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The manner in which information flows in financial
markets is more consistent with stochastic calculus than
with ”standard calculus”.

For example, the relevant ”time interval” may be different on
different trading days.
Numerical methods used in pricing securities are costly in
terms of computer time. Hence, the pace of activity may make
analysts choose coarser or finer time intervals depending on
the level of volatility.

Some reasons behind developing a new calculus:
A complicated random variable can have a very simple
structure in continuous time, once the attention is focused on
infinitesimal intervals.
A ”binomial” structure may be a good approximation to reality
during an infinitesimal interval dt, but not necessarily in a
large ”discrete time” interval denoted by ∆.
The main tool of stochastic calculus, Ito integral, may be more
appropriate to use in financial markets than the Riemann
integral used in standard calculus.
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Functions:

Suppose A and B are two sets, and let f be a rule which
associate to every element x of A, exactly one element y in B.
Such a rule is called a function or a mapping. In
mathematical analysis, functions are denoted by

f := A→ B (1)

or by
y = f (x), x ∈ A. (2)

If the set B is made of real numbers, then we say that f is a
real-valued function and write

f := A→ R (3)

If A and B are themselves collections of functions, then f
transforms a function into another, and is called an operator.
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Random Functions:

y = f (x), x ∈ A, (4)

once the value of x is given, we get the element y . Often y is
assumed to be a real number. Now consider the following
significant alternation.

There is a set W , where ω ∈W denotes a state of the world.
The function f depends on x ∈ R and on ω ∈W :

f : R ×W → R, (5)

or
y = f (x , ω), x ∈ R, ω ∈W , (6)

where the notation R×W implies that one has to ”plug in” to
f (·) two variables, one from the set W , and the other from R.
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The function f (x , ω) has the following property: Given a
ω ∈W , the f (·, ω) becomes a function of x only. Thus, for
different values of ω ∈W we get different functions of x . The
f (x , ω) can be called random function or stochastic process.

Figure : 1 - Randomness of a stochastic process is in terms of the trajectory as a whole.
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The Exponential Function

The infinite sum

1 + 1 +
1

2!
+

1

3!
+ ...+

1

n!
+ ... (7)

converges to an irrational number between 2 and 3 as
n→∞. This number is denoted by the letter e. The
exponential function is obtained by raising e to a power of x :

y = ex , x ∈ R. (8)

It has the following properties (discounting asset prices):

dy

dx
= ef (x) df (x)

dx
. (9)

exey = ex+y . (10)

Finally, if x is a random variable, the y = ex will be random.
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The Logarithmic Function

The logarithmic function is defined as the inverse of the
exponential function. Practitioners often work with the
logarithm of asset prices (log return). Given

y = ex , x ∈ R, (11)

the natural logarithm of y is given by

ln(y) = x , y > 0. (12)

Functions of Bounded Variation

Suppose a time interval is given by [0,T ]. We partition this
interval into n subintervals by selecting the ti , i = 1, ..., n, as

0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tn = T . (13)

The [ti − ti−1 represents the length of the ith subinterval.
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Functions of Bounded Variation

Now consider a function of time f (t), defined on the interval
[0,T ]:

f : [0,T ]→ R. (14)

We form the sum (15)
n∑

i=1

|f (ti )− f (ti−1)|. (16)

Given that uncountably many partitions are possible, the sum
assumes uncountably many values. If these sums are bounded
from above the function f (·) is said to be of bounded
variation. It implies functions are not excessively ”irregular”.

V0 = max
n∑

i=1

|f (ti )− f (ti−1)| <∞ (17)
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An Example

Consider function

f (t) =

{
tsin(πt ) when 0 < t ≤ 1
0 when t = 0

(18)

It can be shown that f (t) is not of bounded variation.

Figure : 2 - Note that as t → 0, f becomes excessively ”irregular”.
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Convergence and Limit

Convergence and Limit

Suppose we are given a sequence

x0, x1, x2, ..., xn, ... (19)

where xn represents an object that changes as n is increased.

In the case where xn represents real numbers, we can state
this more formally:

DEFINITION: We say that a sequence of real numbers xn
converges to x∗ <∞ if for arbitrary ε > 0, there exists a
N <∞ such that

|xn − x∗| < ε for all n > N (20)

We call x∗ the limit of xn.
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The Derivative

The notion of the derivative can be looked at in (at least) two
different ways.

It is a way of defining rates of change of variables under
consideration. In particular, if trajectories of asset prices are
”too irregular”, then their derivative may not exist.
The derivative is a way of calculating how one variable
responds to a change in another variable. For example, given a
change in the price of the underlying asset, we may want to
know how the market value of an option written on it may
move. These types of derivatives are usually taken using the
chain rule.

