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ABSTRACT
In this paper, we investigate software architecture as a set
of overlapping design rule spaces, formed by one or more
structural or evolutionary relationships and clustered using
our design rule hierarchy algorithm. Considering evolution-
ary coupling as a special type of relationship, we investigated
(1) whether design rule spaces can reveal structural relations
among error-prone files; (2) whether design rule spaces can
reveal structural problems contributing to error-proneness.
We studied three large-scale open source projects and found
that error-prone files can be captured by just a few design
rule sub-spaces. Supported by our tool, Titan, we are able
to flexibly visualize design rule spaces formed by different
types of relationships, including evolutionary dependencies.
This way, we are not only able to visualize which error-prone
files belong to which design rule spaces, but also to visualize
the structural problems that give insight into why these files
are error prone. Design rule spaces provide valuable direc-
tion on which parts of the architecture are problematic, and
on why, when, and how to refactor.

Categories and Subject Descriptors
D.2.10 [Software Engineering]

General Terms
Design

Keywords
Software Architecture, Software Quality, Architecture Re-
covery

1. INTRODUCTION
In this paper, we present design rule spaces, a new form

of architecture representation that uniformly captures both
architecture and evolution structures to bridge the gap be-
tween architecture and defect prediction. In the field of re-
verse engineering, numerous techniques have been proposed
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to recover a software architecture from source code, such as
Bunch [13], ACDC [20], and LDA [10]. These approaches
aim to improve the accuracy and comprehensibility of the
recovered architecture. However, a means of leveraging the
recovered architectural structure to inform software quality
issues, such as the location of defects, has not been explored.

On the other hand, in the field of data mining, many ap-
proaches have been proposed to leverage co-change informa-
tion in revision history to locate error-prone files, and con-
struct defect predictors [7, 11, 12, 14]. Although our recent
industrial case study [18] revealed that architecture prob-
lems are the root cause of a large number of defects, the
relationships between file error-proneness and architectural
properties have been largely ignored by the software com-
munity.

Our work is rooted in Baldwin and Clark’s concept of de-
sign rule (DR) [2]–architectural interfaces that decouple the
system into independent modules. We consider design rules,
and modules framed by the design rules, as basic elements
of software architecture, and propose a new concept—the
Design Rule Hierarchy (DRH) [3,23]—to capture their rela-
tionships.

After examining how files change together in revision his-
tories [18,22], we found that when a group of files frequently
changes together, but they lack syntactical or architectural
relationships, it often implies unencapsulated assumptions,
implementation errors, or architectural problems. We term
these modularity violations. In our prior studies, however,
we had to manually examine hundreds of co-changed files
and read thousands of developers’ comments to verify if a
modularity violation indeed indicated an issue.

The problem is that we lack a methodology to directly and
effectively link software architecture with error-proneness:
not all error-prone files have modularity violations, and vice
versa. In this paper, we introduce the concept of design
rule space (DRSpace) to bridge the gap between architecture
and quality concerns. A DRSpace is a special graph whose
vertices are a set of classes, with the following features:

1) Its edges can be one or more selected types of relation-
ships between classes, including evolutionary coupling [9]
derived from revision history. Some of these relationship
types can be designated as primary relations, and the other
types are secondary relations.

2) It must have one or more leading classes, which are
usually the design rules of the space.

3) It has to be clustered into the form of a design rule
hierarchy [3, 4, 23] based on its primary relation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00
http://dx.doi.org/10.1145/2568225.2568241

967



In this paper, we show that analysis based on just a single
relationship is not sufficient to capture the complexity of
software systems. Instead, software architecture should be
viewed as multiple overlapping DRSpaces.

An extended example that we present in Section 3 shows
that each type of dependency relation, such as aggrega-
tion and inheritance, forms its own meaningful DRSpace.
By choosing evolutionary coupling as a secondary relation
within a DRSpace, the modularity violations within the space
can be visualized. Moreover, design patterns used in the
system also form unique DRSpaces that overlap with other
DRSpaces formed by other patterns or relations.

As the first step toward evaluating the potential of DR-
Spaces, especially in terms of informing quality issues, we in-
vestigated the relation between DRSpaces and bug spaces—
the spaces formed by error-prone files—in three large-scale
open source projects: JBoss, Hadoop, and Eclipse JDT. Sup-
ported by our tool, Titan, we obtained three major results:

First, if the file leading a DRSpace is error-prone, then a
significant portion of the files within the DRSpace are also
error-prone. We call a DRSpace led by an error-prone file
an error-prone DRSpace.

Second, although a project may have hundreds of error-
prone files, these files are usually contained in a few error-
prone DRSpaces. In all three projects, more than 50% of
the error-prone files are captured by just 5 error-prone DR-
Spaces.

Third, all error-prone DRSpaces exhibit multiple struc-
tural and evolution issues, either violating commonly ac-
cepted design principles, or revealing exceptionally unstable
architectural interfaces. Our result also shows that not all
structural problems, such as cyclic dependencies, cause qual-
ity or maintainability issues. By choosing evolution coupling
as the secondary relation within a DRSpace, we can visu-
alize which structural problems are actually incurring high
maintenance costs.

These results imply that, when investing the root cause of
bugs, we should consider the DRSpace that these error-prone
files belong to, because structural issues may contribute to
their buggniness. We will present evidence that error-prone
files influence the error-proneness of other files within the
same DRSpace. Furthermore, the DRSpace can help in iden-
tifying the root cause of the bugginess (for example, cyclic
dependencies), and thus indicate how such problems may be
resolved.

The rest of the paper is structured as follows. Section 2
presents our prior work that this work is based upon. Sec-
tion 3 introduces the concept of DRSpaces using an exam-
ple. Section 4 introduces our tool, Titan. Section 5 presents
our evaluation and results. Sections 6, 7, and 8 discuss the
results, present related work, and provide our final conclu-
sions.

2. BACKGROUND
Our work is rooted in the concept of a design rule (DR).

DRSpaces, based on design rules, are presented in the form
of a design structure matrix (DSM) [2], organized as a design
rule hierarchy (DRH) [3, 4, 23]. A DRSpace can help to
visualize modularity violations [22].

Design Rule (DR). Baldwin and Clark [2] proposed
that a modular structure should be framed by design rules,
the architectural decisions that decouple the rest of system
into modules, so that modules can evolve independently from

each other. In modern object-oriented software systems, de-
sign rules are usually implemented in the form of interfaces
or abstract classes. For example, if a software system em-
ploys an observer pattern, the pattern should be led by an
observer interface, which decouples subjects from concrete
observers. If the interface is stable, changes to concrete ob-
servers and subjects should not influence each other. In this
case, we consider the observer interface as a design rule, and
the subjects and concrete observers form two independent
modules.

Design Structure Matrix(DSM). These concepts can
be visualized as a design structure matrix (DSM). A DSM
is a square matrix with its rows and columns labeled by the
same set of element names and/or numbers, in the same or-
der. A cell along the diagonal represents self-dependency,
and an non-empty off-diagonal cell captures some relation
between the element on the row to the element on the col-
umn. For example, in Figure 1, the mark in cell, c:(r4,c1),
indicates that mij.ast.Number (row 4) depends on mij.ast.

Node (column 1). The shaded squares along the diagonal
model sets of elements that are grouped together.

