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a b s t r a c t

Software development suffers from a lack of predictability with respect to cost, time, and quality. Predictabil-

ity is one of the major concerns addressed by modern manufacturing execution systems (MESs). A MES does

not actually execute the manufacturing (e.g., controlling equipment and producing goods), but rather collects,

analyzes, integrates, and presents the data generated in industrial production so that employees have better

insights into processes and can react quickly, leading to predictable manufacturing processes. In this paper,

we introduce the principles and functional areas of a MES. We then analyze the gaps between MES-vision-

driven software development and current practices. These gaps include: (1) lack of a unified data collection

infrastructure, (2) lack of integrated people data, (3) lack of common conceptual frameworks driving im-

provement loops from development data, and (4) lack of support for projection and simulation. Finally, we

illustrate the feasibility of leveraging MES principles to manage software development, using a Modularity

Debt Management Decision Support System prototype we developed. In this prototype we demonstrate that

information integration in MES-vision-driven systems enables new types of analyses, not previously avail-

able, for software development decision support. We conclude with suggestions for moving current software

development practices closer to the MES vision.

© 2014 Elsevier Inc. All rights reserved.
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. Introduction

Despite decades of research into software development processes,

oftware development still suffers from a lack of predictability with

egard to the cost, time, features, and quality of delivered products

Naedele et al., 2014; Kaur and Sengupta, 2011; Kanarakus, 2013;

halal-Esa, 2014; Jones and Bonsignour, 2011). Software develop-

ent managers often do not have a clear picture of exactly where

heir teams stand in the delivery schedule, as expressed by the time-

onored Ninety-ninety rule: “The first 90% of the code accounts for

he first 90% of the development time. The remaining 10% of the code

ccounts for the other 90% of the development time.” (Bentley, 1985).

Today, this challenge is becoming even more complex for software

evelopment management, because new issues such as avoiding le-

al liabilities, global distribution of development efforts, and ensuring

mployee qualification and retention are being added to the issues to
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e managed during development. For example, legal liabilities could

rise out of violation of open source licenses, copy and paste of copy-

ighted code from the Internet, or infringement of software patents

Hammouda et al., 2010; Scacchi and Alspaugh, 2012), violation of

xport control regulations or product defect liability laws.

One solution to better cope with these challenges is to learn

rom another domain that has comparable planning, monitoring, and

racking needs: industrial manufacturing. In fact, with “components”,

product lines”, and “software factories”, software engineering al-

eady has adopted many concepts from manufacturing (Cockburn,

007). Previous work on software project management has also ad-

ocated an “integrated” approach where software processes are to

e optimized as an integral, continuous process in the entire life cy-

le (Abdel-Hamid and Madnick, 1991). Similar to the manufacturing

oncept, it emphasized the use of the feedback principles of system

ynamics to structure and clarify the complex web of dynamically in-

eracting variables that affect management decisions (Abdel-Hamid

nd Madnick, 1991). This paper takes the idea of learning from man-

facturing one step further: to directly adapt the principles of a man-

facturing execution system (MES) to software engineering. This, we

laim, will help to manage and increase the predictability of software

evelopment by more fully integrating information, and will provide

basis for automated tool support for improved decision making.

http://dx.doi.org/10.1016/j.jss.2014.11.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
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mailto:hmchen@hawaii.edu
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mailto:yfcai@cs.drexel.edu
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mailto:lx52@drexel.edu
http://dx.doi.org/10.1016/j.jss.2014.11.015


60 M. Naedele et al. / The Journal of Systems and Software 101 (2015) 59–68

i

h

c

t

c

s

s

S

t

s

a

a

M

S

2

d

m

(

s

c

a

o

t

p

m

l

a

N

s

e

M

s

p

(

(

a

m

t

t

e

t

o

n

M

v

a

i

b

d

M

m

o

Our intention is not to argue that software development can or

should be managed like manufacturing. Our intention is also not to

claim that a factory MES product could be or should be used as-is for

software development. It is well-understood that, among other differ-

ences, software design is associated with higher level of complexity,

and the experience and skill of software developers play more signif-

icant role in software product quality and productivity. Despite these

differences, integrated management of information collection and

information flow is equally, or even more important in the software

development process given the greater levels of idiosyncrasy and

unpredictability in software development as compared with manu-

facturing. Both software and manufacturing process management re-

quires planning, monitoring, and tracking. Even for non-commercial

open source software development, where information on costs,

schedule, labors, etc. are not explicitly available, the concern about

software quality is no less than commercial software development.

As a matter of fact, successful open source projects usually employ

strict processes where developers’ privileges are tracked and con-

trolled based on information such as the amount of contribution they

made to the project (Mockus et al., 2000).

Given that manufacturing practitioners have spent decades refin-

ing their planning, monitoring, and tracking methodology, our idea

is to learn from the integrated management of information flows in

state-of-the-art production facilities from MES evolution in indus-

trial production and customize them to the development of software,

instead of reinventing this wheel piece by piece.

Software development as knowledge work is different from many

forms of industrial production, and often has many dimensions of un-

predictability and non-determinism. Many industrial manufacturing

and production processes are characterized by a separation of the cre-

ative design and development process and the repeated or continuous

production or assembly of the same goods, making use of machines,

robots, and unskilled labor. On the other hand, there are manufactur-

ing operations that use highly skilled workers and on the spot creative

problem-solving to produce complex small series or unique products

based on a set of skills, processes, and semi-finished products. Such

production is quite comparable to commercial software development.

