
A Case Study in Locating the Architectural Roots
of Technical Debt

Rick Kazman∗, Yuanfang Cai‡, Ran Mo‡, Qiong Feng‡, Lu Xiao‡,
Serge Haziyev†, Volodymyr Fedak†, Andriy Shapochka†

∗SEU/CMU & U. of Hawaii, Honolulu, HI, USA. Email: kazman@hawaii.edu
†SoftServe Inc., Lviv, Ukraine. Email: {shaziyev,vfedak,ashopoch}@softserveinc.com
‡Drexel University, Philadelphia, PA, USA. Email: {yc349,rm859,lx52}@drexel.edu

Abstract—Our recent research has shown that, in large-scale
software systems, defective files seldom exist alone. They are
usually architecturally connected, and their architectural struc-
tures exhibit significant design flaws which propagate bugginess
among files. We call these flawed structures the architecture roots,
a type of technical debt that incurs high maintenance penalties.
Removing the architecture roots of bugginess requires refactor-
ing, but the benefits of refactoring have historically been difficult
for architects to quantify or justify. In this paper, we present
a case study of identifying and quantifying such architecture
debts in a large-scale industrial software project. Our approach
is to model and analyze software architecture as a set of design
rule spaces (DRSpaces). Using data extracted from the project’s
development artifacts, we were able to identify the files implicated
in architecture flaws and suggest refactorings based on removing
these flaws. Then we built economic models of the before and
(predicted) after states, which gave the organization confidence
that doing the refactorings made business sense, in terms of a
handsome return on investment.

I. INTRODUCTION

Despite the many advances in architecture design and anal-
ysis over the past two decades, it still remains largely an art,
based on experience and intuition. This is highly problematic
for the state of the practice. In particular, it is problematic
for practicing architects who need to justify their decisions—
particularly those affecting cost, schedule, and quality—to
managers who often lack the deep technical skills to properly
evaluate those decisions. But project managers do understand
cost and schedule, and they are motivated to maintain high
quality. So it is in the architect’s best interests to translate
their technical concerns into economic concerns, so that they
can properly justify those decisions.

In this paper we present a case study of a software devel-
opment organization–SoftServe Inc.—that did just that: facing
high and mounting problems with technical debt in a project,
they were able to analyze their software architecture, pinpoint
the hotspots within that architecture that were the principle
causes of technical debt, propose refactoring solutions to fix
the hotspots, and (perhaps most important) make a business
case for the refactoring. In this paper, we will describe the
architectural analysis that we did for one of the projects, and
how we helped them build their business case.

The state of the practice today in technical debt identifica-
tion is largely informal, experience-based, and intuition-based
analysis. Our recent research has shown that, in large-scale

software systems, defective files seldom exist alone. They
are usually architecturally connected, and their architectural
structures exhibit significant design flaws which propagate
bugginess among numerous files. The popular but informal
notions of “code smells” or “technical debts” are not sufficient
to precisely locate the architecture problems that propagate
errors among multiple files, nor to quantify their impact.

The consequence of this informality is that it is universally
difficult for architects to convince project managers to allow
them to refactor: the costs of refactoring are concrete and
immediate whereas the benefits of refactoring are vague and
long-term. Given this situation, it is no wonder that managers
seldom give the green light to refactoring: it takes away
resources from implementing features and fixing bugs and
these are the activities that customers see and pay for.

To remedy this situation we have applied following strategy
to identify and quantify architecture debts to a system that
SoftServe was maintaining, and justified the refactoring of
architecture problems with an economic analysis. We first
used the Design Rule Space (DRSpace) analysis approach [30]
to precisely locate architecture debts in a few clusters of
files. After that, we visualized the architecture flaws among
these files, pointing out to the architects how these flaws
propagate errors. After these flaws, (architecture hotspots),
were confirmed by the architects, we extracted data from the
development process to quantify the penalty these debts were
incurring, estimated the potential benefits of refactoring, and
made a business case to justify refactoring.

When we started working together SoftServe had already
been maintaining their system, which they inherited from
another company, for almost two years. They were actively
trying to improve the maintainability of the code base, remove
dead and cloned code, and rationalize its architecture, and they
had already made some progress in this direction. They had
been working with commercial tools, such as SonarQube1,
Understand2 and Structure 1013, to help identify problematic
areas in the system. What the DRSpace process offered them
was, however, quite different than those commercial tools:
we offered them explicit (and automated) identification of

1http://www.sonarqube.org
2https://scitools.com
3http://structure101.com

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.146

179

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.146

179

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.146

179 ICSE 2015, Florence, Italy
Software Engineering in Practice

problem areas in the architecture, along with explanations
for why these areas were problematic. Unlike other tools
that report a list of individual problematic files, We reported
these architecture debts in the form of 3 to 6 groups of
architecturally related files, and the architecture flaws among
them can be visualized. This analysis revealed significant
architecture issues not detectable by other tools, and allowed
them to plan refactoring strategies to address these problems.

In the end, we convinced SoftServe to refactor and this was
not a difficult argument. SoftServe was, in fact, happy to do
the refactoring because: 1) they had specific advice about what
to refactor, how, and why; 2) they had a framework for making
economics-based decisions about refactoring that showed a
clear and substantial predicted return on investment for this
activity (nearly 300% ROI in the first year alone); and 3) they
had more confidence in the results of the DRSpace analysis
than in the outputs of the tools that they had been using be-
cause the visualization and quantification of architecture debts
were intuitive and sensible to both architects and management.
Furthermore, the proposed refactoring strategy was backed up
by empirical evidence based on sound software engineering
principles.

II. RESEARCH QUESTIONS

We conducted a case study as a means of achieving two
objectives. First, we wanted to understand if our architecture
hotspot analysis process could identify problems—architecture
debts—that industrial practitioners consider to be real, signif-
icant, and worth fixing. Second, we wanted to understand if it
is possible quantify these architecture debts, based on readily
available project data, to help these practitioners make rational
refactoring decisions.