DEFINITION: Let y = f (x) be a function of x ∈ R. Then
the derivative of f (x) with respect to x , if it exists, is formally
denoted by the symbol fx and is given by

fx = lim∆→0
f (x + ∆)− f (x)

∆
(21)
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The Derivative (continued)

The variable x can represent any real-life phenomenon.
Suppose it represents time. The ∆ would correspond to a
finite time interval. The f (x) would be the value of y at time
x , and the f (x + ∆) would represent the value of y at time
x + ∆.

The numerator in (21) is the change in y during a time
interval ∆. The ratio itself becomes the rate of change in y
during the same interval.

Why is a limit being taken in (21)? It is taken to make the
ratio in (21) independent of the size of ∆, the time interval
that passes.

Making the ratio independent of the size of ∆, one pays a
price. The derivative is defined for infinitesimal intervals. For
larger intervals, the derivative becomes an approximation that
deteriorates as ∆ gets larger and larger.
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The Derivative of Exponential Function

Consider the exponential function:

f (x) = Aerx , x ∈ R. (22)

fx =
df (x)

dx
= r [Aerx ] = rf (x), or

fx
f (x)

= r . (23)

Figure : 3 - The quantify fx is the rate of change of f (x) at point x.
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The Derivative as an Approximation

Let ∆ be a finite interval. Then, using the definition in (21)
and if ∆ is ”small”, we can write approximately

f (x + ∆) ∼= f (x) + fx ×∆. (24)

Figure : 4 - The quality of approximation depends on the size of ∆ and the shape of f (·).
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Figure : 5 - Here, ∆ is large. The approximation f (x) + fx∆ is not near f (x + ∆).

Figure : 6 - When function f (·) is ”irregular”/not smooth, the approximation is likely to fail.
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Example: High Variation

Consider the case that function f (x) is continuous, but
exhibits extreme variations even in small intervals ∆.

f (x + ∆) ∼= f (x) + fx ×∆. (25)

Here, not only is the prediction likely to fail, but even a
satisfactory definition of fx may not be obtained.

Figure : 6 - When function f (·) is ”irregular”/not smooth, the approximation is likely to fail.
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The Chain Rule

The second use of the derivative is the chain rule. In the
examples discussed earlier, f (x) was a function of x , and x
was assumed to represent time. The derivative was introduced
as the response of a variable to a variation in time.

In pricing derivative securities, we face a somewhat different
problem. The price of a derivative asset, e.g., a call option,
will depend on the price of the underlying asset, and price of
the underlying asset depends on time.

Hence, there is a chain effect. Time passes, new (small)
events occur, the price of the underlying asset changes, and
this affects the derivative asset’s price. In standard calculus,
the tool used to analyze these sorts of chain effects is known
as the ”chain rule”.
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The Chain Rule (continued)

Suppose in the example just given x was not itself the time,
but a deterministic function of time, denoted by the symbol
t ≥ 0

xt = g(t). (26)

Then the function f (·) is called a composite function

yt = f (g(t)). (27)

DEFINITION: For f and g defined as above, we have

dy

dt
=

df (g(t))

dg(t)

dg(t)

dt
. (28)

According to this, the chain rule is the product of two
derivatives. 1). The derivative of f (g(t)) is taken with respect
to g(t). 2). The derivative of g(t) is taken with respect to t.
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The Integral

The integral is the mathematical tool used for calculating
sums. In contrast to the Σ operator, which is used for sums of
a countable number of objects, integrals denote sums of
uncountably infinite objects.

The general approach in defining integral is, in a sense,
obvious. One would begin with an approximation involving a
countable number of objects, and then take some limit and
move into uncountable objects. Given that different types of
limits, the integral can be defined in various ways.

The Riemann Integral

We are given a deterministic function f (t) of time t ∈ [0,T ].
Suppose we are interested in integrating this function over an
interval [0,T ] ∫ T

0
f (s)ds, (29)
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The Integral (continued)

We partition the interval [0,T ] into n disjoint subintervals
t0 = 0 < t1 < ... < tn = T , then consider the approximation

n∑
i=1

f (
ti + ti−1

2
)(ti − ti−1), (30)

DEFINITION: Given that

max
i
|ti − ti−1| → 0, (31)

the Riemann integral will be defined by the limit

n∑
i=1

f (
ti + ti−1

2
)(ti − ti−1)→

∫ T

0
f (s)ds, (32)

Where the limit is taken in a standard fashion.
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The Integral (continued)

A better approximation can be achieved, if the base of the
rectangles is small and the function f (t) is smooth - that is,
does not vary heavily in small intervals.

Figure : 8 - When function f (·) is ”irregular”/not smooth, the approximation is likely to fail.
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The Integral (continued)

In the standard calculus, using different heights for rectangles
would not give different integral. But a similar conclusion
cannot be reached in stochastic environments.