For different types of software projects, commercial or open

source, the type and amount of information needed may vary, but

they could all benefit from the MES-vision-driven development that

centers on information integration, which we will make clear in

Section 5. Independent of how closely related the actual production

operations are in industrial manufacturing and software develop-

ment, the idea of connecting the various streams of information about

people, tools, artifacts, specifications, times, costs, defects, qualifica-

tions, customers, etc. is inherently valuable in software development.

We will also demonstrate how different types of analysis and decision

support functions that were not possible previously can be performed

given integrated data in Section 5.

MES principles, which center on information integration, are not

new. However, their full usage still remains a vision for software de-

velopment. We have observed, in our industrial practice, that the lack

of integrated information hinders our planning of software devel-

opment and prevents easy access to information required for man-

agement decisions (Naedele et al., 2014). In Naedele et al. (2014)

we presented five scenarios that motivate how different concerns of

software development management could be supported by a MES-

vision-driven system. In this paper we describe in detail how such a

system could be architected, detail the gaps between existing soft-

ware development practices and the MES vision, and provide some

early results that show that such a MES-vision-driven software devel-

opment is both feasible and beneficial. The results of this paper should

be useful to both software development organizations and software

engineering tool vendors. Software development organizations can

identify their tracking and tracing gaps, as compared with best prac-

tices in manufacturing, and address these gaps with commercial or
n-house tools. Tool vendors can take inspiration from this paper on

ow their integrated development environments or application life-

ycle management tools could be extended.

In what follows, we introduce basic MES concepts. Section 3 de-

ails MES functional areas applicable to software engineering pro-

esses. Section 4 describes the gaps between MES-vision and existing

oftware development practice. In Section 5, we present a prototype

ystem called the Modularity Debt Management Decision Support

ystem (MDM-DSS) that demonstrates the feasibility of how some of

he gaps identified above can be closed and how a MES-vision-driven

ystem could be architected. Section 6 provides four examples of new

nalysis and decision support functions in MDM-DSS that are en-

bled by the MES vision. We discuss the challenges in implementing

ES-vision-driven systems in Section 7. Conclusions are provided in

ection 8.

. Manufacturing execution systems

Manufacturing execution systems were borne out of the need to

eal with progress, resource, maintenance, quality, and provenance

onitoring and tracking requirements in manufacturing in the 1980s

MESA, 1997; ZVEI, 2011). A MES is essentially a decision support

ystem for managers.

The promises of MES include better planning and estimation ac-

uracy, support of process improvement through metrics, better staff

nd talent management, lower production costs, better management

f compliance as required in aerospace, food and drug industries, bet-

er supplier management, shorter time to market, alignment of local

roduction objectives with global enterprise goals, and reduction of

anual data entry (for time recording and billing purposes).

To realize these promises, MES functionality covers the data col-

ection and analysis of three aspects of manufacturing:

• Past: Storage and analysis of historical data of past process runs.
• Present: Real-time open and closed loop control of the process.
• Future: Prognostics and planning of future process runs as well as

early warning of process or quality deviations.

There are a few reference models created by organizations such

s the Manufacturing Enterprise Solutions Association (MESA), ISA,

AMUR, and the German VDI to define largely overlapping feature

ets for MES. As discussed in Naedele et al. (2014), the MESA ref-

rence model (http://www.mesa.org/en/modelstrategicinitiatives/

ESAModel.asp; MESA, 1997), which has been substantially revised

ince its inception in 1997, describes 10 functional areas and data de-

endencies among them. These 10 areas are (1) labor management,

2) resource allocation/status, (3) dispatching, (4) product tracking,

5) quality management, (6) performance analysis, (7) process man-

gement, (8) scheduling, (9) document control and (10) maintenance

anagement.

A detailed explanation of the scope and content of each func-

ional area can be found in ISA 95, part 3 (Standard ANSI/ISA, 2007);

here exist overlaps and interrelations between the functional ar-

as. Implementation varies, though. Also, between different plants,

he emphasis on the different MES functions will vary, depending

n the industry and the specific production and profitability bottle-

ecks the plant faces. Some aspects may even be missing in a given

ES implementation. Similarly, we do not require or expect that MES-

ision-driven software development will include these 10 functional

reas entirely and address their data sources to the same degree. Any

mplementation will be driven by individual organization’s unique

usiness context, for instance, what the most urgent supervision and

ecision goals for the organization are. We focus on the principles of

ES and the idea that all management tools should exchange infor-

ation and make use of that information to do their jobs better, not

n the completeness of the functional areas.

http://www.mesa.org/en/modelstrategicinitiatives/MESAModel.asp
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. MES features applied to software engineering

In this section, we explain the specific functional areas of a MES and

ow they could be applicable to improve the software development

rocess and address software development challenges/concerns. The

rst and foremost principle of MES is that these 10 functional areas

re all based on product processes in common use, and the data that

ay be collected from the processes. In manufacturing MESs, raw

ata are constantly collected, recorded, and organized from produc-

ion processes for use in the other areas. Collection of measurements

s the most important factor for achieving a controlled process. Al-

hough this is also true in theory for software development, in prac-

ice, automated data collection and acquisition in software develop-

ent projects today are not common (Montaser, 2013).

In software projects, a wide range of measurements are needed,

ncluding not only software artifact data such as function points, num-

er of bugs, lines of code, number of test cases, etc., but also quality

nd productivity data related to developers, such as the number of

ines of code committed per unit time per person or the number of

efects resolved per developer or team. However, if data are collected

n the level of individual developers, controls have to be put in place

o ensure that these data are not available for individual performance

eviews; otherwise the goal of process improvement would not be

chievable (Austin, 1996).

Based on the data collected from the various processes, a manu-

acturing MES supports the following 10 functional areas. We discuss

elow how each functional area can be applied to software develop-

ent processes and the associated challenges.

