenced in a project’s
revision history. We proposed that a software architecture
could be viewed as multiple overlapping DRSpaces. We also
showed that most error-prone files were connected by just a
few DRSpaces with architecture issues that were postulated
to be the root causes of bugginess.

Our work bridges software architecture and bug predic-
tion. In the former area, various clustering algorithms, such
as ACDC [8] and LDA [2] were proposed to increase the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2661677

763

comprehensibility of the architecture. But these algorithms
don’t reveal how modules affect software quality. Numerous
approaches were proposed to predict bug location, using pre-
dictors extracted from revision history (history measures) [3],
static code base (complexity measures) [4], or a combination
of both [5]. However, the architecture connections among
buggy files were never explored. Our tool also distinguishes
itself from existing DSM tools, such as Lattix [6], by featuring
the DRH algorithm, multiple DRSpace views, and automatic
error-prone DRSpace extraction.

3. TITAN TOOLSET OVERVIEW

Figure 1: Titan Tool Chain Framework

Figure 1 depicts an overview of our 4 data processing
components and 1 visualization component: TitanGUI.

StructureDSM Generator. This component takes the
file dependency report generated by a reverse engineering
tool, such as Understand 1 as input. The output is a structure
DSM, in the form of a .dsm file, that represents the structural
dependencies between files in a project.

HistoryDSM Generator. The input for this compo-
nent includes a structure .dsm file and the revision history
of a project, such as a SVN log. The user can specify a
start and end date that designate the time span to consider
in the generation. Evolutionary coupling is exported to a
history dsm, also in the form of a .dsm file, that records the
co-change frequencies between files in a project.

BugSpace Generator. This component uses revision
history, e.g. a SVN log, a bug issue list, and a specified time
period as input, and outputs a list of files that were changed
multiple times to fix bugs in the time period, ranked by their
bug change frequency, and recorded in a .csv file. We call
the ranked buggy file list a bug space.

Architecture Root Detector. The inputs to this com-
ponent include a structure DSM, a history DSM, a bug space,
and an input parameter P representing the percentage of
buggy files to be covered. The user can specify a severity
threshold of the bug space, that is, the number of times a
file is revised to fix bugs. The larger the number, the more
error-prone the files are. If the severity threshold is specified
to be N , then we call it a BugN space. This component
computes the minimal number of DRSpaces needed to cap-

1http://www.scitools.com/

ture P% of the given BugN space. We call these DRSpaces
the architecture roots, which are also recorded in .dsm files.

TitanGUI. TitanGUI is a component that takes .dsm
files generated by the StructureDSM Generator, History
DSM Generator, or the Architecture Root Detector as input.
Using TitanGUI the user can manipulate, split, import, and
export any parts of a DRSpace, save a specific clustering
into a .clsx file, or export a DSM view into a spreadsheet.

In the next sections, we illustrate how to extract archi-
tecture roots, visualize software architecture as multiple
DRSpaces, and inspect architecture issues using Titan.

4. EXTRACTING ARCHITECTURE ROOTS
The four data processing components of Titan share a

graphical user interface called TitanDPC (Figure 2). Each
component is operated from its own tab. This figure shows
the tab for the Architecture Root Detector, where the user
can input a structure DSM file, a history DSM file, a bug
space file, a bug frequency threshold, and a cover percentage.
The system will then generate a set of .dsm files in the
specified output directory, each representing a root DRSpace
with multiple buggy files. Their aggregation covers the given
percentage of files within a BugN space.

Using this toolset, we have extracted architecture roots
from dozens of open source and industrial projects. Our re-
sults consistently showed that a software project’s hundreds
of buggy files can be captured in just a few DRSpaces: archi-
tecture roots. We have reported [12] that for Hadoop, JBoss
and Eclipse, more than half of the files in Bug2, Bug5 and
Bug10 spaces were captured by just 5 DRSpaces. Further-
more, using TitanGUI, we can observe multiple architectural
issues within each root DRSpace, such as cyclic dependen-
cies, inappropriate inheritance and modularity violations.
We believe those architecture issues contributed to the error-
proneness of the files in the DRSpaces.