Towards these objectives, we examined the following re-
search questions.

RQ1: According to opinions of SoftServe’s architects, are
the set of architectural issues that we reported truly problem-
atic issues—that is, architecture debts?

RQ2: How do the results returned by the Titan tool chain
differ from the files reported as sources of technical debt by
other tools SoftServe is using, such as SonarQube?

RQ3: Is it possible to quantify the return on investment of
removing architecture debts? In other words, is it possible to
determine the penalty incurred by the debts and the expected
benefits if the debts are removed, and compare this with the
costs of refactoring?

III. CASE STUDY PROCEDURE

We were fortunate to work with SoftServe, a leading soft-
ware outsourcing company with more than 3,500 employees,
distributed over 200 active projects, with locations in 8 coun-
tries. SoftServe has always prided itself on being a disciplined
software engineering organization, having reached a CMMI
level 3 and adopting many best practices in architecture,
testing, agile development, and project management. Each
project at SoftServe is managed using a suite of version control
and issue tracking tools.

Moreover, SoftServe has made a significant, long-standing
commitment towards maintaining software quality by both
investing in ongoing education and by employing many com-
mercial tools to identify technical debt, including Understand,
Structure101, and SonarCube. Prior to our case study with
the subject project—a web portal system which we will refer
to as SS1 in this paper—SoftServe architects compiled a
list of technical debts in SS1. These technical debts were
of multiple types, and were detected by various tools and
methods, such as multiple code violations detected by Sonar,
numbers of Todo and FIXME tags reported by Eclipse, lack
of reusability detected by code reusability scenarios, etc. We
were interested to understand if the architecture debt areas we
identified overlapped with the ones identified by the tools that
SoftServe employed.

The most recent version of the project that we analyzed con-
tains 797 source files. The revision history that we studied cov-
ers from July 2012 to May 2014. The project was maintained
by 6 full-time developers, but with sporadic contributions from
several dozen more developers. Over this nearly two-year time
period, there were 3262 commits as recorded by their version
control system. There were 2756 issues recorded in their JIRA
issue tracking system. Of these issues, 1079 of them were
bug issues, and 1677 were about epics, improvements, stories,
technical tasks, etc. Given the choice of SS1 as our subject,
our case study prosecuted the following steps:

First, we collected various data sets from the project, as
shown in Figure 1. We processed the following inputs from
SoftServe’s project:

• A set of dependencies between all of the project’s source
files, output by Understand

• The project’s revision history, from its Git repository
• The project’s issue history, from its JIRA repository
Second, we used our tool, Titan [30], to calculate architec-

ture hotspots within the source code of SS1, and to summarize
all the architecture issues within these hotspots into a few high-
priority areas of architectural technical debt.

Third, we output these architecture debt areas, represented
as Design Structure Matrices (DSM). We exported these as
Excel spreadsheets and shared them with the project architects.
We asked them a series of questions aimed at answering the
first research questions proposed in the previous section. Our
purpose was to understand if the problems that we identified
were real, significant, and worth treating, and if we could
identify significant problems that were not detectable by other
tools they are using.

Finally, to quantify the architecture debts verified by the
architects, we requested additional project data: about the lines
of code committed to address issues, and estimates of the effort
required to refactor the architecture to address the architecture
technical debts that we identified. Using this information we
were able to form a business case to help the architects
decide if it was worthwhile to refactor, as we will discuss
in section VI.

Fourth, to answer the second research question, we com-
pared the sets of files identified by our tool chain as architec-

180180180 ICSE 2015, Florence, Italy
Software Engineering in Practice

Fig. 1. Architecture Debt Identification, Verification, and Quantification
Process

ture hotspots with the files reported by Sonar as containing
“technical debt” to assess the degree to which our results
differed from this de facto industrial standard tool. We also
compared the debts we identified with the debt list that the
architects had already compiled, to assess what our tool chain
could and could not detect.

IV. ARCHITECTURE DEBT IDENTIFICATION

In this section, we describe how we identified architecture
debts from dependency information output by Understand,
as well as the project’s revision history and issue tracking
systems. We start by introducing the background concepts
needed in this procedure.

A. Background

In our recent work, we proposed the concept of Design
Rule Space (DRSpace) [30], [32]. Instead of viewing the
modular structure of software architecture just as files and their
relations, we consider software as a set of overlapping design
spaces, each of them having its own modular structure formed
by a suite of design rules and independent modules [1]. Re-
flected in source code, design rules are usually key interfaces
or abstract classes that decouple other files into independent
modules. Intuitively, if multiple design patterns are applied
in a system, then each pattern has its own design space that
overlaps with others. Since most patterns feature one, or a few,
key interfaces as design rules, the design space of each pattern
forms a DRSpace.

In general, a DRSpace can be seen as a selected set of files
and a selected set of relations, such as inheritance, aggregation,
or dependency. These files are clustered into a special form
called a design rule hierarchy (DRH) [3], [4], [29] which
identifies design rules and independent modules. The first layer
of a DRH contains the files that have significant influence on
the rest of system, but are not influenced by other files in
lower layers. These files are usually important base classes,
key interfaces, etc., and we call them the leading files.

We model a DRSpace using a Design Structure Matrix
(DSM), a square matrix with rows and columns labeled with

the same set of files in the same order. A marked cell in row
x, column y, c:(rx,cy) means that file x is related to file y,
either through some kind of structural relation, or through
evolutionary coupling (i.e., they have changed together, as
recorded in the project’s commit logs). The cells along the
diagonal means self-dependency. A DSM, clustered as a DRH,
can be viewed and manipulated using our tool Titan [31].