Figure : 9 - Function f (·) shows step variations, and the approximation is likely to fail.
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The Integral (continued)

Suppose f (Wt) is a function of a random variable Wt and
that we are interested in calculating∫ T

t0

f (Ws)dWs , (33)

The choice of rectangles defined by (where Wt is a martingale)

f (Wti )(Wti −Wti−1), (34)

will result in a different expression from the rectangles:

f (Wti−1)(Wti −Wti−1), (35)

Then the expectation of the term in (36), conditional on
information at time ti−1, will vanish. This is because the
future increments of a martingale will be unrelated to the
current information set.
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The Integral (continued)

Note that when f (·) depends on a random variable, the
resulting integral itself will be random variable. In this sense,
we will be dealing with random integral.

Figure : 9 - In stochastic calculus, different definitions of approximating rectangles may lead to

different results.
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The Stieltjes Integral

Define differential df as a small variation in the function f (x)
due to an infinitesimal variation in x

df (x) = f (x + dx)− f (x). (36)

We have already discussed the equality

df (x) = fx(x)dx (37)

Now suppose we want to integrate a function h(x) with
respect to x ∫ xn

x0

h(x)dx (38)

where the function h(x) is given by (39)

h(x) = g(x)fx(x). (40)
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The Stieltjes Integral (continued)

The Stieltjes integral is defined as∫ xn

x0

h(x)dx , (41)

with df (x) = fx(x)dx (42)

This definition is not very different from that of the Riemann
integral. If x represents time t, the Stieltjes integral over a
partitioned interval [0,T ] is given by∫ T

0
g(s)df (s) ∼=

n∑
i=1

g(
ti + ti−1

2
)(f (ti )− f (ti−1)). (43)

Because of these similarities, the limit as maxi |ti − ti−1| → 0
of the right-hand side is known as the Riemann-Stieltjes
integral.
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The Riemann-Stieltjes Integral - Example

Example

We let

g(St) = aSt , (44)

where a is a constant. This makes g(·) a linear function of St .
What is the value of the integral∫ T

0
aStdS(t) = 0.3, (45)

If the Riemann-Stieltjes definition is used? Directly taking the
integral gives ∫ T

0
aStdS(t) = a

[
1

2
S2
t

]T
0

(46)



Modeling Random Behavior Some Tools of Standard Calculus The Integral Partial Derivatives Total Derivatives Taylor Series Expansion Ordinary Differential Equations

The Riemann-Stieltjes Integral - Example

Example

Due to the linearity of g(·), the area of the rectangle S0ABST

a

[
ST + S0

2

]
[ST − S0] = a

[
1

2
S2
T −

1

2
S2

0

]
. (47)

Figure : 9 - Due to the linearity of g(·), a single rectangle is sufficent to replicate the area.
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Integration by Parts

Consider two differentiable functions f (t) and h(t), where
t ∈ [0,T ] represents time. Then it can be shown that∫ T

0
ft(t)h(t)dt (48)

= [f (T )h(T )− f (0)h(0)]−
∫ T

0
ht(t)f (t)dt, (49)

where ht(t) and ft(t) are the derivatives of the corresponding
functions with respect to time. They are themselves functions
of time t.

The stochastic version of this transformation is very useful in
evaluating Ito integrals. In fact, imagine that f (·) is random
while h(·) is (conditionally) a deterministic function of time.
Then, we can express stochastic integrals as a function of
integrals with respect to a deterministic variable.
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Partial Derivatives

Consider a call option, time to expiration affects the price
(premium) of the call in two different ways. First, as time
passes, the expiration date will approach, and the remaining
life of the option gets shorter. This lowers the premium. But
at the same time, as time passes, the price of the underlying
asset will change. This will also affect the premium. We write

Ct = F (St , t) (50)

where Ct is the call premium, St is the price of the underlying
asset, and t is time. Now suppose we ”fix” the time variable t
and differentiate F (St , t) with respect to St . The resulting
partial derivative,

∂F (St , t)

∂St
= FS , (51)
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Partial Derivatives (continued)

This effect is an abstraction, because in practice one needs
some time to pass before St can change.

The partial derivative with respect to time variable can be
defined similarly as

∂F (St , t)

∂t
= Ft , (52)

Again, this shows the abstract character of the partial
derivative. As t changes, St will change as well. But in taking
partial derivatives, we behave as if it is a constant.

Because of this abstract nature of partial derivatives, this type
of differentiation cannot be used directly in representing
actual changes of asset price in financial markets.

They are useful in taking a total change and then splitting it
into components that come from different sources.
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Partial Derivatives - Example

Example

Consider a function of two variables:

F (St , t) = 0.3St + t2, (53)

where St is the price of a financial asset and t is time.