More interestingly, in our most recent study of 10 open
source projects and 1 industrial project, we found that, during
the evolution of a software project, the number of buggy roots
needed to cover the majority of a bug space remains constant
over time despite the drastic increase in the size of bug
space. In other words: buggy roots grow over time. This
observation implies that these roots are the cores of bugginess
that connect more and more buggy files. Thus developers
need to fix the architectural problems in the buggy roots to
avoid the growth of bugginess.

5. EXPLORING DRSPACES
In this section, we introduce how to use TitanGUI to

explore software architecture as multiple DRSpaces and to
examine architecture roots. Figure 3 is a snapshot of Titan-
GUI, showing 4 sections: a top toolbar, a control panel on
the left, a tree view, and a DSM view.

The toolbar on the top contains action menus for .dsm
file manipulation (open, save, etc), clustering a DSM based
on package structure or ArchDRH structure, splitting a
DRSpace based on selected classes, or extracting a subsystem
based on a module selected from the tree view panel.

The control panel on the left allows the user to customize
the DSM view. When a structure DSM is loaded, the depen-
dency types associated with it will be automatically displayed
as a group of check boxes. In the snapshot, we can see that
the Apache Camel DSM has 12 types of structural depen-

764

Figure 2: TitanDPC (Data Processing Compo-
nents)

Figure 3: TitanGUI

1 2 3 4 5 6 7 8 9 10

1 mij.ast.TreeVisitor (1)

2 mij.ast.Node (2)

3 mij.Interpreter Implement Call (3) Call

4 mij.Repository (4)

5 mij.ast.OperExpr Call Extend,Call (5)

6 mij.ast.FuncExpr Call Extend,Call (6)

7 mij.ast.UnaryOperExpr Call Extend,Call (7)

8 mij.parse.Convert Call Call Call Call (8)

9 mij.ast.Number Call Extend,Call (9)

10 mij.ast.Variable Call Extend,Call (10)

Figure 4: Design Pattern View (Visitor Pattern)

1 2 3 4 5 6 7 8 9 10 11 12

1 org.apache.cassandra.gms.ApplicationState (1)

2 org.apache.cassandra.gms.EndpointState (2)

3 org.apache.cassandra.gms.IEndpointStateChangeSubscriber (3)

4 org.apache.cassandra.gms.Gossiper Call,24 Call,26 Call,12 (4) Call,

5 org.apache.cassandra.streaming.StreamingRepairTask Call, (5) Call, Call,

6 org.apache.cassandra.streaming.StreamOut (6) Call,

7 org.apache.cassandra.streaming.StreamOutSession Implement Call, (7)

8 org.apache.cassandra.service.AntiEntropyService Implement Call,32 Call, ,22 (8) Call,

9 org.apache.cassandra.service.LoadBroadcaster Call, Implement Call, (9) Call,

10 org.apache.cassandra.service.MigrationManager Call, Implement Call,38 ,24 (10) Call,

11 org.apache.cassandra.db.HintedhandOffManager Call, Call,44 ,34 ,28 (11) Call,

12 org.apache.cassandra.service.StorageService ,22 Call,20 Implement Call,84 Call,24 Call,56 Call, Call,42 Call,62 (12)

Figure 5: Architecture Root of Cassandra

dencies. Only the checked dependency types are displayed in
the DSM view. It also contains a “history” check box. The
user can also check the “threshold” box to input a change fre-
quency threshold. Any history coupling below the specified
threshold will not be shown in DSM view.

When a DSM is opened, the tree view renders classes
randomly. After a clustering file is loaded or a clustering
method is selected, the tree view is redrawn to reflect the new
structure. Using the tree view, the user can collapse/expand,
group/ungroup classes, pick classes to split and select a
module to extract a sub system. The DSM view can be
updated by clicking the redraw button. If the user selects
the “package cluster” menu, the tree view will reflect the
project’s namespace structure. When the “ArchDRH cluster”
menu is selected, the tree view will reflect a DRH structure.