Design Rule Hierarchy (DRH). In our prior work,
we proposed a concept called design rule hierarchy (DRH), a
layered structure that reveals how design rules decouple the
rest of the system into modules. A DSM with DRH structure
has the following characteristics: 1) the elements in the lower
layers of the hierarchy only depend on the elements within
higher layers, i.e., design rules; 2) elements within the same
layer are separated into mutually independent groups, that
is, independent modules.

Figure 3 depicts a DRH DSM with two layers: l1:(rc1-5)
and l2:(rc6-13). Within l2, there are 3 mutually independent
modules: m1:(rc6-7), m2:(rc8-9), and m3:(rc10-13). In this
case, the 5 elements in the first layer are the design rules
of the second layer because they influence the second layer
elements, but are not influenced by them.

In our recent work [4], we extended the original DRH al-
gorithm to better support architecture recovery from source
code, which we called the architectural design rule hierar-
chy (ArchDRH) algorithm. ArchDRH recognizes the exis-
tence of another special type of element commonly found in
a software architecture: control programs. A control pro-
gram, such as a class with a main function, usually depends
on many other classes, but is not depended on by them.
ArchDRH additionally separates these control elements into
the bottom of a module, and supports recursively clustering
the rest of the module into a DRH structure.

Figure 4 depicts an output of ArchDRH. The algorithm
first identifies three layers: l1:(rc1-2), l2:(rc3-21), and l3:(rc22-
32). Within l2, it then calculates two modules, m1:(3-10)
and m2:(11-21), and then recursively calculates the DRH
structure within each module. For example, m2 is further
calculated into a two-layer hierarchy: l4:(rc11-20) and l5:(rc21-
21). It first separates mij.parse.Parser, the control class
of the module, into l5, and then aggregates the rest into one
module m:(rc10-20) within l4. All the DSMs shown in this
paper are calculated using this ArchDRH algorithm.

To simplify the presentation, we will call the structure
processed and output by our recursive ArchDRH algorithm
a design rule hierarchy (DRH).

Modularity Violation. In our first work exploring the
relationships between structure and history, we presented
a tool called Clio that computes the discrepancies between
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how files should change together based on their modular
structure, and how they actually changed together as re-
vealed by version history, a concept called modularity vio-
lation. Our experiments with open source projects showed
that Clio not only revealed many known structural prob-
lems, such as code clones or poor inheritance, it also detected
large numbers of undefined couplings that were subsequently
verified to be harmful.

In the work of Schwanke et. al. [18], we reported a case
study of applying the modularity violation detection ap-
proach to an industrial project. In this study, we identified
a project’s architectural problems by analyzing and inves-
tigating the structural significance of the most complicated
and error prone files. We also investigated how files evolved
together without being structurally related. In this way, we
identified large number of “shared secrets” (undocumented
assumptions), implementation errors, and architecture vio-
lations. Many of these problems directly responsible for sub-
sequent defects. The developers confirmed the architecture
problems we identified, and the project manager then wrote
a refactoring proposal based on the results of our study. The
proposal was accepted by management and implemented.

In this paper we build, and improve, upon the above con-
cepts, methodologies, and tools. In particular, our prior
tool for identifying modularity violations, Clio, usually out-
puts hundreds of modularity violations. We had to spend a
great deal of effort manually verifying which ones really indi-
cated architecture problems, by reading developers’ commit
messages, reading the source code, or talking to developers
directly. The DRSpace presented in the next section helps
identify these problems much more efficiently.

3. DESIGN RULE SPACES
In this section, we use an example to illustrate the concept

of a design rule space (DRSpace).
Definition. As already mentioned, a DRSpace is de-

fined as a graph with the following characteristics:
(1) A DRSpace is composed of a set of classes (files), and

one or more selected types of relations between them. The
major types of relations we explore in this paper include
three major structural relations in object-oriented design:
inheritance/realization, aggregation, and dependency, as well
as one evolutionary relation: evolutionary coupling, derived
from revision histories [9]. For example, if two files are com-
mitted together 10 times, as recorded in the version con-
trol system, we consider that they are evolutionarily coupled
with a weight of 10, during the specified time period. The-
oretically, a DRSpace can accommodate additional types of
relations, such as run-time or data-flow relations, which we
will explore in the future.

(2) The vertices (classes) of a DRSpace must be clustered
into the form of design rule hierarchy (DRH) [3,4,23] based
on one or more selected types of relations. We call these
selected relations that form a DRH structure the primary
relations of the DRSpace. Using our tool, Titan, the user
can choose to include other types of relations in a DRSpace
for analysis purposes, which we call the secondary relations
of the DRSpace. For example, to visualize modularity vi-
olations, we first create a DRSpace with one or more of
the three structural relations to show the designed modu-
lar structure, and then choose evolutionary coupling as the
secondary relation to visualize where violations occur.

(3) A DRSpace must have one or more leading classes,
that is, the de facto design rules of the space. If the DR-
Space’s DRH has more than one layer, then the classes
within the first layer are the leading classes of the DRSpace.
If a DRSpace only has one layer, then all the classes can
be considered as leading classes. If a DRSpace, ds, has a
leading class c, we also say that ds is led by c.

We call them leading classes to distinguish them from the
original concept of design rules. The latter usually refers
to architecture decisions of the overall system. A leading
class of a DRSpace, by contrast, is only leading relative to a
specific DRSpace, and may or may not be an architecturally
important design rule. At one extreme, if a DRSpace only
has one class, we still call this class the leading class of the
space, but it cannot be a design rule because there are no
other classes in its space and it doesn’t decouple and frame
modules.

Illustration. We now use an example to demonstrate
that each type of relation, or group of types, can form a
meaningful DRSpace. Using Titan, DRSpaces can be au-
tomatically calculated. All the DSMs shown in the rest of
the paper are exported from Titan. For the sake of space,
in these DSMs, inheritance realization, aggregation, depen-
dency, and nested relations are marked in the cells using ih,
rl, ag, dp, and nt respectively.

1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29

1  mij.ast.Node (1) x

2  mij.ast.TreeVisitor (2)

3  mij.ast.FuncExpr x (3)

4  mij.ast.Number x x (4)

5  mij.ast.OperExpr x x (5)

6  mij.ast.UnaryOperExpr x x (6)

7  mij.ast.Variable x x (7)

8  mij.bnf.AddExpr (8) x

9  mij.bnf.ExponExpr (9) x

10  mij.bnf.GrammarType (10)

11  mij.bnf.LexExpr (11) x x

12  mij.bnf.MultExpr (12) x

13  mij.bnf.Node (13)

14  mij.bnf.ParamExpr x (14)

15  mij.bnf.UnaryExpr x (15)

16  mij.bnf.ValueExpr x (16)

17  mij. io (17)

18  mij.lex.LexType (18)

19  mij.lex.Lexeme x (19)

20  mij.lex.Lexer x x (20) x x

21  mij.parse.Convert x x x x x x x x x x (21) x

22  mij.parse.Parser x x x x x x x x x x x x (22) x x x

23  mij.parse.Parser$Entry x (23)

24  mij.Filter (24)

25  mij.FilterException (25)

26  mij.Interpreter x x x x (26) x

27  mij.Interpreter$Calculator x x x x x x x x x (27) x

28  mij.Repository (28)

29  mij.Console x x x x x x x (29)

Figure 1: Package Clustering

Figures 1 through 5 depict the different modular views of
a simple calculator program, recovered from its Java source
code. This program supports basic math calculations, such
as addition, subtraction, and multiplication. The system
is designed using an interpreter pattern with a parser and
lexer. It also employs a visitor pattern so that different
operations can be done in the same abstract syntax tree
(AST). Different components of the system, such as lexer
and parser, communicate with each other using a pipe and
filter pattern. As a reference, we present Figure 1 to show
its package structure, similar to the DSM created by most
reverse engineering tools, such as Lattix 1.