.1. Labor management

Labor management directs and tracks the availability and use of

roduction staff based on skills and qualifications as well as con-

traints such as absences. Managing staff is an important concern in

oftware development as well. In fact, these concerns are more promi-

ent with globally distributed software, which adds another level of

omplexity—the lack of face-to-face interaction—and thus requires

ore disciplined labor/staff management. Comprehensive informa-

ion about developers, beyond those needed in traditional MES sys-

ems, could be taken into consideration during software development

ask assignment.

.2. Resource allocation and status

Resource allocation in MES is about directing and tracking the spe-

ific mapping of people, tools, and materials to tasks. In software de-

elopment, the major resources that need to be allocated are people.

or new development, especially when using agile practices, task allo-

ations are typically informal and driven by availability and personal

nterest of the developer selecting the task, but not by organizational

spects like cross-training needs. Other scarce resources might need

o be managed as well, e.g. licenses for special tools and access to

rototyping boards and hardware debugging tools. These resources

re typically managed in informal and ad-hoc ways today.

.3. Dispatching production units

While the previous resource allocation step deals with matching

asks with suitable developers, the dispatching step deals with the de-

ision of which tasks to work on next, given priorities, dependencies,

nd resources. Similar to resource allocation, dispatching of software

evelopment tasks is typically done by team leads in informal ways

ased on lists of requirements and schedules captured in project man-

gement plans. Dispatching of test tasks may be more formal, if test

lans and test management are used. Build and integration tests are
ften automated and triggered by code check-in into the software

onfiguration management system.

.4. Product tracking and genealogy

A mass-market software producing organization might not be in-

erested where their products are sold to, installed, and used, and

hus may have no need for product tracking. However, in an increas-

ng number of application domains, the software business is not a

ne-time sales event; the initial sale is just the starting point for a

ontinuing series of vendor-initiated updates. For that purpose, the

oftware vendor needs to know which customer has which versions

f the software so that communication to customers and update de-

loyments can be planned and executed in an efficient way. Another

river for the need to know exactly which version and configuration

s installed at what site arises whenever the software producer is tak-

ng responsibility for supporting its customers in removing security

nd safety related vulnerabilities or defects discovered after release,

ike with the recent “Heartbleed” vulnerability in SSL libraries and

roducts using them. Today there is an increasing expectation that

oftware vendors accept such responsibility, and at some point this

ight even become legally mandated in some industries.

Tracking provenance of contributions to the software product is

mportant for three reasons: The first one arises from intellectual

roperty and copyright law. It is necessary to ensure and document

hat no unlicensed IP is used in the developed application. The sec-

nd reason results from other legal requirements that require prov-

ng that developers involved in the creation of certain artifacts have

ertain qualifications (e.g. Professional Engineer’s license, safety en-

ineer certification, etc.) or meet other personal constraints like cit-

zenship or security clearance. A combination of product genealogy

nd labor management functions can achieve this. Even if not subject

o requirements on the level of individuals, export-control regula-

ions of certain countries require that a vendor is able to document

he geographic regions from which certain subsystems—for example,

ryptography—originate. In a more general case, there are various

tandards that require the collection and presentation of evidence to

ertifying agencies that certain software and system engineering pro-

ess requirements were followed. This compliance documentation for

ertification according to e.g. IEC 61508 (safety) or IEC 15408 (security

ommon Criteria) is effort-intensive and expensive to create after the

act or without integrated tools. Concerns about backdoors or other

ntentional security vulnerabilities or malicious functionality give a

hird motivation for provenance tracking. A customer may want to

now about the origin of all the pieces in a software application or

mbedded system to assess the risk of malware infiltration.

To deal with the challenges described above, a software MES appli-

ation should be able to search the produced code base for collisions

ith known problematic source code and also to securely manage

etailed certificates of provenance/originality provided by develop-

rs together with each piece and version of code they submit to the

oftware configuration management system. For each product and

ersion the MES should be able to provide a software “bill of materi-

ls” annotated with tamper-proof provenance information.

.5. Quality management

In a MES, quality management involves recording and tracking

easured quality parameters of work products and processes, com-

aring them against targets, and triggering reactions on below-target

uality. Many software development tools have APIs for metrics cal-

ulation, but such data collection rarely happens in an integrated

ashion and with broad coverage. In a software project, any one of

he metrics alone is usually not sufficient to provide a basis for man-

gement decision making or pinpointing problematic processes or

rtifacts. Given the wide acceptance of issue tracking and version



62 M. Naedele et al. / The Journal of Systems and Software 101 (2015) 59–68

c

n

t

s

a

m

t

o

i

m

u

f

h

i

b

3

o

a

v

p

m

s

o

o

s

a

t

o

t

p

b

4

a

p

l

v

t

E

a

o

n

t

s

d

s

4

d

l

r

t

s

b

a

T

c

control systems, it becomes possible to trace each defect to concrete

times, versions, and developers. Although a large number of research

papers have proposed leveraging such data for the purpose of various

analyses, such as defect prediction, an integrated and systematic data

collection and synthesis mechanism is not available today.

3.6. Performance analysis

In a MES, performance analysis includes measuring task execu-

tion parameters, calculating key performance indicators (KPIs) e.g.

on quality, availability, productivity, and comparing them to tar-

gets set by the organization or external regulatory bodies, as well

as presenting and visualizing these KPIs for various stakeholders

e.g. upper management, human resources, production management,

testers/QA, product management, sales, supply management, process

group, maintenance, logistics.