The DSM in Figure 2 presents a DRSpace generated from
our case study with fake file names. This DRSpace is led
by path1.Bean.java, and is clustered into 4 layers: l1: (rc1),
l2: (rc2-rc19), l3: (rc20-rc25), l4: (rc26-rc27). As an example,
the cell in row 5, column 1, cell(r5,c1) contains: ”Create,10”.
It means that path1.ThirdFruit.java creates an instance of
path1.Bean.java, and these two files changed together 10 times
in the project’s revision history. Consider another example, the
cell in row 15, column 7. Cell(r15, c7) only contains “,16”,
which means that the file on row 15, path5.TenthFruit.java,
and the file on column 7, path5.FifthFruit.java, do not have any
structural dependencies, but they changed together 16 times as
recorded in the revision history.

Based these concepts, we first identified the DRSpaces that
capture the most error-prone and change-prone files. We call
these DRSpaces architecture roots. From these root DRSpace,
we further diagnosed architecture issues and extracted archi-
tecture debts. We now elaborate these steps in the next two
subsections.

B. Architecture Root Calculation

We first identify the DRSpaces that cover the most error-
prone and change-prone files, following the procedure as
described in [30] and [21]. The rationale is that, if most
error-prone files are architecturally connected, as we have
observed from numerous open source projects, then Titan
should identify just a few DRSpaces that contain most of
these error or change prone files. We call these DRSpaces the
roots of error and/or change proneness. The fewer the number
of roots, the more closely these high-maintenance files are
architecturally connected.

We consider that the set of files that change most frequently
or have the most bug fixes as change spaces and bug spaces.
For example, we consider all the files that were changed 10
times or more as a Change10 space, and all the files that have
more than 2 bug fixes as a Bug2 space. In this case study,
we calculated the root DRSpaces that cover the Change10 (63
files) and Bug2 (55 files) spaces. The data for root spaces that
cover Change10 and Bug2 are reported in Table I and Table II.
The file names in the first column of the table are the leading
file of the DRSpace.

Taking the DRSpace led by Pear.java in Table I as an ex-
ample, we can see that this DRSpace has 139 files (DRSsize).
Although it contains about 17% of all the files in the project,
it has 36 (Bug2Files) of all the 55 files with more than 2 big
fixes, about 65% (Bug2%) of the Bug2 space. The column
”Dist size” shows the cumulative number of distinct files. For
example, Pear.java, Apple.java, and Strawberry.java together
contain 306 distinct files, covering 80% of Bug2 space.

181181181 ICSE 2015, Florence, Italy
Software Engineering in Practice

Fig. 2. DRSpace clustered into DRH Structure with only structure relations

TABLE I
THE MOST ERROR-PRONE DRSPACES

Leading Class DRSsize Dist size Cover Size% Bug2Files Bug2%

Pear.java 139 139 65% 17% 36 65%
Apple.java 158 277 76% 20% 12 22%
Strawberry.java 33 306 80% 4% 3 5%
Grape.java 5 311 84% 1% 2 4%
Blackberry.java 13 315 87% 2% 9 16%
Peach.java 36 351 89% 5% 1 2%

From Table II, we can see that Pear.java and Apple.java
together cover 79% of the most frequently changed files, i.e.,
the Change10 space. 41 out of 63 most change-prone files can
be found in the DRSpace led by Pear.java alone!

TABLE II
THE MOST CHANGE-PRONE DRSPACES

Leading Class DRSsize Dist Size Cover Size% Chg10Files Chg10%

Pear.java 139 139 65% 17% 41 65%
Apple.java 158 277 79% 20% 17 27%
Berry.java 58 305 86% 7% 16 25%
Whitepeach.java 60 319 87% 8% 20 32%
Greengrape.java 1 320 89% 0% 1 2%
Redgrape.java 2 322 90% 0% 1 2%
Yellowpeach.java 62 328 92% 8% 25 40%

These tables show that only 6 root spaces are needed to
cover 89% of the Bug2 space, and 7 root spaces can cover
92% of the Change10 space, meaning that both error-prone
and change-prone files are highly architecturally connected.
In particular, we observe that the first two DRSpaces are the
same for both Bug2 and Change10, and cover up to 76% and
79% of the most error and change prone files respectively.

C. Architecture Issues and Debt Extraction

There are many overlaps in the root spaces. This is because a
file may participate in many relationships with other files. And

there are many architecture issues within these root spaces.
To return meaningful results to the SoftServe architects we
identified instances of following architecture issues within
these DRSpaces:

• Unstable Interface - A leading file with large number of
dependents but changes frequently with many of them.

• Implicit Cross-module Dependency - Files belong to
different independent modules in the DRH clustering, but
are changed together frequently. This phenomenon is also
called modularity violations [28].

• Unhealthy Inheritance Hierarchy - A parent class de-
pends on one of its subclasses, or a client of the inheri-
tance hierarchy depends on both the parent class and all
the subclasses.

We identified file groups with these issues using the defini-
tions and techniques defined in [21]. We did not report the
most commonly found architecture problems, such cyclical
dependencies among files or packages because those issues
can be easily detected by the commercial tools SoftServe is
already using, such as Sonar or Structure101.

We distinguish these issues because they already suggest
corresponding refactoring strategies. For example, a DSM with
an Unhealthy Inheritance Hierarchy instance only contains the
files involved in the hierarchy, so their relations can be easily
seen. If the problem is that a parent class depends on one of
its subclasses, then it is obvious that this illegal dependency
should be removed. A modularity violation instance suggests
the need to discover the hidden relations among these files,
while an unstable interface points to a better designed base
class or interface.

Since each root DRSpace may contain multiple instances of
architecture issues, and some files may be involved in multiple
issues in multiple root spaces, we extracted 6 groups of files

182182182 ICSE 2015, Florence, Italy
Software Engineering in Practice

(95 distinct files in total) with the least overlaps and the most
prominent type of architecture issues, and returned these to
SoftServe as possible architecture debts. The 6 file groups
contained 3 instances of improper inheritance with 6, 3, and
7 files respectively. The small sizes of these issue instances
indicate that inheritance is not a major architecture problem.