The DSM view presents a square matrix where the columns
and rows are labeled with the same set of files in the same
order. In the DSM view, each set of classes are colored using
a dark background. A nested set has a darker background
than the outside group. The diagonal line is labeled with the
index of the class. Each cell displays selected dependency
types between the file on the row and the file on the column.

5.1 Software Architecture as Multiple, Over-
lapping DRSpaces

A DRSpace is displayed whenever one or more types of de-
pendencies are selected and the “ArchDRH clustering” menu
item is clicked. We use a simple Java calculator program
(mij) as a running example to show how to explore the dif-

ferent DRSpaces within the same system. The mij system
was implemented using 36 Java classes, including those im-
plementing Visitor, Pipe-and-Filer, and Interpreter patterns.
We now show that the architecture of mij consists of mul-
tiple DRSpaces, each having its own meaningful modular
structure. At the minimum, its architecture consists of a
polymorphism DRSpace and three design pattern DRSpaces.

A polymorphism DRSpace can be generated by checking
implement and extend types only, and clicking ArchDRH
Cluster. Figure 6 shows the resulting DSM view of TitanGUI.
In this DRSpace, the base classes of Pipe, Filter, bnf.Node,
and ast.Node are located in the top layer of the design rule
hierarchy. The child classes of io.Pipe, OutputPipe and
InputPipe, form the second layer design rules which further
decouple the rest of the files into 6 mutually independent,
meaningful modules. For example, WriterOutput and Memo-

ryOutputPipe form a output pipe module; the 7 bnf classes
form a bnf node module, and the 4 ast classes form an ast
node module.

We use the mij visitor pattern as an example of how to
display a design pattern DRSpace using TitanGUI. We first
run ArchDRH clustering on the entire system. After that,
we select ast.Node and ast.TreeVisitor on the Tree View
Panel and then click the Split button on the top toolbar.
As a result, a new instance of Titan GUI will be launched
containing only the files participating in the visitor pattern.
Figure 4 is the DSM panel snapshot of the this newly gen-
erated visitor pattern DRSpace. The design rules of the
pattern, the key interfaces TreeVisitor and ast.Node, are in
the first layer, which decouples the rest of the pattern to 3

765

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 mij.io.Pipe (1)

2 mij.bnf.Node (2)

3 mij.ast.Node (3)
4 mij.Filter (4)

5 mij.io.OutputPipe Extend (5)
6 mij.io.InputPipe Extend (6)

7 mij.io.WriterOutputPipe Implement (7)

8 mij.io.MemoryOutputPipe Implement (8)

9 mij.io.MemoryInputPipe Implement (9)

10 mij.io.ReaderInputPipe Implement (10)

11 mij.lex.Lexer Implement (11)

12 mij.parse.Convert Implement (12)

13 mij.parse.Parser Implement (13)

14 mij.bnf.ValueExpr Extend (14)

15 mij.bnf.LexExpr Extend (15)

16 mij.bnf.AddExpr Extend (16)

17 mij.bnf.ExponExpr Extend (17)

18 mij.bnf.UnaryExpr Extend (18)

19 mij.bnf.ParamExpr Extend (19)

20 mij.bnf.MultExpr Extend (20)

21 mij.Interpreter Implement (21) Implement

22 mij.ast.TreeVisitor (22)

23 mij.ast.UnaryOperExpr Extend (23)

24 mij.ast.Variable Extend (24)

25 mij.ast.FuncExpr Extend (25)

26 mij.ast.OperExpr Extend (26)

27 mij.ast.Number Extend (27)

Figure 6: Polymorphism View

mutually independent modules.

