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A Framework for Differentiation

The concept of differentiation deals with incremental
changes in infinitesimal intervals. In applications to
financial markets, changes in asset prices over incremental
time periods are of interest. The natural framework to
utilize for discussing differentiation is the stochastic
differential equation (SDE):

dS(t) = a(S(t), t))dt + b(S(t), t)dWt . (1)

We will start with discrete and come up a formulation in
continuous time. Consider a time interval t ∈ [0,T ], and
the x axis is partitioned into n intervals of equal length h.
We have

0 = t0 < t1 < ... < tk < ... < tn = T . (2)
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A Framework for Differentiation (continued)

Here we assume tk − tk−1 = h or tk = kh for all k .

Thus, we have the relation: n = T
n

.

Figure : 2 - Discrete Time Increments in Stochastic Environment
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A Framework for Differentiation (continued)

- We define the following quantities observed during these finite
intervals:

Sk = S(kh) and (3)

∆Sk = S(kh)− S((k − 1)h). (4)

- Now pick a particular interval k . If the corresponding
expectations exist, we define a random variable ∆Wk :

∆Wk = [Sk − Sk−1]− Ek−1[Sk − Sk−1]. (5)

Here, Ek−1[·] represents the expectation conditional on
information available at the end of interval k − 1. The
∆Wk is the unpredictable part in [Sk − Sk−1] given the
information available at the end of the (k − 1)th interval.
The first term represents actual change in the asset price
S(t) during the kth interval.
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A Framework for Differentiation (continued)

- We call unpredictable components of new information
“innovations”, and we note the following properties:

∆Wk is unknown at the end of the interval (k − 1). It is
observed at the end of interval k . In measure theory, ∆Wk is
said to be measurable with respect to Ik . That is, given the
set Ik , one can tell the exact value of ∆Wk .

Values of ∆Wk are unpredictable, given the information set of
time k − 1:

Ek−1[∆Wk ] = 0, for allk . (6)

∆Wk represents changes in a martingale process and is
called a martingale difference. The accumulated error
process Wk will be given by

Wk = ∆W1 + ...+ ∆Wk =
k∑

i=1

∆Wi , (7)
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A Framework for Differentiation (continued)

- We can show that Wk is a martingale:

Ek−1[Wk ] = Ek−1[∆W1 + ...+ ∆Wk ]

= [∆W1 + ...+ ∆Wk−1] + Ek−1[∆Wk ] (8)

The latter is true because Ek−1[∆Wk ] equals zeros and
the ∆Wi , i = 1, ..., k − 1 are known given Ik−1.

Wk = ∆W1 + ...+ ∆Wk =
k∑

i=1

∆Wi , (9)

In financial market, the important information contained
in asset prices is indeed ∆Wk .

In particular, we want to show that under some reasonable
assumptions, ∆W 2

k and its infinitesimal equivalent dW 2
t

cannot be considered as “negligible” in Taylor-style
approximations.
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Assumptions and Proposition

- In this section, we deal with the innovation term ∆Wk and its
square term (∆Wk). We will use Merton’s approach because
it permits a better understanding of the economics behind the
assumptions that will be made along the way.

Let the (unconditional) variance of ∆Wk be denoted by Vk :

Vk = E0[∆W 2
k ]. (10)

The variance of cumulative errors is defined as:

V = E0

[
n∑

k=1

∆Wk

]2

=
n∑

k=1

Vk , (11)

where the property that ∆Wk are uncorrelated across k is
used and the expectations of cross product terms are set
equal to zero.
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Assumptions and Proposition (continued)

We now introduce some assumptions, following Merton
(1990):

ASSUMPTION 1:

V > A1 > 0, (12)

where A1 is independent of n. This assumption imposes a
lower bound on the volatility of security prices.

* It says that when the period [0,T ] is divided into finer and
finer subintervals, n→∞, and the variance of cumulative
errors, V , will be positive.

** That is, more and more frequent observations of securities
prices will not eliminate all the “risk”. Clearly, most financial
market participants will accept such an assumption.
Uncertainty of asset prices never vanishes even when one
observes the markets during finer and finer time intervals.



A Framework for Differentiation Assumptions and Proposition Stochastic Differentials

Assumptions and Proposition (continued)

ASSUMPTION 2:

V < A2 <∞, (13)

where A2 is independent of n. This assumption imposes an
upper bound on the variance of cumulative errors and makes
the volatility bounded from above.

* As the time axis is chopped into smaller and smaller intervals,
more frequent trading is allowed. And such trading does not
bring unbounded instability to the system.

** A large majority of market participants will agree with this
assumption as well. After all, allowing for more frequent
trading and having access to online screens does not lead to
infinite volatility.
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Assumptions and Proposition (continued)

We define

Vmax = max
k

[Vk , k = 1, ..., n]. (14)

That is, Vmax is the variance of the asset price during the
most volatile subinterval.

ASSUMPTION 3:

Kk

Vmax
> A3, 0 < A3 < 1, (15)

with A3 is independent of n.