In software development projects, performance analysis for dif-

ferent stakeholders is similar. A variety of process and product re-

lated metrics is available for that purpose (Jones, 2008). Reaching and

maintaining CMMI levels 4 and 5 requires measurement-based per-

formance analysis. While some performance analysis driven feedback

loops are obvious, one could also imagine more sophisticated appli-

cations, for example to give software architects early feedback on

whether the proposed architecture is being accurately or efficiently

realized by an organizational setup in a distributed team. As another

example, planned and actual schedule could be tied back to require-

ments and their valuation to enable real-time earned value control

for projects.

Care has to be taken to manage the trade-off between detailed

analysis of quality and performance data and incentive-relevant per-

formance evaluation for individual employees and units (Coman et al.,

2009) which might produce unintended and counterproductive side

effects (Austin, 1996) or even result in conflicts with local labor laws

and trade union requirements. A software MES could ensure that only

suitably aggregated information is available to each stakeholder.

3.7. Process (development progress) management

Process management in MES involves directing and tracking the

flow of work through the plant, creating alarms in case of deviations

and providing decision support to correct deviations or react on other

events, including approval workflows and escalation management.

Tools to detect and provide guidance on process deviations in soft-

ware development are available, for example, in the form of build

systems that send out alerts in case of broken builds, smoke-test type

integration tests, regression test suites, as well as software visual-

ization (Maletic et al., 2011) and impact analysis tools to support

the development team in finding the least risky approach to making

necessary changes.

3.8. Operations/detailed scheduling

In a MES, scheduling involves optimal sequencing of tasks con-

sidering finite resource capacities and other constraints. Support for

scheduling in software development exists in the form of online and

offline requirements prioritization tools, traditional project manage-

ment scheduling tools, and backlog management tools.

3.9. Document control

In a MES, document control involves distributing relevant infor-

mation to the people working on tasks at the right time (e.g. process

documentation, design documentation, work orders), and collecting

new documents resulting from production (e.g. design documen-

tation, test/QA documents, certifications of provenance). Industrial

manufacturing process engineering expends much effort on making
lear and concise instructions about the task at hand and making

ecessary supporting information available to the worker at the right

ime and place. The goal is to minimize the time the worker has to

earch for information or tools. Part of the document control function-

lity of the software MES could thus also be interfaces to experience

anagement systems (Basili et al., 1994), both as recommender sys-

em to provide useful experiences to the developer just in time based

n project context, and to feedback usage and benefit information

nto the experience repository.

In software development, there is typically a document manage-

ent system for long-term storage and version management of doc-

ments. Beyond that, software developers experience little support

rom systems that provide selected documentation for the task at

and. Information like related requirements, design descriptions, and

ssue tracking tickets are usually kept in separate systems and must

e manually integrated by the developer.

.10. Maintenance management

In a MES, maintenance management involves collecting statistics

n tool performance and uptime, and planning improvement work

nd investments. As there are few physical tools subject to wear in-

olved in software development, machine maintenance is of low im-

ortance. Nevertheless, it is clear that software (code) changes much

ore frequently than hardware and software maintenance—in the

ense of accommodating new features—can consume up to 80% of

verall project effort.

In addition, one could imagine that slowdown and downtimes

f the IT infrastructure for software or hardware upgrades or virus

cans could be integrated with the scheduling and dispatching tools to

void unnecessary waiting times. Other maintenance aspects related

o tools usage and user satisfaction might trigger tool replacement

r user training. Time series data on the usage of tools can be used

o identify where time is spent (and, more important, lost) in the

roject and thus find which process elements are inefficient and cause

ottlenecks.

. Gaps between existing software development tooling

nd the MES vision

The previous section has shown that there exists considerable

otential for productivity, efficiency, and quality improvements in

ending manufacturing-proven MES functionality to the software de-

elopment domain. However the mapping of MES functional areas

o the software development process is, not surprisingly, imperfect.

mploying our understanding of the unique properties of software

nd its development, we now analyze the major gaps between state-

f-the-art software engineering and MES practices. Note that we are

ot claiming that these gaps are impossible to bridge—quite the con-

rary. There are many challenges. However, we do claim that existing

oftware engineering toolsets today largely ignore these gaps, to the

etriment of the systems and projects that these toolsets purport to

upport.

.1. Gap 1. Lack of integrated use of people data

Labor management in software development is today typically ad-

ressed by standalone project management and time accounting tools

ike MS project. Time accounting is usually coarse-grained and can

arely be traced back to specific development tasks. Qualification and

alent management and personal or career development aspects are

eldom incorporated into such tools and their related processes. Visi-

ility into, and resource planning of, team members is rarely achieved

nd this is even more difficult when the team is globally distributed.

ime series data could also be used to monitor and evaluate the suc-

ess rates of staff training.
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Compared with other types of software project data, such as evolu-

ion history (recorded by version control and issue tracking systems),

nd software artifact data (such as source code measurements), data

bout people are typically not recorded as part of the software project

anagement process. And such data, which are commonly available

n HR systems or ERP (enterprise resource planning) systems, is sel-

om used for the management of software development teams.

For example, consider what happens at a company if a project

ithin the company wants to free some time of architect A (so that

can work on other things). It is not clear what tasks A does, how

uch time is spent on each, which of this work is non-architectural

nd could be done by other team members, and which team members

ould be best suited to take up these tasks from a loading, qualifi-

ation and career development perspective. Currently most software

evelopment organizations lack the integrated data needed to sup-

ort such decision-making.