Taking the partial with respect to St involves simply
differentiating F (·) with respect to St :

∂F (St , t)

∂St
= 0.3, (54)

Taking the partial with respect to t:

∂F (St , t)

∂t
= 2t. (55)
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Total Derivatives

Let this total change be denoted by the differential dCt . How
much of this variation is due to a change in the underlying
asset’s prices? How much of the variation is the result of the
expiration date getting nearer as time passes? Total
differentiation is used to answer such questions.

Let f (St , t) be a function of the two variables. The the total
differential is defined as

df =

[
∂F (St , t)

∂St

]
dSt +

[
∂F (St , t)

∂t

]
dt. (56)

As t changes, St will change as well. But in taking partial
derivatives, we behave as if it is a constant.

Because of this abstract nature of partial derivatives, this type
of differentiation cannot be used directly in representing
actual changes of asset price in financial markets.
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Taylor Series Expansion

Let f (x) be a infinitely differentiable function of x ∈ R. And
pick an arbitrary value of x ; call this x0.

DEFINITIONS: The Taylor series expansion of f (x) around
x0 ∈ R is defined as

f (x) = f (x0) + fx(x0)(x − x0) +
1

2
fxx(x0)(x − x0)2

+
1

3!
fxxx(x0)(x − x0)3 + ... =

∞∑
i=0

1

1!
f i (x0)(x − x0)i , (57)

where f i (x0) is the ith order derivative of f (x) with respect to
x evaluated at the point x0.

We are not going to elaborate on why the expansion is valid,
if f (x) is continuous and smooth enough. Taylor series
expansion is taken for granted.
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Taylor Series - Example

Example

Consider the exponential function where t denotes time, T is
fixed, r > 0 and t ∈ [0,T ]:

Bt = 100e−r(T−t), (58)

This function begins at t = 0 with a value of B0 = 100e−rT .
Then it increases at a constant percentage rate r . As t → T ,
the value of Bt approaches 100.

A first-order Taylor series expansion around t = t0 will be

Bt
∼= 100e−r(T−t0) + (r)100e−r(T−t0)(t − t0), t ∈ [0,T ], (59)

Taylor series expansion of Bt shows that, as interest rates
increase (decreases), the value of the bound decreases
(increases).
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Ordinary Differential Equations

The third major notion from standard calculus that we would
like to review is the concept of an ordinary differential
equation (ODE).

For example, consider the expression

dBt = −rtBtdt with know B0, rt > 0. (60)

This expression states that Bt is a quantity that varies with t
- i.e., changes in Bt are a function of t and of Bt . The
equation is called an ordinary differential equation. Here, the
percentage variation in Bt is proportional to some factor rt
times dt:

dBt

Bt
= −rtdt. (61)

Now, we say that the function Bt defined by
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Ordinary Differential Equations (continued)

Bt = e
∫ t

0 rudu, (62)

solves the ODE in (52) in that plugging it into (54) satisfies
the equality (52). Thus, an ordinary differential equation is
first of all an equation where there exist one or more
unknowns that need to be determined.

dBt = −rtBtdt. (63)

the solution, with the condition BT = 1 was

Bt = e
∫ t

0 rudu, (64)

This example shows that the pricing functions for fixed
income securities can be characterized as solutions of some
appropriate differential equations.
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ODE - Example

Example

In a simple equation 3x + 1 = x ,

the unknown is x , a number to be determined. Here the
solution is x = −1/2.

In a matrix equation Ax − b = 0,

the unknown element is a vector. Under appropriate
conditions, the solution would be x = A−1b.

In an ordinary differential equation,

dxt
dt

= −axt + b, (65)

where the unknown is xt , a function. More precisely, it is a
function of t : xt = f (t).


	Modeling Random Behavior
	Some Tools of Standard Calculus
	Random Functions
	Random Functions (continued)
	Examples of Functions
	Examples of Functions
	Examples of Functions
	Examples of Functions
	Convergence and Limit
	The Derivative
	The Derivative
	Example: The Exponential Function
	Example: The Exponential Function
	Example: The Exponential Function
	Example: The Exponential Function
	The Chain Rule
	The Chain Rule
	The Integral
	The Integral
	The Integral
	The Integral
	The Integral

	The Integral
	The Stieltjes Integral
	The Stieltjes Integral
	The Riemann-Stieltjes Integral - Example
	The Riemann-Stieltjes Integral - Example
	Integration by Parts

	Partial Derivatives
	Partial Derivatives
	Partial Derivatives - Example

	Total Derivatives
	Taylor Series Expansion
	Taylor Series - Example

	Ordinary Differential Equations
	Ordinary Differential Equations
	ODE - Example