The other 3 instances included one modularity violation
group with 27 files, and two instances of Unstable Interface
issues, involving 26 and 52 files respectively. The DSM of
the modularity violation instance is shown in Figure 2. This
DSM reveals that although these files have very few structure
dependencies (only 13 out of 729 pairs of files have structural
relations), they changed together very often, indicating the
existence of strong implicit dependencies among these files.

V. ARCHITECTURE DEBT VERIFICATION

To investigate if the 6 file groups reveal true architecture
issues that are considered significant and worth treating, we
exported their 6 DSMs into spreadsheets and returned them
to the SoftServe architects as possible architecture hotspots
(potential architecture debts) for them to verify. We also
compared the files within these 6 DSMs with technical debt
files reported by Sonar for further analysis.

A. Debt Verification by SoftServe Architects
We returned these architecture debt candidates to our col-

laborators along with the following questions:
Q1: For each instance, is this a real design/architecture

problem with significant maintenance costs? If yes, do you
plan to refactor and fix the issues in them?

Except for one improper inheritance instance with 7 files,
the architect confirmed that all other instances were real
architecture issues. They agreed that two of the improper
inheritance instances indeed revealed that these files were over-
designed. Since these instances have small numbers of files,
and thus limited maintenance costs, we focused on the other
three bigger architecture issue instances, and refactoring these
three instances has been planned.

Q2: Are there any issues we identified but which were not
revealed by other tools in use?

The architect pointed out that the modularity violation
instances we identified (Figure 2) revealed deep problems that
were not detectable by other tools. It revealed a poor design
decision that caused large number of co-changes among large
number of seemingly unrelated files.

When one of the Unstable Interface instances was reported,
our collaborators realized that the interface file leading this
DRSpace, Pear.java was overly complex, turning into a God
interface, and recognized that Divide-and-conquer would be
the proper strategy to refactor this DRSpace.

The feedback from the architect is extremely encouraging.
Since we have reported these architecture issues, they have
spent much effort devising strategies to address these debts. As
we will show, we were also able to extract more detailed data
to quantify the cost and benefits, making it possible to make
a business case targeting at the refactoring of these localized
hotspots.

B. Debt Comparison

The most significant difference between our approach and
that of other technical debt detection tools, such as Sonar, is
that, we identify debts as architecturally related groups (in
our current case study, we reported 3 major file groups). We
use DSMs to visualize the architecture problems linking these
files together, indicating how defects may propagate between
them. Sonar reports a list of files, without showing the relations
among them. Although the architecture issue instances we
identified have been confirmed by SoftServe architects, we
were curious to know whether the files comprising these
architecture issue instances could be found by Sonar.

We only compared with Sonar, since it is the de facto
industrial standard for detecting technical debt. SoftServe also
used other methods to identify other types of technical debt,
like checking the “Todo” comments in source code, but we
don’t consider those as comparable to architecture debts. We
chose the three most common metrics used by Sonar to
find files in debt: lines of code, McCabe complexity, and
duplicated lines. These metrics were also used by SoftServe
to identify technical debts, prior to this case study. In a
technology assessment report created before our interaction
with SoftServe, they listed their 21 “fattest” (most complex)
files. These files, reported by Sonar, were “considered as
refactoring priority candidates” by SoftServe. But their report
did not show the relations among these fattest files, nor their
impact scope.

Our purpose is to understand (1) whether files reported by
Sonar also suffer from architecture issues, and (2) whether
high-maintenance files have been missed by just detecting files
involved in architecture hotspots. For Sonar, we took the top
10 percentile most complex files (LOC or McCabe), as well
as the top 10 percentile files with the most duplicated lines,
and took the union of these sets to form a final set of 98
files as the debts identified by Sonar. We compared these 98
files (which we call SonarDebts) with the 95 files (TitanDebts)
that we reported to SoftServe as being directly implicated in
architecture issues.

We first compare the precision and recall of both of these
file sets against the Bug2 (55 files) and Change10 (63 files)
spaces. The Bug2 and Change10 file sets served as the “oracle”
for this study, since these are the ground truth set of files that
are causing problems in the project. Our reasoning is that, the
more files detected by a technique that are truly error-prone or
change-prone (high precision), and the more high-maintenance
files that are detected (high recall), the more effective the
technique is. The result of this study showed that the precision
of TitanDebts is 31% vs. 18% for SonarDebts using Bug2 as
the oracle, and 40% for vs. 27% using change10 as the oracle.
The recall of TitanDebts vs. SonarDebts is 53% vs. 33% for
Bug2, and 60% vs. 41% for Change10. These data indicate
that Titan consistently performs better, in terms of capturing
the most error-prone and change-prone files.

The precision of any single technical identification tech-
nique is likely to be low, because files might be buggy or

183183183 ICSE 2015, Florence, Italy
Software Engineering in Practice

change-prone for a number of reasons: because of architectural
complexity, because of code complexity, or because of inherent
domain complexity. For TitanDebt, not all files involved in ar-
chitecture issues have high maintenance costs; for SonarDebt,
not all files that are complex are necessarily error-prone or
bug-prone. In addition, the precision numbers reported here
are low because of the small sizes of Bug2 and Change10.
Precision is a measure of what fraction of the retrieved results
are relevant. Since the Bug2 and Change10 sets are smaller
than SonarDebts and TitanDebts (due to the relatively short
project history that we were considering) the highest possible
precision value for Bug2 would be about 57% and the highest
precision value for Change10 would be 66%.

Next we examined the overlap between TitanDebts and
SonarDebts. There are 25 files found in the intersection of
TitanDebts and SonarDebts. These 25 files are undoubtedly the
most problematic ones in the project: they are both complex
and architecturally problematic. The fact that the intersections
of these two sets only have about 1/4 of their total number
of files indicates that Sonar and Titan detect substantially
different, and complementary, sets of files.