.2. Gap 2. Lack of effective, unified data collection infrastructure

Although some of the data needed in software development MES

xist in various tools in current use, these data have heterogeneous

ormats associated with their own tools for their own purposes. Revi-

ion history and bug tracking data, for example, are usually managed

y separate tools, even though they are closely related. Requirement

nd design documents may be created, but their evolution is not as

ell managed and controlled as that of source code and the manage-

ent of these documents is disconnected from other artifacts, such as

ode and test cases. More seriously, in large organizations, architec-

ure design, quality control, and requirements engineering are usually

anaged by different departments, using separate tool suites, making

t harder to collect data uniformly.

Some research work has been done on building infrastructures for

oftware engineering data collection (e.g. PROM (Coman et al., 2009),

ackystat (Johnson, 2007), CodeMine (Czerwonka et al., 2013)) but

espite case studies reporting positive results, they only provide part

f the envisioned MES for software, and in any case have not been

idely adopted. To enable meaningful fine-grained analysis or even

losed-loop control of development processes, it will be necessary to

ollect time-series data sampled at frequent regular intervals instead

f collecting only data associated with events such as code check-ins.

.3. Gap 3. Lack of common conceptual frameworks driving

mprovement loops from development data

To achieve a MES-vision-driven software development process, it

s necessary to combine and correlate measurements and data from

ifferent areas. For example, accurate size and effort estimates depend

n collecting high-quality historical data about the effort needed for

mplementation tasks together with related parameters such as the

ualification levels of developers and achieved code quality or defect

evels (Buglione and Ebert, 2007). The degradation of productivity

nd quality are usually the result of architectural decay. Thus analysis

ethods to close the loop between architecture and implementation

re necessary.

To build analysis, prediction, and warning systems, we must have

ommonly agreed on metrics and indicators, standardized APIs for

ata extraction from tools, and benchmark baselines valid for differ-

nt types of development projects, e.g. open source or commercial

pplications.

.4. Gap 4. Lack of support for integrated future projection

nd simulation

In manufacturing MES, scheduling involves selecting the tasks

o accomplish in the near future under constraints such as limited

esources, and aiming to optimize the outcomes. One important
lement in scheduling is projection of the near future: which re-

uirement items should be addressed in the next release? Which

ugs should be fixed first? Which parts of the code should be refac-

ored? What will be the consequences of refactoring, or not refac-

oring, in terms of costs and benefits? Unfortunately, while there

s some methodological support for combining architecture analysis

nd cost/benefit analysis (Nord et al., 2003), there are no tools or

rameworks that allow for the future projection and simulation that

re necessary for effective scheduling and dispatching.

In summary, given the recent advances in software engineering

anagement tools, such as version control systems, issue tracking

ystems, backlog management systems, as well as social media that

upport collaboration and communications among developers, most

f the data needed as the foundation for a software MES are readily

vailable. However, due to the fact that these data are produced from

eparate tools, and usually managed by different departments of a

arge organization, the framework needed for information integra-

ion and acquisition are not yet available. Moreover, the information

bout people, which is usually managed by human resources, should

e integrated with other project data generated from the develop-

ent process. Finally, a well designed, MES-driven decision support

ystem for software development should support future projection

nd simulation.

. The MDM-DSS

In this section, we present a prototype system we have been evolv-

ng for the past 3 years called the Modularity Debt Management Deci-

ion Support System (Cai et al., 2014) that demonstrates the feasibil-

ty of how the gaps identified above can be closed, moving us toward

he vision of MES-driven software development. The MDM-DSS is

llustrated in Fig. 1.

The goal motivating this example is software quality management.

pecifically we are attempting to measure and manage modularity

design) debt in complex software projects. To achieve this we have

pplied the MES principles and built a data collection infrastructure

addressing Gap 2) that forms the foundation for a decision support

ystem. The inputs to the system, including source code, patches,

ug reports, commits, etc., are the outputs of a typical software de-

elopment process. The ETL (extract, transform, and load) modules,

ext mining tools, as well as the project data warehouse, is similar

o the data collection and acquisition infrastructure of a MES system.

he modularity debt metrics, effort prediction models, and simula-

ion models are equivalent to the components of specific functional

reas of a MES, such as quality management and performance analy-

is. The modularity debt prediction, hotspot identification, refactoring

ost/benefit estimation, and refactoring simulation can similarly to be

een to be equivalent to the MES areas of resource allocation, main-

enance management, and scheduling.

In the MDM-DSS infrastructure we collect data from projects and

eople (addressing Gap 1)—data on the source files, the changes to

hose files over time (patches and commits), the bugs and issue re-

orts affecting the system, and their associated discussions—and store

his data in a project-specific data warehouse. We model people data

s well as mining associated discussions to estimate effort. So, for

xample, we can determine profiles of different programmers with

espect to how effective they are at removing bugs, their level of

xpertise with different areas of the project’s code-base, their pro-

uctivity, their experience with related frameworks and tools, and so

orth (Kersten and Murphy, 2006).

Note that in the MDM-DSS we can also make use of data external

o a given project. This is particularly useful if a project is young and

ence does not have a long history on which to base decisions. Using

xternal project data allows decision-making to proceed based on a

et of company-wide or industry-wide standard projects.
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Fig. 1. The Modularity Debt Management Decision-Support System (MDM-DSS).
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To move toward narrowing Gap 3, we extract software complex-

ity metrics and project effort measures. Using these measures we can

determine areas of potentially high modularity debt. But just because

a piece of code is complex does not mean that we want to spend

project resources to pay down the debt. By mining project history, we

can determine if the identified areas of the code base are also sites

of anticipated future change. After all, we do not want to spend pre-

cious project resources to “fix” a part of the code that seldom changes.