Figure 1 shows that this system has five packages, depicted
as shaded groups along the diagonal. This program has
36 classes. The DSM shows just 29 elements because the
io package is collapsed. The cells of the DSM are marked
with ”x” because it uniformly models all types of relations
as dependency.

1
http://www.lattix.com/
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Now we show that the architecture of this system is com-
posed of multi-layer DRSpaces.

1. Inheritance DRSpace. Figure 2 depicts the DRSpace
that uses inheritance/realization relation as the primary re-
lation. There are three layers in this DRSpace. The first
layer l1:(rc1-4) contains four leading classes: mij.io.Pipe,
mij.Filter, mij.bnf.Node, and mij.ast.Node. They are
“leading” because they do not depend on any other class and
many other classes depend on them. The second layer con-
tains mij.io.InputPipe and mij.io.OutputPipe. Because
they both realize the same parent class, our ArchDRH algo-
rithm considers them as belonging to the same module. The
classes within these two layers decouple the rest of system
into 6 independent modules as shown in the third layer of
the DSM: m1:(rc7-8), m2:(rc9-10), m3:(rc11-12), m4:(rc13-
19), m5:(rc20-23), m6:(rc24-28). It is easy to see that each
module has its own meaning. For example, m4 captures all
the bnf classes in a module, m6 groups all the ast classes into
a module, and m5 contains all the classes that are of type
Filter. This obviously meaningful modular structure can-
not been seen in other views generated by other clustering
methods or using other types of relations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1  mij.io.Pipe (1)

2  mij.bnf.Node (2)

3  mij.ast.Node (3)

4  mij.Filter (4)

5  mij.io.InputPipe rl (5)

6  mij.io.OutputPipe rl (6)

7  mij.io.MemoryOutputPipe rl (7)

8  mij.io.WriterOutputPipe rl (8)

9  mij.io.ReaderInputPipe rl (9)

10  mij.io.MemoryInputPipe rl (10)

11  mij.ast.TreeVisitor (11)

12  mij.Interpreter$Calculator rl (12)

13  mij.bnf.ExponExpr ih (13)

14  mij.bnf.UnaryExpr ih (14)

15  mij.bnf.LexExpr ih (15)

16  mij.bnf.MultExpr ih (16)

17  mij.bnf.AddExpr ih (17)

18  mij.bnf.ValueExpr ih (18)

19  mij.bnf.ParamExpr ih (19)

20  mij.Interpreter rl (20)

21  mij.parse.Convert rl (21)

22  mij.parse.Parser rl (22)

23  mij.lex.Lexer rl (23)

24  mij.ast.OperExpr ih (24)

25  mij.ast.Number ih (25)

26  mij.ast.FuncExpr ih (26)

27  mij.ast.Variable ih (27)

28  mij.ast.UnaryOperExpr ih (28)

Figure 2: Inheritance DR Space

1 2 3 4 5 6 7 8 9 10 11 12 13

1  mij.io.InputPipe (1)

2  mij.io.OutputPipe (2)

3  mij.io.MemoryBuffer (3)

4  mij.lex.LexType (4)

5  mij.lex.Lexeme ag (5)

6  mij.ast.Node ag (6)

7  mij.bnf.LexExpr ag (7)

8  mij.io.MemoryOutputPipe ag (8)

9  mij.io.MemoryInputPipe ag (9)

10  mij.Interpreter ag ag (10)

11  mij.parse.Convert ag ag (11)

12  mij.lex.Lexer ag ag (12)

13  mij.parse.Parser ag ag (13)

Figure 3: Aggregation DR Space

2. Aggregation DRSpace. Figure 3 depicts the DRSpace
in which the primary relation is aggregation. There are two
layers in this DRSpace. The first layer, l1:(rc1-5), contains
four modules of leading classes, and the second layer con-
tains three meaningful modules. For example, m1:(rc8-9) is
a MemoryBuffer module that contains two classes using it;
m2:(rc10-13) groups major components such as parser and
lexer together because they all communicate through pipes,
and thus aggregate, mij.io.InputPipe and mij.io.OutputPipe.

3. Dependency DRSpace. Figure 4 depicts the DRSpace
with dependency as the primary relation. Completely dif-
ferent from the other two DRSpaces, this DRSpace shows
how classes work together to accomplish a function. For ex-
ample, m:(rc11-20) shows which classes the parser needs in
order to accomplish the parsing function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1  mij.FilterException (1)

2  mij.lex.Lexeme (2)

3  mij.ast.TreeVisitor (3)

4  mij.ast.Node (4)

5  mij.Interpreter dp dp (5)

6  mij.ast.OperExpr dp (6)

7  mij.ast.Number dp (7)

8  mij.ast.FuncExpr dp (8)

9  mij.ast.Variable dp (9)

10  mij.ast.UnaryOperExpr dp (10)

11  mij.bnf.LexExpr (11)

12  mij.bnf.ExponExpr (12)

13  mij.bnf.ValueExpr (13)

14  mij.bnf.UnaryExpr (14)

15  mij.bnf.MultExpr (15)

16  mij.bnf.AddExpr (16)

17  mij.bnf.ParamExpr (17)

18  mij.bnf.Node (18)

19  mij.bnf.GrammarType (19)

20  mij.lex.LexType (20)

21  mij.parse.Parser dp dp dp dp dp dp dp dp dp dp dp dp (21)

22  mij.parse.Parser$Entry (22)

23  mij.Interpreter$Calculator dp dp dp dp dp dp dp (23)

24  mij.io.MemoryOutputPipe (24)

25  mij.io.InputPipe (25)

26  mij.io.MemoryInputPipe (26)

27  mij.lex.Lexer dp dp (27)

28  mij.io.MemoryBuffer (28)

29  mij.parse.Convert dp dp dp dp dp dp dp dp dp (29)

30  mij.io.ReaderInputPipe (30)

31  mij.Filter (31)

32  mij.Console dp dp dp dp dp dp dp dp dp dp dp (32)

Figure 4: Dependency DR Space

1 2 3 4 5 6 7 8 9 10

1  mij.ast.TreeVisitor (1)

2  mij.ast.Node (2)

3  mij.ast.Number dp ih (3)

4  mij.ast.OperExpr dp ih (4)

5  mij.ast.FuncExpr dp ih (5)

6  mij.ast.Variable dp ih (6)

7  mij.ast.UnaryOperExpr dp ih (7)

8  mij.Interpreter dp (8) ag

9  mij.Interpreter$Calculator rl dp dp dp dp dp dp (9)

10  mij.parse.Convert dp dp dp dp dp dp (10)

Figure 5: Visitor DR Space

4. Pattern DRSpace. Figure 5 depicts a DRSpace led
by mij.ast.TreeVisitor. As we can see, this DRSpace
captures the overall structure of the classes that participate
in the visitor pattern. The key design rules of this pattern
include mij.ast.TreeVisitor, acting as the role of visitor
interface, and mij.ast.Node, acting as the element interface.
The classes in the module m:(rc3-7) contains all the concrete
elements of the pattern. These classes are all subclasses (the
“ih”relation) of mij.ast.Node, which fills the element role in
the visitor pattern. They all accept the visitor interface, and
pass themselves to the visitor interface (the “dp” relation),
as required by the pattern. The Calculator class takes the
concrete visitor role through the realization (“rl”) relation to
mij.ast.Treevisitor.