In summary, from this comparative analysis we can observe
that the architecture instances we detected capture file groups
with higher error-proneness and change-proneness than what
Sonar captured. In addition, a significant portion of the files
with severe, high-maintenance architecture issues, detected by
our tool, are missed by Sonar. We are not aware of any other
tools that can detect those files, together with their visualizable
architecture issues.

VI. ARCHITECTURE DEBT QUANTIFICATION

Now that the 3 instances of architecture issues are verified
to be true architecture debts, the architect at Softserve needs to
estimate the economic consequences of these debts, to make
decisions regarding to whether it is worthwhile to refactor.
We first need to determine the scope of the debts. That is,
how many files are influenced by these architecture flaws?
Since each DRSpace contains all the files that are directly and
indirectly impacted by the leading files, the scope of the 3
architecture debts should be the DRSpaces led by the leading
files of these instances. In this case study, the scope should
be all the 291 distinct files contained in 3 DRSpaces led by
Pear.java, Apple.java, and Bean.java.

Next we need to quantify the unit of “effort” or “cost”.
Here we needed to make some assumptions and collect project
data based on those assumptions. Like most industrial projects,
effort data was not carefully collected, and was not associated
with file-level work. So while our DRSpaces technique was
based on the file as the most basic unit of analysis, we could
not collect true effort data on a per-file basis.4 For this reason

4We have assumed, for the purposes of our analysis, that the ratio of files
to classes is 1:1. This has broadly held true for the 30 or so systems that we
have analyzed to this point. If, for some reason, a project deviated from this
convention, we could simply normalize the counts of defects, changes, and
lines of code, to account for a different ratio.

we chose to collect other types of file-level data that were
available:

• number of resolved defects per file
• number of completed changes per file
• number of modified/added/deleted lines of code per file,

to fix defects and make changes

These measures have a number of advantages in terms of
supporting an economic analysis: they are objective, they are
easily gathered and counted in a fully automated fashion,
and they are broadly available in most industrial and open
source projects. Given this background we were able to collect
data associated with the three most problematic DRSpaces
in the SoftServe project, led by Apple.java, Bean.java, and
Pear.java. The data that we collected, and our analysis of
this data, is shown in Figure 3. We will refer to this figure
repeatedly in explaining how we calculate technical debt and
how we supported the project’s architect and manager in
making refactoring decisions.

To begin, we needed to calculate the size of each DRSpace.
As explained in [30], DRSpaces are overlapping. The Design
Rule Hierarchy clustering algorithm simply clusters files that
“follow” the leading file or files—the design rules. Since
any given file (class) may participate in many relationships
with other files, this may result in the same file appearing
in multiple DRSpaces. As a consequence, we calculated two
measures of the size of each DRSpace: the raw size, in terms
of number of files, and a normalized size. The raw size for
the DRSpaces led by Apple.java, Bean.java, and Pear.java are
presented in cells B2-B4 of Figure 3. To normalize the size,
we considered that any file that is included in two DRSpaces
should be counted as 1/2 a file for each DRSpace. If a file
participates in three DRSpaces, it is counted as 1/3 in each
one. In this way the impact of a file—its set of defects and
changes—is shared among the DRSpaces. This normalization
is necessary because if we were not to do this we would be
double (or triple) counting the impact of files that participate
in more than one DRSpace. The normalized size figures are
shown in cells C2-C4 of Figure 3. These three DRSpaces
represent a total of 291 files, out of a total of 797 files in
the entire project (as shown in cells C6 and B7 respectively).

Now we are ready to calculate the penalty of the debt within
each of the DRSpaces. We first count the number of defects
associated with each DRSpace that we actually fixed during
the prior year. This information is easily retrieved from the
project’s revision control and defect-tracking systems. These
values are shown in cells D2-D4. However, since we do not
want to double-count any defect associated with a file that
appears in more than one DRSpace, we normalize the number
of defects by multiplying the raw defect count associated with
each DRSpace by the fraction of normalized DRSpace size
divided by actual DRSpace size. The normalized defect counts
are given in cells E2-E4 of Figure 3, and their total is shown in
cell E6. Note that the normalized number of defects associated
with these three DRSpaces is 89% of the project’s total number

184184184 ICSE 2015, Florence, Italy
Software Engineering in Practice

Fig. 3. Technical Debt Calculation Framework

of defects (which is 265), even though the normalized size of
these DRSpaces—291—is just under 37% of the entire project.

Similarly we count the total number of changes affecting
the files in the three DRSpaces over the past year, and we
normalize these as we normalized the numbers of file and
defects. The raw numbers of changes are shown in cells F2-
F4, and the normalized values are given in G2-G4. Note that
the total normalized number of changes affecting Apple.java,
Bean.java, and Pear.java is 1498, or about 2/3 of the project
total of 2332. This is consistent with our prior research, where
complex, problematic DRSpaces account for far more than
their share of defects and changes, and require many more
lines of code to modify and fix than average project files [21],
[30].

Finally we show the number of lines of code committed to
fix the defects and to make the changes for the files in these
three DRSpaces over the past year. The raw numbers of lines
of code are given in I2-I4 and the normalized values are given
in J2-J4.

Another key parameter needed to make refactoring decisions
is the cost of refactoring. The chief architect of the SoftServe
system agreed that not only are these DRSpaces problematic,
but also agreed that the architectural flaws that we identified
were indeed design problems, violating standard rules of good
design such as the Law of Demeter, the Open/Closed principle,
and so forth. Using the architectural flaws as a guide, a set
of refactorings were determined and the chief architect made
effort estimates for each of these refactoring efforts. These
effort estimates, in person months (PM) are shown in cells
K2-K4 of Figure 3 (highlighted in orange). The total effort
for the refactorings is given in cell K7.

We have thus far calculated the “penalty” being incurred by
these three DRSpaces, as a result of their architectural flaws,
and the chief architect has estimated the cost to refactor these
DRSpaces. Now we turn to the issue of estimating the benefit
that we expect to accrue from this refactoring.