For this reason we need to simulate the future, to determine the po-

tential payoff associated with reducing technical debt (Brown et al.,

2010) (for example, by refactoring). All of this information can then

be presented to a manager, as a set of recommendations and the man-

ager, possibly playing out a number of different what-if scenarios, can

make informed decisions based on the anticipated costs and potential

benefits of various refactorings. This is an example of showing how

Gap 4 can be narrowed.

More specifically, to address Gap 4 (lack of support for integrated

future projection and simulation), we are experimenting with the use

of the Datar–Mathews method for valuing real options (Mathews and

Datar, 2007) as a means of valuing re-modularization (refactoring)

activities. A real option is the right, but not the obligation, to make an

investment in the future. The Datar–Mathews method was originally

developed for use in the Boeing Corporation and is more transparent

and intuitive for managers to apply while being analytically equiva-

lent to Black–Scholes. Furthermore, it can be easily implemented us-

ing Monte Carlo simulation. Monte Carlo simulation typically consists

of a mathematical framework and an accompanying tool suite. This

allows us to simulate the value of proposed modularization activities,

under scenarios that we choose. The value of refactoring a specific

part of a software corpus, for example, is tied to how that part is ex-

pected to evolve, which is in turn dependent on user requirements.

The real option value of a refactoring activity is calculated by simu-

lating the following simple formula using a simulation package, such

as Oracle’s Crystal Ball or Palisade’s @Risk:

Real option value = Average[MAX(prof it − cost, 0)]

where profit is a distribution of the discounted profits at time

0 and cost is the estimated cost of implementing the specific re-
modularization activities. p
What we are trying to model with this method is straightforward:

he more often you expect to modify a module, the more value you will

ain by “purchasing the option” to make that module easier to mod-

fy and maintain. For example, if the business logic in an e-commerce

ite is frequently changed, then there is benefit in having this logic

e “easy to change” (Carriere et al., 2010). To estimate the benefit of

efactoring the business logic, stakeholders need to estimate the fu-

ure volatility of that portion of the code: how often is business logic ex-

ected to change and in what ways? A project manager or architect can

ake these estimations based on intuition or, better still, on project

istory derived from the data. That is, the modules that are changed

ost frequently and most recently will be automatically proposed by

he MDM-DSS as candidates. The triangular distribution used in the

imulation simply requires that the architect (or other project stake-

older) estimates an optimistic, pessimistic, and most likely value for

ny estimated parameter (such as the number of expected times that

his module will be modified in a given time period). Given the ex-

ected number of changes to the module, we simply multiply it by the

xpected costs savings (due to the proposed modularization activity)

er change to determine the total benefits. The architect can leverage

he data collected from project history in the MDM-DSS to estimate

hese cost savings—the benefit—and can use the module identified as

refactoring candidate to estimate the cost of refactoring.

Given the benefit that accrues to this change along with the an-

icipated frequency of the change, we can now estimate the net mod-

fiability benefits of the change at any time period in the future. An

xample of how this calculation would be formulated is given in the

preadsheet shown in Fig. 2, where the Monte Carlo simulations are

erformed by the @Risk software add-in. In this example project, the

urrent code structure complexity increase factor is 9% and a pro-

osed refactoring promises to bring the number back to 5% (Cai et al.,

014).

. Instantiating the MDM-DSS: four examples

Over the past 3 years we have used this infrastructure to collect

ata from, and to analyze, more than 20 open source projects and 1

roprietary project. For example, in Cai et al. (2014) we previously
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Fig. 2. An example of a spreadsheet realizing the Datar–Mathews model (Cai et al., 2014).
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eported on some of the results of analyzing five Apache projects:

erby, Lucene, PDFBox, Ivy, and FtpServer.

The software metrics that we have collected thus far are pri-

arily coupling and cohesion-based, and focus on capturing struc-

ural/architectural complexity. We have chosen to use the Chidamber

nd Kemerer suite of metrics (Chidamber and Kemerer, 1994), as

hese are well-established and validated, as well as a more recent

oupling metric, propagation cost (MacCormack et al., 2006). But in

rinciple any appropriate metrics could be employed in an MES.

In addition to these metrics, we collected proxy measures of ef-

ort, on a file-by-file basis, so that we can analyze the amount of effort

hat goes into fixing a bug or adding a feature. This aids us in drawing

onclusions about the use of personnel. We collect proxy measures

ecause actual measures of effort are seldom available in software

rojects and even when effort has been tracked, it is typically tracked

t such a coarse level of granularity (i.e., the project, or major subsys-

em) as to be of no use in supporting analysis, The proxy measures

f effort that we collect are: actions—the total number of patches and

ommits made to a file for the purpose of addressing issues, churn—the

umber of lines of code changed in a file for the purpose of address-

ng issues, and discussions—the number of textual comments made

o address issues and related to a file. Furthermore we capture the

umber and severity of bugs that affect each file. Finally, we employ

modularity violation detection tool to identify trouble spots in the

ode base (Schwanke et al., 2013).

Using these multiple metrics, and measures, we are able to sup-

ort a manager in “triangulating” problems affecting the (files of the)

oftware project, as we will show. But just identifying potential trou-

le spots is not enough. The purpose of a MES-vision-driven software

evelopment process, as stated above, is to give management bet-

er visibility into processes and to enable them to react quickly and

ppropriately. Reacting quickly and appropriately means balancing

ultiple factors, including the future quality of the product, impend-

ng requirements and associated deadlines, the available skills of the

e

oftware developers, and the costs of development, maintenance, and

perations. In the end, virtually every decision in a software project

s an economic decision.