5. Hybrid DRSpace. Figure 6 depicts a DRSpace in which
the DRH is produced using all three types of structural re-
lations as primary ones. As we can see, all the interesting
and meaningful modular structures that can be observed
from previous DRSpaces are all mixed up, and become less
obvious. The DRH now has many more nested layers.

In this DRSpace, we also choose evolutionary coupling
as the secondary relation. For example, cell c:(r13, c4) has
number 12, meaning that mij.ast.Node and mij.io.InputPipe
changed together 12 times in the revision history. This cell
has dark background and white font to indicate that there
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1  mij.io.Pipe (1)

2  mij.io.OutputPipe rl,3 (2)

3  mij.io.WriterOutputPipe rl, (3)

4  mij.io.InputPipe rl,4 (4)

5  mij.io.MemoryBuffer (5)

6  mij.FilterException (6)

7  mij.Filter (7)

8  mij.lex.LexType (8)

9  mij.lex.Lexeme ag,4 (9)

10  mij.bnf.Node (10)

11  mij.bnf.LexExpr ag,3 ih,2 (11)

12  mij.ast.TreeVisitor (12)

13  mij.ast.Node ,12 ag, (13)

14  mij.ast.OperExpr dp,7 ih,1 (14)

15  mij.ast.Number dp,6 ih, (15)

16  mij.ast.FuncExpr dp,5 ih,2 (16)

17  mij.ast.Variable dp,8 ih,3 (17)

18  mij.ast.UnaryOperExpr dp,5 ih,4 (18)

19  mij.io.MemoryOutputPipe rl,3 ag, (19)

20  mij.io.MemoryInputPipe rl, ag,4 ,6 (20)

21  mij.lex.Lexer ag,5 ag,3 dp,12 rl,3 dp,9 (21)

22  mij.Repository (22)

23  mij.Interpreter ag,4 ag,5 dp,5 rl, dp,6 , (23) ag,

24  mij.Interpreter$Calculator dp,11 rl,3 dp,6 dp,6 dp,9 dp,8 dp,4 dp,7 ag,4 (24)

25  mij.parse.Convert ag, ag,6 rl, dp,8 dp, dp, dp,7 dp,5 dp,5 dp, dp, dp,6 (25)

26  mij.bnf.ExponExpr ih,5 (26)

27  mij.parse.Parser$Entry (27)

28  mij.bnf.ValueExpr ih,3 ,7 ,7 (28)

29  mij.bnf.UnaryExpr ih, (29)

30  mij.bnf.MultExpr ih, (30)

31  mij.bnf.AddExpr ih,1 ,15 (31)

32  mij.bnf.ParamExpr ih,1 (32)

33  mij.bnf.GrammarType ,5 (33)

34  mij.parse.Parser ag,6 ag, dp,5 rl, dp,5 dp,5 dp,5 dp,8 dp,5 ag,4 dp,9 dp,10 dp, dp,7 dp,7 dp,6 (34)

35  mij.io.ReaderInputPipe rl,3 (35)

36  mij.Console dp,6 dp,7 dp,5 dp,6 dp,9 dp,8 dp,9 dp,7 dp, dp,4 dp,12 (36)

Figure 6: DR Space with History

are no structural relations between these classes. The con-
tent in cell c:(r23, c2) is “ag,4”, meaning that mij.Interpreter
aggregates mij.io.OutputPipe, and they changed together 4
times in the revision history. As an illustrative example, the
history of this system is faked. In real systems, as shown in
Section 5, the dark cells indicate modularity violations.

In summary, it is clear that the architecture of this small
system can be viewed as a set of multi-layer DRSpaces. Each
DRSpace reflects a unique aspect of the architecture that
cannot be captured using any other types of relations or
clustering methods.

4. TOOL SUPPORT
In this section, we briefly introduce our tool, Titan, that

supports the creation and visualization of DRSpaces. All
the figures and tables in the paper were created using data
exported from Titan.

Titan accepts DSM files, with extension .dsm, and cluster-
ing files, with extension .clsx, as input. A .dsm file captures
pair-wise relations among classes. For a “structure DSM”,
the number in a cell is used to represent different types of re-
lations. So far our tool processes inheritance, realization, de-
pendency, nested, and evolutionary coupling relations. For
a “history DSM”, the number in a cell represents the number
of times the two classes changed together (where “changed
together” means that both classes were involved in the same
commit), which is called co-change frequency. One .dsm file
can be associated with multiple clustering files, each repre-
senting a different way the DSM can be clustered.

Figure 7 shows a snapshot of Titan’s GUI. Similar to com-
mercial tools with DSM-based user interfaces, Titan has a
tree structure view (the top right part) and a DSM view
(the lower right part).

The Tree View. When a structure DSM file is first
opened, the tree view renders classes randomly. After the
user loads a clustering file, the tree view is redrawn to re-
flect the given structure. Using the tree view, the user can
expand, collapse, group, and ungroup classes, and the DSM
view will be updated when the user clicks the redraw button.

The user can also cluster the DSM using an algorithm by
choosing the Clusters menu item. As shown in the figure,
currently Titan supports the following clustering methods:

1. Package Cluster. The DSM will be clustered based on
the project’s package and namespace structure, as supported
by other commercial tools.

2. ArchDRH Cluster. This is the clustering method we
employed to generate DRSpaces in this paper. The algo-
rithm is described in our prior work [4].

3. ArchDRH+ACDC Cluster and ArchDRH+Bunch Clus-
ter. As introduced in [4], each inner module of a DSM first
framed using ArchDRH can be further clustered using other
algorithms. We do not further discuss these functions here.

The user can also view partial DSMs in two ways. If a
tree node (folder) is selected, the SubSystem button will be
activated. Clicking it creates a new GUI instance showing
just the subspace within the chosen folder.

If a DSM is clustered using ArchDRH, and at least one
tree leaf (class) is selected, the Split button will be acti-
vated. Clicking it creates a new window that contains only
the classes in the DRSpace led by the selected class(es). All
the DRSpaces in this paper are generated this way.

The window created by clicking the Split or SubSystem
button is exactly the same as the original GUI so that the
user can treat the subspace as an entirely independent design
space, which can be further manipulated or split.

The DSM View. In the DSM view, each group of
classes are colored using a dark background. A nested group
always has a darker background than the outside group. The
diagonal line is labeled with the index of the class. The
relation displayed in the cells can be controlled using the
check-boxes located at the left lower corner of the GUI.

The user can check and uncheck any listed relation, or
any combination of them, to control the display. Once the
relation types are selected, clicking the clustering menu item
will cluster the DSM using the selected relations as primary
relations. That is how we generated the aggregation, inher-
itance, and dependency DRSpaces, for example.