We used, as a basis for the estimate, existing project
averages, shown in cells B11-B13. An average file in this
project is subjected to 0.33 defects annually (i.e., there were
265 defects affecting a total of 797 files) and 2.9 changes

annually (i.e. 2332 changes over 797 files), requiring 169.95
lines of code to resolve (there were a total of 135,453 lines
of code committed for the project’s 797 files).

Our assumption is that the refactoring of the three DRSpaces
will bring them down to project averages. This is, we feel,
a very conservative assumption for two reasons: 1) the cur-
rent project averages already include these flawed DRSpaces,
which inflates the averages, and 2) it is likely that the
refactoring could result in much better structure than the
project average, since the average project file has not been
refactored. Thus the refactoring could conceivably result in
lower defects, changes, and committed lines of code for these
three DRSpaces. For these reasons we feel that using existing
project averages as our “target” for improvement is very
conservative. Our follow-on longitudinal study will allow us
to test the validity of this assumption.

Based on this assumption, we can now calculate the ex-
pected benefit from the refactoring these three DRSpaces.
Cells L2-L4 list the expected numbers of defects that would
affect each of the problematic DRSpaces—34, 34, and 10—
assuming that the refactoring brought them down to project
averages. Similarly cells M2-M4 and N2-N4 show the nor-
malized, expected numbers of changes and committed lines
of code under the same assumption—that the refactored
DRSpaces exhibit project average behaviors. The totals for
the expected numbers of defects, changes, and lines of code
are presented in cells L6, M6, and N6.

Now we are in a position to calculate the expected benefit
from these refactorings. The benefit is the difference between
the actual annual numbers of defects, changes, and committed
lines of code and the expected numbers of defects, changes,
and committed lines of code. These expected “savings” are
given in cells L8, M8, and N8. Let us ignore the loss of
time and reputation due to bugs that are avoided (L8) and
focus purely on the lines of code that we expect the project
will not have to commit, due to the refactoring (N8). The
project can conservatively expect to save 24,808 lines of
code by refactoring the three problematic DRSpaces. Now we
take company average productivity numbers and using this to
calculate the expected person months of effort avoided as a

185185185 ICSE 2015, Florence, Italy
Software Engineering in Practice

result of the refactorings. This savings is shown in cell N12.
The project can expect to save 41.35 person months of effort
per year due to the proposed refactorings. Given that these
refactorings are estimated to cost just 14 person months of
effort, the investment in refactoring is paid off in less than 1/2
year and the project experiences a net benefit thereafter. Or, to
put it in financial terms, the project can expect a 295% return
on investment in the first year alone.

This is, to our knowledge, the first time that the penalty
associated with technical debt, the cost of refactoring to
remove that debt, and the expected benefits of removing the
debt have been quantified based on hard data—project-specific
empirical evidence. Of course, there are assumptions wrapped
up in the estimates, but this is true of any financial estimates
in any field. These assumptions are supported by our prior
research, but they are assumptions nonetheless. As we collect
more data we will be able to report on the validity and stability
of these assumptions.

VII. RESULTS AND LESSONS LEARNED

Now we are in a position to answer the research questions
that we posed in section II.

Regarding RQ1: According to the opinions of the Soft-
Serve’s architects, the set of architectural issues that we
reported to SoftServe were truly problematic. They often had a
vague idea that a region of the architecture was “troublesome”
or “hard to maintain”, but they were unable to precisely
identify the problems and their scope.

Regarding RQ2, the results returned by the Titan tool chain
did differ significantly from the files reported as sources of
technical debt by SonarQube. The precision and recall of Titan
outperformed that of Sonar by 50% or more, when compared
with Bug2 and Change10.

Finally, we feel that the answer to RQ3 was perhaps the
most important outcome of this case study. It is indeed possible
to quantify the return on investment of removing architecture
debts. We were able to mine project data to estimate the
penalty incurred by the debts (hotspots) identified by Titan,
and to calculate the expected benefits if the debts are removed.
When we compared this with the costs of refactoring it made
a compelling argument for SoftServe’s management, who
immediately chose to refactor the system in the areas we
identified.

What have we learned, having worked through this process
with an industrial partner? We have gathered several important
lessons.

The first, and perhaps most important lesson is that the anal-
ysis we did here was not remarkable; it is easily repeatable. It
does not depend on the skills of the analyst; it simply depends
on having the appropriate input data. The good news is that
most projects have enough data to make this determination:
that is, they have source code that can be reverse engineered to
extract file dependencies, they have revisions control systems
that show which files were committed and how many lines
of code were modified, and they have issue tracking systems
that show and classify the reported project defects and change

or feature requests. What not all projects have is the ability
to trace among these project records. If the project does not
have the discipline to always associate a commit with an
issue number from the issue-tracking system then we can not
trace from file to commit to bug or change. Thus, one of our
lessons learned is that we can influence projects to improve
their record-keeping practices. We can influence them because
we can show them how such tiny and inexpensive changes in
their processes can result in greater insight into the sources of
project technical debt.

The second important lesson that we learned is that technical
debt can arise from a variety of sources, and no single tool or
approach is going to find all of them. Code-based approaches
will tend to find one class of problems, dealing with (not
surprisingly) code-level issues—poor code structure, repeated
lines, lack of comments, and so forth. But another important
source of technical debt comes from architectural problems
and the code-based analysis tools do not find this debt.

The third (related) lesson that we learned from the project,
and also from many other interviews with practicing architects
is that architectural technical debt is extremely common.
Like rust, it never sleeps; it just accumulates in projects,
unless some conscious refactoring effort is made. This is
because architectural debt is extremely easy to introduce, and
extremely difficult for a programmer to discern. A programmer
typically wants to fix a bug or introduce some new feature
or function. In doing so they create new classes, modify
existing classes, add relationships between existing classes,
and so forth. Some of these changes inevitably undermine
the architectural structure, even if this structure was not
consciously described. The structure slowly becomes more
complex, more highly coupled, less cohesive. Unfortunately,
refactorings to fix these debts are seldom made because the
architects typically do not know: 1) how to locate the debts,
and 2) how to create a business case that presents compelling
evidence for the value of refactoring. By arming SoftServe’s
architects with such information they were able to make a
compelling business case which was immediately accepted and
acted upon.