According to this assumption, uncertainty of financial markets
is not concentrated in some special periods. Whenever
markets are open, there exists at least some volatility. This
assumption rules out lotterylike uncertainty in financial
market.
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Assumptions and Proposition (continued)

PROPOSITION: Under assumption 1, 2, and 3, the variance

of ∆Wk is proportional to h,

E [∆W 2
k ] = σ2

kh. (16)

where σk is a finite constant that does not depend on h.
It may depend on the information at time k − 1.
According to this proposition, asset price become less
volatile as h gets smaller.
PROOF: Use assumption 3:

Vk > A3Vmax. (17)

Sum both sides over all intervals:
n∑

k=1

(Vk) > nA3Vmax. (18)
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Assumptions and Proposition (continued)

Assumption 2 says that the left-hand side of this is bounded
from above:

A2 >

n∑
k=1

(Vk) > nA3Vmax. (19)

Now divide both sides by nA3:

1

n

A2

A3
> Vmax. (20)

Note that n = T
h

. Then,

1

n

A2

A3
> Vmax > Vk and

h

T

A2

A3
> Vk . (21)

This gives an upper bound on Vk that depends only on h.
We now obtain a lower bound that also depends only on h.
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Assumptions and Proposition (continued)

We know that

n∑
k=1

(Vk) > A1 (22)

is true. Then

nVmax >
n∑

k=1

(Vk) > A1. (23)

Divide (23) by n. Use Assumption 3,

Vmax >
A1

n
and Vk > A3Vmax >

A1A3

T
h. (24)

Finally we have

h

T

A2

A3
> Vk >

A1A3

T
h. (25)
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Assumptions and Proposition (continued)

Clearly the variance term Vk has upper and lower bounds that
are proportional to h, regardless of what n is. This means that
we should be able to find a constant σk depending only on k ,
such that Vk is proportional to h, and ignoring the (smaller)
higher-order terms in h, write:

Vk = E [∆Wk ]2 = σ2
kh. (26)

This proposition has several implications. An immediate
one is the following. First, remember that if the
corresponding expectation exist, one can always write

Sk − Sk−1 = Ek−1[Sk − Sk−1] + σk∆Wk , (27)

where ∆Wk now has variance h. After dividing both sides
by h:

Sk − Sk−1

h
=

Ek−1[Sk − Sk−1]

h
+
σk∆Wk

h
. (28)
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Assumptions and Proposition (continued)

But according to the proposition

E [∆Wk ]2 = h (29)

Suppose we use this to justify the approximation:

∆Wk ]2 ∼= h (30)

- We take “limit” of the random variable:

lim
h→0

W(k−1)h+h −W(k−1)h

h
. (31)

Then, this could be interpreted as a time derivative of Wt .
The approximation in (30) indicates that this derivative
may not be well defined:

lim
h→0

W(k−1)h+h −W(k−1)h

h
→∞. (32)
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Assumptions and Proposition (continued)

Figure 2 shows this graphically. We plot the function f (h):

f (h) =
h1/2

h
. (33)

Figure : 2 - As h gets smaller f (h) goes to infinity.
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- First, we see that one can take any stochastic process St and
write its variation during some finite interval h as

[Sk − Sk−1] = Ek−1[Sk − Sk−1] + σk∆Wk , (34)

where the term ∆Wk is unpredictable given the
information at the beginning of the time interval.

- Second, we showed that if h is “small”, the unpredictable
innovation term has a variance that is proportional to the
length of the time interval, h:

Var(∆Wk) = h. (35)

- Finally, we need to approximate the first term of (40),

Ek−1[Sk − Sk−1] = A(Ik−1, h). (36)

The magnitude of this change depends on the latest
information set and the length of the time interval.
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Stochastic Differentials (continued)

- If A(·) is a smooth function of h, it will have a Taylor series
expansion around h = 0,

A(Ik−1, h) = A(Ik−1, 0) + a(Ik−1)h + R(Ik−1, h). (37)

Here, a(Ik−1) is the first derivative of A(Ik−1, h) with
respect to h evaluated at h = 0. The R(Ik−1, h) is the
remainder of the Taylor series expansion.

- Now, if h = 0, time will not pass and the predicted change
in asset prices will be zero. In other words, A(Ik−1, 0) = 0.

- Thus, we can obtain the first-order Taylor approximation:

Ek−1[Sk − Sk−1] ∼= a(Ik−1, kh)h. (38)

Hence, we can write a stochastic differential equation:

[Shk − S(k−1)h] ∼= a(Ik−1, kh)h + σk [Wkh −W(k−1)h]. (39)
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Stochastic Differentials (continued)

- Later, we let h→ 0 and obtain the infinitesimal version of this
equation, which is the stochastic differential equation (SDE):

dS(t) = a(Ik−1, t)dt + σtdW (t). (40)

This stochastic differential equation is said to have a drift
a(It , t) and a diffusion σt component.

Or in a different format as:

dSt = a(St , t)dt + b(St , t)dW (t). (41)

where dWt is an innovation term representing unpredictable
events that occur during the infinitesimal interval dt. The
a(St , t) and b(St , t) are the drift and the diffusion
coefficients, respectively. They are It-adapted.
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