To show the evolution coupling together with structure re-
lations, the user first loads a history DSM, and then checks
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the history checkbox. The cells of the DSM will then dis-
play how many times each pair of classes have changed to-
gether in the history. For example, the DSM in Figure 7
displays aggregation, nesting, and history relations. The
cell c:(r8,c2) has: ”aggregate,11”, meaning that JDBCStop-

Command aggregates JDBCEntityBridge, and they changed
together 11 times.

If two classes do not have any structural relation but
still changed together, the cell will have a red background.
For example, cell c:(r2,c1) shows that although JDBCEnti-

tyBridge and RelationDataManager have no structural re-
lation, they changed together 35 times.

The user can control the threshold of the co-change fre-
quency to be displayed by checking the Threshold box and
filling a number in a pop-up window. In the DSM of Fig-
ure 7, the threshold is set to 10, so that only cells with
co-change frequency of 11 or more are displayed.

To summarize the key differences between Titan and other
commercial DSM tools: Titan allows the user to choose any
combination of relation types, and to cluster the DSM based
on the selected primary relation(s) only. Moreover, it sup-
ports the display of evolutionary coupling data, together
with structure relations, so that their discrepancies can be
visualized.

5. EVALUATION
As our first evaluation of the usefulness of DRSpaces, we

determine whether they can provide insights on bug loca-
tion. We explore the following research questions:

RQ1: Is it true that if a design rule is error-prone, then
the files contained in its DRSpace are also error-prone?

If the answer is yes, it means that (1) these error-prone
files within the same DRSpace should be considered together
because they are structurally related, even though these files
may not depend on each other directly; (2) these design rules
should be given higher priority in terms of bug fixing (and,
potentially, refactoring) given their significant impact.

RQ2: Are most error-prone files concentrate in a few DR
spaces?

If the answer is yes, this implies that even if a system
has hundreds of error-prone files, we should be able to un-
derstand their relationships by just looking into a few DR-
Spaces. Furthermore, this implies that these error-prone
files, or error-prone file groups, are not isolated—they are

Figure 7: The Graphical User Interface of Titan

structurally related—and thus should be analyzed and fixed
as a group.

RQ3: By combining information about evolution and struc-
ture coupling, can we get more insight into architectural
problems? Can this help us find not just the locations of
errors, but also the reasons for them?

So far, the prevailing bug-location research focuses on
where the bugs are, rather than why these locations are
error-prone. Although error-proneness can be caused by
many reasons, our recent work has shown that structural er-
rors can be an important cause of bugginess. Here we explore
whether the combination of different types of DRSpaces can
shed light on the structural problems among these error-
prone files.

5.1 Subjects
We choose three large-scale open source projects as our

evaluation subjects: JBoss2–a Java application server, Hadoop
Common3–the common utilities supporting a suite of dis-
tributed computation tools, and Eclipse Java Development
Tools (JDT)4–a core AST analysis toolkit in the Eclipse
IDE. For each project, we choose one target release to ana-
lyze its DRSpaces. We made sure, however, that there were
at least 10 releases before the target release so that we could
produce history DSMs and identify error-prone files. The
target project releases, evolution history time span, and the
number of releases before the target can be found in Table 1.

Similar to our prior work [22], we generated history DSMs
using revision and issue tracking histories. Using Hadoop
as an example, we investigated its SVN repository to ex-
tract transactions. In Table 1, we present data regard-
ing the number of files (#Files), releases (#Rel.), trans-
actions (#Trans.), and issues (#Issues) we studied. We
removed commits with only one file or more than 30 files,
because they either do not contribute to evolution coupling
or they introduce substantial “noise” in the data, such as
bulk changes to files to update license information.

Table 1: Subject System Information
Subject History #Files #Rel. #Trans. #Issues

JBoss3.2.4 Apr 00-Jun 04 762 11 6458 550
Hadoop0.15 Feb 06-Oct 07 692 15 3001 490
Eclipse3.0.2 May 01-Mar 05 3704 10 27806 3458

5.2 DRSpace Error-Proneness
To answer the first research question, for each target re-

lease, we first ranked all the files by the number of times
they were involved in bug fixes. As others have observed in
bug prediction research, the more often a file is involved in
a bug fix, the more error-prone it is. For each of the 30 most
error-prone files in each project, we used Titan to determine
its DRSpace. If the size of a DRSpace is small, it means
that this file does not have high impact. We then rank the
size of the DRSpaces of the 30 most error-prone files, and
we only consider DRSpaces with at least 10 files, which we
call Top DRSpaces.

Table 2 summarizes the status of Top DRSpaces for each
project. For example, in JBoss, 9 out of the 30 most error-
prone files lead a DRSpace with at least 10 files. In both
2
http://www.jboss.org

3
http://hadoop.apache.org/

4
http://www.eclipse.org/jdt/
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Table 2: Top DRSpaces

#TopDRS
Avg. in Bug2 Avg. in Bug5 Avg. in Bug10

dsb bsc(#) dsb bsc(#) dsb bsc(#)

JBoss(9) 62% 10%(206) 50% 13%(129) 18% 30%(23)

Hadoop(11) 67% 11%(187) 53% 14%(106) 47% 18%(68)

Eclipse(11) 31% 7%(291) 15% 9%(98) 9% 13%(36)

Hadoop and Eclipse, this number is 11. Because there is no
obvious threshold on the number of bug fixes to determine
if a file is error-prone, for each project we use the following
conventions:

• We define a bug space, BugN, as the set of files with
at least N bugs. The size of a bug space is the number
of files within it. In this research we chose values of 2,
5, and 10 for N, resulting in three bug spaces: Bug2,
Bug5, and Bug10.

• We next define design space bugginess, dsb: If a DR-
Space has m files, and n of them are within a bug
space, we define n/m as the design space bugginess of
the DRSpace, represented as dsb in the tables.

• And we define bug space coverage, bsc: If a DRSpace
has n files in BugX, then the bug space coverage of the
DRSpace with respect to BugN is n/size(BugN).

For example, in JBoss (Table 3), there are a total of 206
files with 2 or more bug fixes (Bug2), 129 files with 5 or
more bug fixes (Bug5), and 23 files with 10 or more bug
fixes (Bug10).

Table 3: JBoss’s Top DRSpaces

#DRS
#Bug #Bug2: 206 #Bug5: 129 #Bug10: 23

(Rank) #(dsb) bsc #(dsb) bsc #(dsb) bsc

dr1:18 27(2nd) 10(56%) 5% 7(39%) 5% 4(22%) 17%

dr2:56 21(4th) 32(57%) 16% 26(46%) 20% 10(18%) 43%

dr3:28 18(7th) 22(79%) 11% 18(64%) 14% 5(18%) 22%

dr4:43 14(12th) 27(63%) 13% 20(47%) 16% 5(12%) 22%

dr5:76 11(21st) 43(57%) 21% 35(46%) 27% 12(16%) 52%

Consider design rule dr2, org.jboss.ejb.Container, whose
data is shown in the second row of Table 3. It is the 4th most
error-prone file in JBoss and leads a DRSpace with 56 files.
Of these 56 files, 32 of them have more than 2 bug fixes.
Thus the bsc of dr2 in JBoss is 16% (32/206) with respect
to Bug2. Similarly we calculate the bsc for Bug5 as 20% (26
out of 129), and for Bug10 as 43% (10 out of 23). Further-
more, the dsb of dr2 is 57% with respect to Bug2 (32 out
of the 56 files within dr2 are in Bug2), 46% with respect to
Bug5 (26 of the 56 files are in Bug5) and 18% with respect
to Bug10 (10 of the 56 files are in Bug10).