For example, we can calculate a “maintainability risk” measure

or each file in a software project using existing software metrics. A

anager can monitor the variation of these measures over the course

f the system’s evolution, using the system to rank the modules based

n their maintainability risks. The manager can also monitor the vari-

tion in the number of bugs, the time needed to fix the most critical

ugs, the time spent by each developer on each task, etc. The data col-

ected using this MDM-DSS can be used to support software-related

ecision making, including defect and effort prediction and refactor-

ng decisions.

To achieve this goal we have created a tool suite to extract data

rom various open- and closed-source projects. These tools analyze

he code base itself, the revision history, and the log of bug/issue re-

orts and their associated discussions, thus addressing Gap 2 (unified

ata collection infrastructure).

xample 1: Fig. 3 depicts one example of time series data that we

ave collected—the number of change requests—for four open-source

rojects. The data is collected in 2-week intervals, a typical time in-

erval of a sprint for an agile project. This graph shows how the “ac-

iveness” of a project, as measured by the number of change requests,

aries over time and how the activeness differs between projects.

his is a global measure of project health. For example, the graph

hows that the activeness of Lucene increases over time whereas the

erces project has far fewer change requests, as compared with other

rojects. The number of actions can be as an important KPI of the

roject, which is within the performance analysis area of a MES.

This is the simplest “software MES” function that can already be

asily collected and visualized in most open source and commercial

rojects, and thus just addresses Gap 2. In our prior work (Schwanke

t al., 2013), we have also collected data about the types of tick-

ts recorded in a commercial project’s issue tracking system over
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Fig. 3. Change requests in Lucene, Derby, Geronimo, and Xerces.
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Fig. 4. Effort and complexity tracking in the Apache Camel project.
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multiple releases. The data clearly showed that, as time goes by, more

and more effort was spent in fixing bugs, rather than adding new fea-

tures, revealing a declining feature delivery velocity. This is a simple

form of addressing Gap 4.

Example 2: Let us consider another example. This data, collected from

the Apache Camel project, analyzed the riskiest files in the project,

as measured by the number of bugs that have historically affected

them. For each of these files we calculated complexity metrics and

measures of effort. Fig. 4 below shows the progression of one such

metric—weighted method complexity—and two proxy measures of

effort—churn and actions, for two of the project’s files. These values

have been plotted over 61 versions of the files CxfEndpoint.java and

BeanInfo.java, where a version corresponds to an agile sprint typically

lasting 2–4 weeks. In each of these graphs, the X-axis is the version

number and the Y-axis is the value of the various metric and effort

proxy measures, as plotted on a log-10 scale. As can be plainly seen,
s the complexity of each file goes up, the effort to evolve, fix, and

aintain the file increases dramatically. Because these measures can

e automatically tracked, prioritized, and visualized for a manager,

hot spots” in the code base can be easily identified and analyzed,

hus addressing Gap 3 and Gap 4.

This information belongs to the maintenance management area of

he MES. Such information provides continuous feedback to the man-

ger, supporting a principled data-driven analysis of how to allocate

roject resources, in the spirit of a MES. The data used in this exam-

le were collected and analyzed using the same MDM-DSS system as

xample 1. The more data are collected and integrated, the more MES

reas can be applied.

xample 3: We recently (Schwanke et al., 2013) conducted a case

tudy using a real industrial project. In this study, we first identi-

ed “hotspots” of the system by combining source code metrics with

istory data extracted from the project’s version control and issue

racking systems. We found that most error-prone files are also out-

iers in terms of files metrics, such as file size and fan-out. During this

rocess, we also realize that only pointing out which files are error-

rone and too big are not really helpful to the developers. They need

oncrete suggestions about how to refactor.

To further analyze the reasons behind the error-proneness of these

les, we analyzed modularity violations that happened during the

volution history of the project. The results show that most files that

re changed together but that are not syntactically related, are part

f an architecture violation. For example, there was one group of

even files that were put in the incorrect layer, which led to them

o never be properly tested. Other reasons behind modularity viola-

ions include un-encapsulated assumptions, implementation errors,

tc. Based on these results, the project lead compiled a detailed refac-

oring proposal, which was approved by management and recently

mplemented. This was another instance of addressing Gaps 3 and 4—

ur integrated data collection and analysis infrastructure allowed us

o drive improvement loops supporting optimized future allocation

f project effort.

This case illustrated that the information collected and analyzed

an influence the scheduling function area of the MES-vision-driven

ystem for software development. The fact that the refactoring deci-

ions had, in the past, been made after a labor-intensive process with

ittle tool support indicates the need for an integrated framework

o that such decisions can be made in a more effectively and timely

ashion, and hopefully before significant amounts of maintenance cost

ave been paid.

xample 4: In another study we explored the relations among the

uggy files of 1 industrial and 10 open source projects, expressed
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sing design rule spaces (DRSpaces)—a group of architecturally

onnected files, a subset of all the files in the system. The files within

DRSpace are directly or indirectly related to one or more leading

les, through one of more types of relations, e.g. inheritance, depen-

ency, aggregation, etc. (Xiao et al., 2014). Leading files are typically

mportant abstraction interfaces, and so many other files depend on

hem, directly or indirectly.

In our study of DRSpaces we showed that despite the varying

izes and lengths of evolution history among these 11 projects, the

umber of DRSpaces needed to capture the most buggy files remained

table over time, meaning that buggy files are typically architecturally

onnected. Also, the more buggy the files, the more closely they are

onnected within just a few DRSpaces—80% of the top 10 percentile

f the most buggy files are captured by no more than 4 DRSpaces,

eaning that buggy files are not islands; they influence each other.

e also looked at the evolution of the DRSpaces that contain the most

uggy files, which we call the “buggy roots”. We found that these roots

row with project size and the number of buggy files, meaning that as

oftware evolves more files are connected by these roots, and hence

hese files become buggy too. Our results indicate that architectural

elationships have significant contribution to the bugginess of files

nd overall project quality, and thus it is critical for a project manager

o pay attention to and devote resources to architectural quality as a

ey to reducing the bugginess of a project.