5.2 Architecture Root Exploration
After the architecture roots are identified by the Architec-

ture Root Detector, TitanGUI can visualize their architecture
issues. To do this, the following steps are followed: 1) the
history and structure .dsm files of the architecture root are
loaded using the file menu; 2) the preferred structure de-
pendency types are selected on the left control panel; 3)
ArchDRH clustering is run, based on the selected depen-
dencies; 3) the “history” box and an appropriate history
threshold are selected on the left control panel.

Figure 5 presents the DRSpace of an architecture root
extracted from the Apache Cassandra project. Its DRSpace
with structure dependencies reveals five cyclic calls in it,
three of which are between StorageService and its sibling
classes. This is a sign of poor architecture design. After
checking the “history” checkbox, a number is displayed after
the structural dependency in each cell, indicating the fre-
quency of co-changes between the file on the row and the file
on the column. In this DRSpace, evolutionary couplings less
than 10 are filtered out. We can see that these architecture
issues are incurring high maintenance costs in the form of
frequent co-changes: StorageService changes with Gossiper,
AntiEntropyService, MigrationManager and HintedHandOff-
Manager (which are participants in 4 call cycles) 84, 56, 42
and 62 times respectively.

The red cell in the DSM view indicates modularity viola-
tions [9], that is, modules that are structurally independent
but change frequently together. Figure 5 shows that this
architecture root suffers from modularity violations. We
hypothesize that the developers won’t be able to reduce the
maintenance cost on those files unless they treat them as a
group and fix the structural problems.

6. CONCLUSION
In this paper, we presented, Titan, a novel tool that bridges

the gap between software architecture and quality. We show
that Titan can simultaneously display structure and evolu-
tionary information, highlight modularity violations, and aid
in exploring software architecture from multiple perspectives,
such as the design space formed by each design pattern. We

also show that Titan can cluster the files connected by prob-
lematic architecture structures into a few architecture root
DRSpaces, and provide insights about how to refactor these
structures.

We have applied the Titan toolset in dozens of open source

and industrial projects. In the future, we plan to further ex-
plore how to automatically extract architecture issues, design
patterns, and anti-patterns. The academic version of the Ti-
tan toolset can be downloaded at https://art.cs.drexel.edu:

4000/. Please contact Yuanfang Cai at yfcai@cs.drexel.edu or
Lu Xiao at lx52@drexel.edu to request a pin number needed
for downloading the toolset.

Acknowledgments
This work was supported in part by the National Science
Foundation of the US under grants CCF-0916891, CCF-
1065189, CCF-1116980 and DUE-0837665.

7. REFERENCES
[1] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1:

The Power of Modularity. MIT Press, 2000.

[2] M. Gethers and D. Poshyvanyk. Using relational topic
models to capture coupling amoung classes in
object-oriented software systems. In Proc. 26th ICSM,
pages 1–10, Sept. 2010.

[3] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc.
27th ICSE, pages 284–292, May 2005.

[4] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. pages 452–461, 2006.

[5] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
Predicting the location and number of faults in large
software systems. TSE, 31(4):340–355, 2005.

[6] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. In Proc. 20th OOPSLA, pages 167–176,
Oct. 2005.

[7] R. Schwanke, L. Xiao, and Y. Cai. Measuring
architecture quality by structure plus history analysis.
In Proc. 35rd ICSE, pages 891–900, May 2013.

[8] V. Tzerpos and R. C. Holt. ACDC: An algorithm for
comprehension-driven clustering. In Proc. 7th WCRE,
pages 258–267, Nov. 2000.

[9] S. Wong and Y. Cai. Improving the efficiency of
dependency analysis in logical models. In Proc. 24th
ASE, pages 173–184, Nov. 2009.

[10] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
software modularity violations. In Proc. 33rd ICSE,
pages 411–420, May 2011.

[11] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and
K. Sethi. Design rule hierarchies and parallelism in
software development tasks. In Proc. 24th ASE, pages
197–208, Nov. 2009.

[12] L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A
new form of architecture insight. In Proc. 36rd ICSE,
pages 967–977.

766