Table 3 lists the first 5 (out of 9) most error-prone DR-
Spaces in JBoss. Consider dr5, BeanMetaData; it has the
largest DRSpace with 76 files. Within these 76 files, 43
(57%) have more than 2 bug fixes, 35 (46%) have more than
5 bug fixes, and 12 (16%) have more than 10 bug fixes.
These 12 files cover more than 50% of the all the files in
Bug10. This result shows that not only is BeanMetaData it-
self bug-prone—it has 11 bug fixes, and is ranked the 21st
overall in terms of error-proneness—but a substantial part
of the DRSpace it is leading is also error-prone. The other

4 DRSpaces show similar results: their dsb values for Bug2,
Bug5, and Bug10 range from 56%-79%, 39%-64%, and 12%-
22% respectively.

Table 2 shows the average dsb and bsc values for each
project. The first line of the table shows that in JBoss,
there are 9 DRSpaces led by the most error-prone files. On
average, within each DRSpace, 62% of the files have more
than 2 bug fixes, 50% of them have more than 5 bug fixes,
and 18% have more than 10 bug fixes. Although the dsb
decreases with higher threshold of bugginess, the bsc in-
creases. For example, the average bug space coverage of
a JBoss DRSpace in Bug10 is 30%, meaning that on aver-
age, each top DRSpace in JBoss contains about one-third of
the most error-prone files (with 10 or more bug fixes each).

Interestingly, Table 2 also shows that the bsc and dsb
for Eclipse DRSpaces are much lower than the other two
projects. For example, its design space bugginess for Bug5
(15%) is only about one-third of the other two projects (50%
and 53%). To explore why Eclipse is special, we calcu-
late the dependency density of each top DRSpace of each
project. The dependency density is the number of depen-
dencies within a DRSpace divided by the square of its size.
The higher the density, the more tightly coupled the files
within the DRSpace. The result shows that the average
density for JBoss and Hadoop DRSpaces are 12% and 15%
respectively, while the density for Eclipse is only 7%. Now
the results become intuitive: the more highly coupled the
files within a DRSpace, the more that the DRSpace can be
influenced by error-prone design rules and neighbor files.

In summary, these results show that if a file is error-prone
and leading a highly coupled DRSpace, then a significant
portion of the DRSpace is also error-prone. We thus call a
DRSpace led by an error-prone file an error-prone DRSpace.

5.3 Error-Prone DRSpace Coverage
Now we investigate the second research question. A project

may have hundreds of error-prone files. Can they be cap-
tured by a much smaller number of DRSpaces led by error-
prone design rules? We explore this problem by answering
two complementary questions: 1) How many DRSpaces are
needed to maximally cover Bug2, Bug5, and Bug10? 2) How
large a bug space can the top 10 largest DRSpaces cover?

To answer these questions, we ranked all the DRSpaces
with at least 10 files led by error-prone files based on their
non-overlapping bug space coverages. The results, summa-
rized in Table 4, answer the first question. Take JBoss for
example: the first 15 DRSpaces cover 66% of the Bug2 space;
the first 9 DRSpaces cover 57% of the Bug5 space, and the
first 3 DRSpaces cover 78% of Bug10 space. We never reach
100% coverage because we are only considering DRSpaces
with at least 10 files; the other error-prone files are dis-
tributed in smaller DRSpaces.

Table 4: Minimal Error Space Coverage

Proj
Bug2 Bug5 Bug10

#drs bs%(#) #drs bs%(#) # bs%(#)

JBoss 15 66%(206) 9 57%(129) 3 78%(23)

Hadoop 23 77%(187) 18 82%(106) 12 88%(68)

Eclipse 38 90%(291) 13 92%(98) 6 92%(36)

To answer the second question, we list the bsc of the first 5
and 10 DRSpaces in Table 5. This table shows that the top 5
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DRSpaces of any of the three projects, within any of Bug2,
Bug5, or Bug10, can capture more than half of the error-
prone files within each bug space. The top 10 DRSpaces
can cover from 57% to 92% of a bug space. Interestingly, by
looking at just the top 5 DRSpaces we do nearly as well: we
can cover from 52% to 89% of a bug space. In summary, the
answer to the second research question is yes: indeed, most
error-prone files are concentrated in just a few DRSpaces.

Table 5: Top Space Bug Coverage

Proj
Bug2 Bug5 Bug10

Top 5 Top 10 Top 5 Top 10 Top 5 Top 10

JBoss 57% 64% 52% 57% 78% 78%

Hadoop 59% 67% 68% 75% 76% 85%

Eclipse 71% 78% 83% 89% 89% 92%

5.4 The Structure of Error-Prone Spaces
The results reported in the previous sections imply that

large numbers of error-prone files belong to the same few
DRSpaces. The question is whether these DRSpaces can
provide insights into the reasons why these files are error-
prone. For example, Figure 8 depicts the DRSpace led by
JDBCCMRFieldBridge. We obtained this DRSpace by first
clustering the overall DSM using ArchDRH. We then chose
this file in Titan, and clicked the “Split” button.

This file has 27 bug fixes, and is ranked as the 2nd most
error-prone in the project. This Figure shows its DRSpace
with only the aggregation relation, together with evolution-
ary coupling. A pair of files that have no structural rela-
tion but only evolutionary coupling are shown as dark back-
ground cells with white font. The threshold of evolutionary
coupling is set to 10.

First, the large number of dark cells indicates that there
are many modularity violations. These violations can be
separated into two categories: 1) the files whose names in-
clude Command are always changed together; 2) the Rela-

tionDataManager always changed together with these Com-

mand files. Although it is not possible to know why this file is
error-prone, this DSM reveals obvious structural issues that
violate well-known design principles.

First, consider l:(rc5-11), a layer containing all the com-
mand classes, and the JDBCStoreManager class. The latter
aggregates all the 7 command classes, and is aggregated by
4 of them. This cyclical aggregation relation obviously vio-
lates good design principles. It seems that the developers in-
tended to apply a command pattern, but the DSM does not
reveal a valid command pattern structure where the client
(which in this case seems to be JDBCStoreManager), should
only depend on an abstract command interface, rather than
on concrete commands. This DSM also shows another ag-
gregation cycle in rc(1-4).

Second, it is not obvious why concrete commands always
change together with RelationDataManager even though there
is no structural relation between them. It seems that Rela-
tionDataManager shares some“secrets”with these command
classes.

We studied all the error-prone DRSpaces of each project,
and observed that they often exhibit the following problems:

1. Aggregation/dependency cycles: once we select just ag-
gregation or dependency as the primary relation, we found
that many error-prone DRSpaces exhibit multiple aggrega-

tion or dependency cycles. For example, in the DRSpace led
by metadata.JDBCEntityMetaData, there are 4 aggregation
cycles. In one of them, JDBCEntityBridge (71st most error-
prone) and JDBCCMRFieldBridge( 2nd most error-prone) ag-
gregate each other!