VIII. RELATED WORK

Our work is related to the work of technical debt detection,
architecture analysis, and defect localization and prediction.

a) Technical Debt Detection: To locate technical debt
in code, a number of heuristics have been proposed. These
heuristics attempt to identify characteristic problems in code—
such as clones, long methods, and god classes—that can be
detected by code analysis tools such as SonarQube. But not
all of these code problems are certain to cause maintenance
or quality problems. In fact, no existing work has been able
to accurately locate the sources and estimate the magnitude of
technical debt. For example, Zazworka et al. [33], compared
four different technical debt detection approaches and found
that only a subset of the debt detected by the four approaches
were strongly correlated with software changes and defect
proneness.

186186186 ICSE 2015, Florence, Italy
Software Engineering in Practice

The concept of a “bad smell” was first proposed in 1999 as a
heuristic for identifying redesign and refactoring opportunities
[7]. Code clones and feature envy were examples of smells
proposed in this work. Others [9] have extended this notion
to include architecture-level bad smells. But to detect debt
efficiently, the approach must be automatable. For example,
Moha et al. [22] created the Decor tool to automate the
creation of design defect detection algorithms. In addition,
some research has proposed automatically detecting bad smells
that suggest refactorings. For example, Tsantalis and Chatzi-
georgiou’s static slicing approach [27] aims to detect extract
method refactoring opportunities. In addition, some common
smells, such as code clones, have been extensively studied,
such as Higo et al. [12]’s Aries tool to identify code clones
as candidates for refactoring.

Our architecture debt detection approach, however, is differ-
ent. First, our approach focuses on the structure among files,
rather than the internal problems within a file. Not all files
involved in architecture issues have bad smells. Second, exist-
ing research on bad smells has always focused on analyzing a
single version of the software, while our approach examines
the project’s evolution history. We can thus focus on the most
recent and most frequently occurring architecture problems,
and detect architecture issues that can only be exposed during
evolution, such as Implicit Cross-module Dependency and
Unstable Interfaces. Neither can be detected by examining a
single version of a code base.

b) Architecture Representation and Analysis: The ground
truth of the architecture of a software project is usually difficult
to acquire; architecture documentation is rarely up-to-date or
accurate. A software system contains multiple architectural
structures that may be documented as views [2], [6], [18].
But the views proposed in prior work are general-purpose. To
locate and diagnose specific modularity debt, we need to focus
on just a single architecture view—the module view. Within
the module view DRSpaces are organized based on design
rules and independent modules.

Methods supporting the analysis of architecture have been
widely studied. The majority of architecture analysis methods
created to date have either focused on questionnaires [20]
or scenarios [14], [16]. For example, Kazman et al. [16]
created the Architecture Tradeoff Analysis Method (ATAM)
for analyzing architectures. This was extended with the Cost
Benefit Analysis Method (CBAM) [15], [24] so that the
technical analysis of an ATAM could be informed by the costs
and benefits of proposed architectural strategies, as a means
of determining an optimal project evolution path. Andrew [17]
proposed anti-patterns to represent recurring problems that
are harmful to software systems. These methods are man-
ual, and depend heavily on the skills of highly trained and
experienced architecture analysts. Our approach, by contrast,
detects architecture issues automatically and can guide the
user, helping them to locate and diagnose software quality
problems. Furthermore, we assist the user in analyzing the
economic consequences of these problems and their repairs.

And this analysis requires only project data that is easily
available.

c) Defect Localization and Prediction: Numerous work
has been proposed to locate and predict software defects using
dependency relation, history, or metrics [11], [13], [19]. Selby
and Basili [26] first explored the relation between dependency
structures and software defects. The relation between evolu-
tionary coupling and error-proneness has also been extensively
studied [5], [8], [10]. Cataldo et al.’s [5] reported a strong
correlation between change coupling density and failure prone-
ness. Ostrand et al. [25] demonstrated that file change history
can be used to effectively predict defects. Nagappan et al. [23]
used complexity metrics to predict defects, but admitted that
in different projects, the best metrics for prediction can be
different. Different from these prior work that all focus on
individual files as the unit of analysis, our approach reveals
architecture flaws that propagate errors among files.

IX. CONCLUSIONS AND FUTURE WORK

Our case study with SoftServe has confirmed our research
hypotheses: we are able to locate the architectural sources of
technical debt, quantify them, and quantify the expected pay-
back for refactoring these debts. We did this based solely on
data that was already available within SoftServe. The evidence
that we produced and the arguments that we made based on
this evidence were compelling to SoftServe’s management,
who immediately decided to invest in the proposed refac-
torings. One might object that these estimates are just that–
estimates. However, all decision-making in business involves
investment under uncertainty. And even if our ROI estimate is
off by an order of magnitude—that is, if it was merely a 30%
ROI—it still represents an excellent choice for the company,
which presumably can not earn such a high ROI through any
traditional means.

Our future work consists of a longitudinal study wherein we
do four things: First, we will track the architectural integrity
of this system on a regular basis. That is, we plan to analyze
periodic snapshots of SoftServe’s system, to see whether the
refactoring is being done correctly, and whether it is eroding
over time. Second, we plan to continue to track the frequency
of reported defects, and their connection to the files in SS1.
Third we plan to continue to track the frequency of changes
to the files of SS1. Finally, we plan to track the lines of
code committed to fix defects and to make changes. This
longitudinal data capture and analysis will allow us to validate
the expectations and opinions collected in the present study,
and to build better predictive models for SoftServe in the
future. We are also in the process of conducting other industrial
case studies, to show the repeatability of our methods in
different industrial contexts.