This case showed that combining information from disparate data

ources—bugs from the issue-tracking database, code history from

he revision control system, and the code itself—we could gain an

mportant insight into the root causes of project bugginess that could

ot have been gleaned from looking at any of the information sources

ndependently. This insight can then be used to improve the project,

hus addressing Gap 3.

. Discussion

Our experiences of building this infrastructure revealed several

hallenges of developing MES-vision-driven system for software de-

elopment. First of all, different tools provide different types of APIs

nd interfaces. As a result, although our current framework can uni-

ormly process all the projects using the JIRA issue-tracking system,

ombined with the SVN version control system, we have to create

new set of tools or substantially modify and parameterize exist-

ng tools for projects using different kinds of version control and bug

racking systems. Existing tools simply lack standardized interfaces

nd protocols for software project data extraction. Second, we simi-

arly do not have standardized interfaces for metrics calculation. We

ave to revise our tools to accommodate different metrics calculation

ools.

We believe that the solution to these problems—increased stan-

ardization and interoperability among tools—would help the soft-

are community move rapidly toward a MES-vision-driven system

or software development. In addition, there is a risk that a software

roject manager might be a victim of “information overload”. The

ES principles can also help here, in much the same way that data

arehouses help in validating, cleansing, processing, and summariz-

ng business data so that effective decisions can be made. Data, by

tself, can be overwhelming, but properly summarized, analyzed and

resented, it can be a huge competitive advantage.

Hopefully it is clear from the above examples that not all 10 MES

reas apply to all projects, and our approach to add value as long as

he MES principles (integrated views of data) are applied even with

imited scope of data. In a closed source environment one might have

ccess to more and more kinds of data (e.g. personnel data), but one

an still get value out of analyzing any project, even with a subset of

he 10 MES areas, as we have demonstrated.

While we have shown that this approach is useful for both open

nd closed source projects, in the closed source world you have more
pportunities to have more kinds of data sources (e.g. HR data, cost

ata) and more data sources will facilitate more kinds of analysis. But

e still believe that this has value in the open source context. After

ll, nearly all of our examples come from open source systems, and

e were able to analyze the publicly available data, combine it, learn

rom it, and identify obvious areas for improvement.

. Conclusions and future work

In this paper, we have analyzed how MES principles and con-

epts can be leveraged to address the concerns of software develop-

ent in practice. Our contributions are two-fold: first, we analyze and

ustom-fit the MES-vision to provide software development practi-

ioners a framework (planning, monitoring and tracking) for increas-

ng software development predictivity and quality. Some MES func-

ionality is already in place today in many companies, such as progress

nd quality dashboards, metrics collection, and time accounting, but

hey are typically spread over a patchwork of non-integrated systems

nd tools. In addition, many of the functional capabilities of MES are

ot being supported in current software project supporting tools. We

ave identified four gaps between current software system develop-

ent practice and the MES vision for software development.

Secondly, we have developed a prototype, MDM-DSS that demon-

trates new types of analyses (which were not possible, or difficult to

erform, previously) enabled by the MES-vision for software devel-

pment decision-making. The individual capability of each MDM-DSS

odule is in fact expanded or enhanced by the integration of all func-

ional areas—which is the key point discussed in our examples, illus-

rating how the four gaps are narrowed in our MDM-DSS prototype.

he feasibility demonstrated through our prototype MDM-DSS also

heds light into the challenges and future directions of implementing

ES-vision-driven systems. In fact, similar to what historically drove

ES deployment in manufacturing, software development organiza-

ions may not be able to meet some near-term demands on quality

nd legal compliance without integrated information management

nd integrated tool support. We believe that this vision will, of ne-

essity, become a reality in the near future; the only question is how

oon and how well we take on this challenge as a community.

Applying MES principles, we have also demonstrated via the

DM-DSS prototype, the feasibility and benefits of using a unified

nfrastructure to automatically collect, fuse, and analyze data from

ultiple tools and across different software projects. In our future

ork, we plan to expand our prototype to use historical effort, change,

nd bug data to track and infer the costs of code changes and bug-

xing. We intend to extend our case studies of MES-vision-driven

oftware development in different contexts of project management.

he goal is to be able to monitor project progress, control quality and

ake timely project decisions in software development on a sound

uantitative and economic basis, just as MESs do for manufacturing

ystems.

Specifically and as an example, we are already building on our

ecent work in automatically detecting architectural hotspots (Xiao

t al., 2014). We can include these identified hotspots, along with an

stimate of the technical debt that they are incurring, in an archi-

ect’s dashboard—an instance of the MDM-DSS as presented in Fig. 1.

e can not only identify the architectural hotspots, but we can pro-

ide evidence-driven explanations to the architect as to why these

re flaws, which can lead them to understand how to fix the flaws

hrough refactoring. Finally we can provide future effort predictions,

ased on project data, as to the benefit of a proposed refactoring, al-

owing architects and project managers to make reasoned economic

ecisions about software structure. We have already completed one

ase study realizing this vision and are actively working on others.

We expect our framework based on the MES vision will aid deci-

ion support in many other areas of software development. And each

f these is a potential area of future research—e.g., planning, tracking
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and monitoring of globally distributed development efforts, resource

allocation and dispatching of software development tasks, legal

compliance of software licensing, tracking of software provenance,

software defect prediction, dynamic development effort progress

management, real-time earned value control for projects, and so on.
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