Different from other tools that can detect cyclic relations,
our tools show the penalty of such relations. For example,
our tools show that JDBCEntityBridge and JDBCCMRField-

Bridge changed together 35 times. Furthermore, it should
be noted that not all cyclical relations are harmful. Cascad-
eDeleteStrategy and JDBCCMRFieldBridge also aggregate
each other, but they never changed together, and Cascad-

eDeleteStrategy has no bug fixes. A tool that simply iden-
tifies cyclic relations can not distinguish between harmful
and harmless cases.

As another example, FSNamesystem has 190 bug fixes and
is ranked as the number 1 most error-prone file in Hadoop.
From its DRSpace with 17 files, we can see that FSNamesys-
tem is involved in a dependency cycle with 11 files, and an
aggregation cycle with 7 elements.

2. Problematic inheritance hierarchy. Inheritance issues
manifest themselves in different ways, including parent and
children frequently changing together, a client inheriting a
parent class while aggregating its child, a parent depending
on one of its children, etc.

Figure 9 shows the inheritance DRSpace of FileSystem

(ranked the 13th most error-prone). We obtained this space
by clustering the DRSpace using inheritance as the primary
relation and then selecting dependency as the secondary
relation when we saw that FileSystem depends on one of
its children, DistributedFileSystem. After choosing evolu-
tionary coupling as another secondary relation, we can see
that these two files changed together 26 times, while the
other elements within the same space changed together 5 to
10 times.

Figure 9 also depicts an example where problematic co-
changes may not be modularity violations: Titan did not
mark the relation between DistributedFileSystem and File-

System as a violation because they do have structural rela-
tions. However, the fact that they changed together unusu-
ally frequently and that they have both inheritance and de-
pendency relations, indicates that there is something wrong.

1 2 3 4 5 6 7 8

1  org.apache.hadoop.fs.FileSystem (1) dp,26

2  org.apache.hadoop.fs.FilterFileSystem ih,5 (2)

3  org.apache.hadoop.fs.RawLocalFileSystem ih,5 ,5 (3)

4  org.apache.hadoop.fs.s3.S3FileSystem ih,8 ,4 ,6 (4)

5  org.apache.hadoop.fs.kfs.KosmosFileSystem ih, (5)

6  org.apache.hadoop.dfs.DistributedFileSystem ih,26 ,6 ,7 ,9 (6)

7  org.apache.hadoop.dfs.HftpFileSystem ih, (7)

8  org.apache.hadoop.fs.InMemoryFileSystem$RawInMemoryFileSystem ih,7 ,5 ,8 ,7 ,9 (8)

Figure 9: Hadoop FileSystem Inherit DRSpace

As another example, JobTracker in Hadoop is ranked most
error-prone with 165 bug fixes. In its inheritance DRSpace,
after choosing dependency and aggregation as secondary re-
lations, we saw that JobTracker depends on conf. Config-
uration, and aggregates mapred.JobConf, which, in turn, is
a child of conf.Configuration. Both of mapred.JobConf and
conf.Configuration are highly buggy, ranking 21st and 26th
respectively. They both lead large error-prone DRSpaces,
with 76 and 54 files respectively. Since JobTracker either
depends on or aggregates them, it is not surprising that it
is the most error-prone file of the entire project.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1  $RelationDataManager (1)

2  JDBCEntityBridge ,35 (2) ag,35

3  CascadeDeleteStrategy , ag, (3) ag,

4  JDBCCMRFieldBridge ag,163 ag,35 ag, (4)

5  JDBCInsertRelationsCommand ,15 ,15 ,15 (5)

6  JDBCDeleteRelationsCommand ,11 ,15 (6)

7  JDBCPostCreateEntityCommand ,13 ag, ag,13 (7)

8  JDBCStopCommand ,11 ag,11 ,11 ,13 ,11 (8) ag,14

9  JDBCRemoveEntityCommand ,21 ag,17 ,21 ,15 ,13 ,12 (9) ag,20

10 JDBCStartCommand ,18 ag,22 ,18 ,19 ,15 ,19 ,16 (10) ag,17

11 JDBCLoadRelationCommand ,18 ag,21 ,18 ,19 ,15 ,11 ,15 ,15 ,22 (11) ag,19

12 ReadAheadCache ,11 ,11 ,14 (12) ag,

13 JDBCStoreManager ,30 ag,23 ,30 ag,18 ag,13 ag, ag,14 ag,20 ag,17 ag,19 ag, (13)

14 JDBCAbstractQueryCommand ,17 ag,20 ,17 ,13 ,11 ,11 ,13 ,14 ,23 ag,16 (14)

15 JDBCEJBQLCompiler ,15 ,14 ,15 ,12 ,16 ,22 ag, ,26 (15)

16 RelationData ag, (16)

17 RelationPair ag, (17)

18 $LeftJoinCMRNode ,17 ,20 ag,17 ,13 ,11 ,11 ,13 ,14 ,23 ,16 ,56 ,26 (18) ,11

19 RelationSet ,16 ,11 ag,16 (19)

20 $CMRChainLink ,32 ,26 ag,32 ,11 ,12 ,15 ,14 ,12 ,16 ,11 ,11 (20)

Figure 8: JBoss JDBCCMRFieldBridge DRSpace

Although we can not enumerate all possible problems in
all the error-prone DRSpaces (there are many possible com-
binations of relation types and DRSpaces), we observe that
indeed each error-prone DRSpace has more than one type
of structural issue. Again, we consider them as problematic
because they violate common design principles, and the files
involved in these structural problems are both highly error-
and change-prone.

Shared Secrets. By displaying evolutionary coupling
together with structural DRSpaces, we were able to identify
large numbers of co-changes among files with neither struc-
tural relations nor obvious structural problems. We hypoth-
esize that this indicates that there are “shared secrets” that
cannot be captured by structural information alone. In our
future work, we will investigate this hypothesis.

5.5 Result Summary
Now we can positively answer the three research questions

posed at the beginning of the section.
RQ1: Indeed, if a file is error-prone itself, and leading a

non-trivial and highly coupled DRSpace, then a significant
number of the files within its DRSpace are also error-prone.

RQ2: Although each project may have hundreds of error-
prone files, these files are often captured by just a few DR-
Spaces. In all projects studied with all three types of bug
spaces, the 5 largest DRSpaces always captured more than
half of the files in the bug space.

RQ3: By examining DRSpaces with different types of
primary and secondary relations, we found that all error-
prone DRSpaces also have more than one structural prob-
lem that violate commonly accepted design principles. The
most prominent problems include large dependency or ag-
gregation cycles, problematic inheritance hierarchies, the ag-
gregation or inheritance of highly error-prone files, and the
existence of potential shared secrets.

6. DISCUSSION
In this section, we discuss the threats to validity of our

evaluation as well as our planned future work.
Threats to Validity. Our evaluation is subject to in-

ternal threats to validity. We chose several thresholds purely
based on our observations. For example, we only consider a
DRSpace with at least 10 files because we observed that the
smaller the DRSpace led by an error-prone file, the larger
the percentage of files within the DRSpace that are also
error-prone. Consider DRSpaces with 10 or fewer files only,

the average design space bugginess of these small DRSpaces
in JBoss and Hadoop are 68% and 73% respectively, where
the smaller the size, we see the highest percentages. This
is intuitive because in smaller DRSpaces, the files are more
closely related and thus impacted by each other, and their
structural problems are relatively easy to directly identify.
The larger the DRSpace, the more indirect the relationships
among the files (in general), and thus their structural prob-
lems will be more complex and subtle.