In addition, we would like to examine the background trends
of the data in future work. For example, are bug rates, change
rates, and churn level, going up, or going down in the project,
irrespective of any intervention?

For now, SoftServe is very happy with the outcomes and is
taking all necessary steps to refactor their architecture to fix

187187187 ICSE 2015, Florence, Italy
Software Engineering in Practice

the defects that our Titan tool has highlighted. The SoftServe
architects felt that Titan provided insights, supporting data
and, (most important) explanations that no other analysis
tool had hitherto provided. These insights accorded with their
experience of the system, and supported their intuitions about
the problems with its architecture. But, more importantly,
the combination of project-data-driven economic arguments
and evidence-based identification of technical debts was com-
pelling for SoftServe’s architects and they plan to pursue this
strategy with other systems right away.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation of the US under grants CCF-0916891, CCF-
1065189, CCF-1116980 and DUE-0837665.

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. This material has been approved for
public release and unlimited distribution. DM-0002092

REFERENCES

[1] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of
Modularity. MIT Press, 2000.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 3rd edition, 2012.

[3] Y. Cai and K. J. Sullivan. Modularity analysis of logical design mod-
els. In Proc. 21st IEEE/ACM International Conference on Automated
Software Engineering, pages 91–102, Sept. 2006.

[4] Y. Cai, H. Wong, S. Wong, and L. Wang. Leveraging design rules to
improve software architecture recovery. In Proc. 9th International ACM
Sigsoft Conference on the Quality of Software Architectures, pages 133–
142, June 2013.

[5] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb. Software
dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering, 35(6):864–878, July 2009.

[6] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten. Decision-making
techniques for software architecture design: A comparative survey. ACM
Computing Surveys, 43(4):1–28, Oct. 2011.

[7] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, July 1999.

[8] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based
on product release history. In Proc. 14th IEEE International Conference
on Software Maintenance, pages 190–197, Nov. 1998.

[9] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Identifying
architectural bad smells. In Proc. 13th European Conference on Software
Maintenance and Reengineering, pages 255–258, Mar. 2009.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Predicting fault
incidence using software change history. IEEE Transactions on Software
Engineering, 26(7):653–661, 2000.

[11] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code
using failure-inducing chops. In Proc. 20th IEEE/ACM International
Conference on Automated Software Engineering, pages 263–272, 2005.

[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring support
based on code clone analysis. In Proc. 5th International Conference
on Product Focused Software Development and Process Improvement,
pages 220–233, Apr. 2004.

[13] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proc. 24thInternational
Conference on Software Engineering, 2002.

[14] R. Kazman, G. Abowd, L. Bass, and M. Webb. Saam: A method
for analyzing the properties of software architectures. In Proc. 16th
International Conference on Software Engineering, pages 81–90, May
1994.

[15] R. Kazman, J. Asundi, and M. Klein. Quantifying the costs and benefits
of architectural decisions. In Proc. 23rd International Conference on
Software Engineering, pages 297–306, May 2001.

[16] R. Kazman, M. Barbacci, M. Klein, S. J. Carriere, and S. G. Woods.
Experience with performing architecture tradeoff analysis. In Proc. 16th
International Conference on Software Engineering, pages 54–64, May
1999.

[17] A. Koenig. Patterns and antipatterns. The patterns handbooks, 1998.
[18] P. B. Kruchten. The 4+1 view model of architecture. IEEE Software,

12:42–50, 1995.
[19] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: statistical

model-based bug localization. In 13rd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, 2005.

[20] J. Maranzano, S. Rozsypal, G. Zimmerman, G. Warnken, P. Wirth, and
D. Weiss. Architecture reviews: Practice and experience. IEEE Software,
22:34–43, 2005.

[21] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The
formal definition and automatic detection of recurring high-maintenance
architecture issues. In Submission, 2014.

[22] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and L. Duchien. A domain
analysis to specify design defects and generate detection algorithms.
In Proc. 11th International Conference on Fundamental Approaches to
Software Engineering, pages 276–291, Mar. 2008.

[23] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proc. 28th International Conference on Software
Engineering, pages 452–461, 2006.

[24] R. Nord, M. Barbacci, P. Clements, R. Kazman, M. Klein, L. O’Brien,
and J. Tomayko. Integrating the archi-tecture tradeoff analysis method
(atam) with the cost benefit analysis method (cbam). Technical Report
CMU/SEI-2003-TN-038, Carnegie Mellon University/SEI, 2003.

[25] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location
and number of faults in large software systems. IEEE Transactions on
Software Engineering, 31(4):340–355, 2005.

[26] R. W. Selby and V. R. Basili. Analyzing error-prone system structure.
IEEE Transactions on Software Engineering, 17(2):141–152, Feb. 1991.

[27] N. Tsantalis and A. Chatzigeorgiou. Identification of move method
refactoring opportunities. IEEE Transactions on Software Engineering,
35(3):347–367, May 2009.

[28] S. Wong and Y. Cai. Improving the efficiency of dependency analysis
in logical models. In Proc. 24th IEEE/ACM International Conference
on Automated Software Engineering, pages 173–184, Nov. 2009.

[29] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. Design
rule hierarchies and parallelism in software development tasks. In
Proc. 24th IEEE/ACM International Conference on Automated Software
Engineering, pages 197–208, Nov. 2009.

[30] L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A new form of
architecture insight. In Proc. 36th International Conference on Software
Engineering, 2014.

[31] L. Xiao, Y. Cai, and R. Kazman. Titan: A toolset that connects software
architecture with quality analysis. In 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, 2014.

[32] L. Xiao, Y. Cai, R. Kazman, and R. Mo. Investigating the evolutionary
consequences of architecture roots of error-proneness. In Submission,
2014.

[33] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull. Comparing four approaches for technical debt identification.

Software Quality Journal, pages 1–24, 2013.

188188188 ICSE 2015, Florence, Italy
Software Engineering in Practice