Other important thresholds we choose include the sizes of
bug spaces, We choose 2, 5, and 10 based on the observation
that when the threshold reaches 10, the number of DRspaces
with more than 10 files is already very small. Both Hadoop
and Eclipse have 11 such DRSpaces, and JBoss only has 7.
As a result, we believe that 10 is a reasonable threshold, and
that Bug2, Bug5, Bug10 reflect DRSpaces with low, medium
and high error-proneness across all three projects.

We used the threshold of 30 most error-prone files because
we observed that, in all three projects, the bug ranking of
files leading the largest DRSpaces are within this scope. For
example, in Hadoop, the file BeanMetaData is the 21st error-
prone, and leads the largest DRSpace of size 76. Our results
may, however, be impacted if we choose different thresholds
for different projects.

In the data reported thus far, we used all the history
for each project to calculate evolutionary coupling and bug
proneness. Our prior work [21] showed that recent history
has a different impact than more distant history. To de-
termine the impact of history we recalculated all the data
reported here based on just the most recent 5 releases of
each project. This analysis showed that the top DRSpaces
and bug ranking order of their leading files are somewhat
different, but the general conclusions are exactly the same:
a significant part of the DRSpace led by an error-prone file
is also error-prone, and a small number of DRSpaces can
cover most of the bug spaces in consideration.

Our evaluation is also subject to several external threats.
First, as with other history-based bug prediction work, we
link a bug with a file by searching developers’ commit mes-
sages when they submit changes to a file, trying to find bug
IDs associated with the commit. However, as prior work [1]
has pointed out, since there is no guarantee that develop-
ers always report which commits are fixing which bugs, the
bug space we considered may be biased. The second threat
comes from the subject projects we chose. We only stud-
ied 3 open source projects, all of which are written in Java.
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The results could be different for closed-source industrial
projects and for projects implemented using other object-
oriented programming languages.

Future Work. We envision that DRSpaces can be use-
ful in many ways. First, we have observed the potential
of using DRSpaces to identify design patterns. We observe
that a design pattern typically leads its own design space.
The visitor pattern in Figure 5 is an example. We plan to
investigate how to leverage DRSpaces for design pattern de-
tection, and compare the results with other existing design
pattern detection techniques.

Our prior work [18, 22] has shown that modularity vio-
lations usually reveal architecture problems or shared se-
crets. While the work reported in this paper investigated
the relation between DRSpaces and error-proneness, one in-
teresting future research direction is to study the relation
between DRSpaces and change-proneness, and architecture
violation proneness. We also plan to investigate the possi-
bility of leveraging DRSpaces to detect architecture viola-
tions, design pattern degradation, and implementation er-
rors that violate the designed modular structure, using both
open source and real industrial projects.

7. RELATED WORK
Our work is related to considerable prior research.
Design Structure Matrix Tools. There are several

commercial DSM tools available, such as Lattix, Structure
101,5 and NDepend.6 These tools also reverse engineer
DSMs from source code. Sangal et al. [17] reported a study
of using Lattix to identify dependency violations. However,
this required manually specifying which classes should not
depend on which other classes.

Unlike these DSM tools, Titan integrates structural re-
lations and evolutionary coupling, and supports ArchDRH
clustering to reveal multiple DRSpaces, by flexibly choosing
any combination of primary and secondary relations.

Metrics and Defects. Using dependency structure to
locate software defects has been widely studied, as exempli-
fied by the work of Selby and Basili [19]. Researchers have
proposed various metrics to predict failure proneness from
coupling measures, such as the work of Chidamber and Ke-
merer [6]. The relation between evolutionary coupling [9]
and error-proneness has also been widely studied. For ex-
ample, Cataldo et al. [5] reported a strong correlation be-
tween change coupling density and failure proneness. Fluri
et al. [8] also reported that a great deal of evolutionary cou-
pling is not captured by structural dependencies. Ostrand
et. al. [16] reported that file size was the most significant fac-
tor influencing the number of faults. Nagappan et. al. [15]
demonstrated that complexity metrics can be successful bug
predictors. They also claimed there was no single best set
of metrics for all projects. In their investigation of network
measures such as closeness, Zimmermann and Nagappan [24]
reported that network measures were capable of predicting
twice as many defects as complexity measures.

By contrast, our study revealed that most error-prone files
can be captured by a few DRSpaces led by error-prone design
rules, and how these error-prone files influence each other
structurally, suggesting how these files should be changed.

5
http://www.headwaysoftware.com/products/structure101/

6
http://www.ndepend.com/

Architecture Recovery. Several algorithms have been
proposed to recover software modular structure from source
code. The most representative ones include Bunch [13],
ACDC [20], and LDA [10]. Bunch is a coupling-and-cohesion
based clustering method proposed by Mitchell and Man-
coridis [13]. It groups highly interdependent nodes of a
dependency graph into one subsystem and separates inde-
pendent nodes into different subsystems, to maximize cohe-
sion and minimize coupling within a subsystem. Algorithm
for Comprehension-driven Clustering (ACDC) is a pattern-
driven algorithm developed by Tzerpos and Holt [20]. It
first constructs a system skeleton by identifying frequently
recurring patterns, and then uses an orphan adoption algo-
rithm to cluster leftover files. Gethers and Poshyvanyk [10]
claimed that structure-based clustering algorithms cannot
capture conceptual dependency, and proposed a new cou-
pling metric called Relational Topic based Coupling (RTC)
to capture latent topics and relationships among source code,
leveraging LDA, a probabilistic topic model.

These algorithms, however, only process one type of rela-
tion. By contrast, our DRSpaces revealed multi-layer, multi-
type modular structures, formed by the flexible combination
of primary and secondary relations. While their purpose is
to help developers understand the structure more easily, our
goals are to use DRSpaces to inform the root causes of de-
fects.

8. CONCLUSIONS
In this paper, we have introduced design rule spaces, a

new form of architecture representation that uniformly cap-
tures both architecture and evolution relations using design
structure matrices. We proposed that software architectures
should be viewed and analyzed as multi-layered overlapping
DRSpaces, because each DRSpace, formed using different
types of primary and secondary relations, exhibits meaning-
ful and useful modular structures. Each of these structures
promotes and supports a different kind of analysis.

As the first attempt to bridge the gap between architec-
ture and defect prediction, we studied the relationships be-
tween DRSpaces and bug spaces in three large-scale open
source projects. The results showed that error-prone files
usually lead error-prone DRSpaces in which most of the files
are also error-prone, and that a few error-prone DRSpaces
can capture a large portion of the project’s error-prone files.
Most interestingly, by viewing different DRSpaces of the
same architecture, formed and complemented by different
types of relations, we were able to identify a large number
of structural and evolutionary problems that may contribute
to the root cause—the structural cause—of bugginess. This
analysis can aid the architect in determining when and how
these error-prone files should be fixed.

We envision that DRSpaces have the potential to change
how software architecture is viewed, modeled, and analyzed
today, and to bridge the gap between architecture and defect
prediction by not only locating error-prone files, but also
providing suggestions for corrective maintenance.
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