FE610 Stochastic Calculus for Financial Engineers Lecture 10. Ito's Lemma

Steve Yang

Stevens Institute of Technology

04/04/2013

Outline

1 [Ito's Lemma](#page-2-0)

2 [Uses of Ito's Lemma](#page-11-0)

Ito's Lemma

- The stochastic version of the chain rule is known as Ito's Lemma.
- Let S_t be a continuous time process which depends on the Wiener process W_t . Suppose we are given a function of \mathcal{S}_t denoted by $\mathit{F}(\mathit{S}_{t},t)$, and suppose we would like to calculate the change in $F(\cdot)$ when dt amount of time passes.
- Clearly, passing time would influence the $\mathit{F}(S_t,t)$ in two different ways.

First, there is a direct influence through the t variable in $F(S_t, t)$.

Second, as time passes, one obtains new information about W_t and observes a new increment, dS_t . This will also make $F(\cdot)$ change.

Ito's Lemma (continued)

- The sum of these two effects is represented by the stochastic differential $dF(S_t,t)$ and is given by the stochastic equivalent of the chain rule.

$$
\frac{dF(S_t, t)}{dt} = F_s \frac{dS_t}{dt} + F_t.
$$
 (1)

- We again partition the time interval $[0, T]$ into n equal pieces, each with length h . We apply the Taylor series formula to $F(S_k, k)$, $k = 1, 2, \dots$, where the S_k is assumed to obey

$$
\Delta S_k = a_k h + \sigma_k \Delta W_k. \tag{2}
$$

First, fix k. Given the information set I_{k-1} , S_{k-1} is a known number.

Next, apply Taylor formula to expand $F(S_k, k)$ around S_{k-1} and $k-1$.

Ito's Lemma (continued)

Using Taylor expansion to approximate $F(S_k, k)$:

$$
F(S_k, k) = F(S_{k-1}, k-1) + F_s[S_k - S_{k-1}] + F_t[h]
$$

+ $\frac{1}{2}F_{ss}[S_k - S_{k-1}]^2 + \frac{1}{2}F_{tt}[h]^2 + F_{st}[h(S_k - S_{k-1})] + R,$ (3)

where the partials $\mathcal{F}_{\mathsf{s}}, \mathcal{F}_{\mathsf{ss}}, \mathcal{F}_{\mathsf{t} t}, \mathcal{F}_{\mathsf{s} t}$ are all evaluated at S_{k-1} , $k-1$. R represents the remaining terms.

- Transpose $F(S_{k-1}, k-1)$ and relabel the increments, and substitute these into [\(3\)](#page-4-0):

$$
F(S_k,k)-F(S_{k-1},k-1)=\Delta F(k) \qquad \qquad (4)
$$

$$
S_k - S_{k-1} = \Delta S_k. \tag{5}
$$

and
\n
$$
\Delta F(S_k, k) = F_s \Delta S_k + F_t[h] + \frac{1}{2} F_{ss} [\Delta S_k]^2
$$
\n
$$
+ \frac{1}{2} F_{tt}[h]^2 + F_{st}[h(\Delta S_k)] + R,
$$
\n(6)

Ito's Lemma (continued)

- But we know that the dynamics of S_t are governed by Eq. [\(2\)](#page-3-0), and we can substitute the right-hand side of this for ΔS_k in the Taylor series expansion:

$$
\Delta F(S_k, k) = F_s[a_k h + \sigma_k \Delta W_k] + F_t[h] + \frac{1}{2}F_{ss}[a_k h + \sigma_k \Delta W_k]^2
$$

$$
+ \frac{1}{2}F_{tt}[h]^2 + F_{st}[h][a_k h + \sigma_k \Delta W_k] + R, \quad (7)
$$

- The first-order effects are the effects of time, represented by $\mathcal{F}_t[h]$, and the effects of change in the underlying asset's price, $F_s[a_k h + \sigma_k \Delta W_k]$.
- The second-order effects are those changes that are represented by squared terms and by cross products. Higher-order terms are grouped in the remainder R .
- In order to obtain a chain rule in stochastic environments, the terms will be classified as negligible and nonnegligible.

The Notion of "Size" in Stochastic Calculus

- In stochastic settings, the time variable t is still deterministic. So, with respect to the time variable, the same criterion of smallness as in deterministic calculus can be applied.
- On the other hand, the same rationale cannot be used for a stochastic differential such as dS_t^2 . We will use

$$
dW_t^2 = dt. \t\t(8)
$$

Hence, terms involving dS_t^2 are likely to have sizes of order dt, which was considered as nonnegligible. **CONVENTION:** Given a function $g(\Delta W_k, h)$ dependent

on the increments of the Wiener process W_t , and on the time increment, if the ratio

$$
\lim_{h \to 0} \frac{g(\Delta W_k, h)}{h} = 0.
$$
\n(9)

then we consider $g(\Delta W_k, h)$ as negligible.

The First-Order Terms

Here, the terms that contain h or ΔS_k are clearly first-order increments that are not negligible. As $\mathit{F_{s}}[a_{k}h+\Delta \mathit{W_{k}}]$ or $\mathit{F_{t}}h$ are divided by h , and h is made smaller and smaller, there terms do not vanish.

$$
\lim_{n \to \infty} \frac{F_s a_k h}{h} = F_s a_k \lim_{n \to \infty} \frac{F_t h}{h} = F_t \tag{10}
$$

are clearly independent ofh, and do not vanish as h gets smaller.

On the other hand, we know the ratio

$$
\lim_{n\to\infty}\frac{F_s\Delta W_k}{h}\tag{11}
$$

gets larger (in a probabilistic sense) as h becomes smaller, since the term ΔW_k is of the order $h^{1/2}.$

The Second-Order Terms

Divide the second-order terms on the right-hand side by h and consider the ratio

$$
\frac{F_{tt}h^2}{2h}.\tag{12}
$$

This term remains proportional to h , since in the numerator we have an increment that depends on h^2 . Next, consider the second-order term that depends on $[\Delta S_k]^2$,

$$
\lim_{n \to \infty} \frac{1}{2} F_{ss} \left[\frac{a_k^2 h^2}{h} + \frac{\sigma_k \Delta W_k}{h} \right]^2 \qquad (13)
$$
\n
$$
\approx \frac{1}{2} F_{ss} \sigma_k^2. \qquad (14)
$$

The difference between the two sides has a variance that will tend to zero as $h \to 0$.

The Cross-Product and Higher-Order Terms

- Consider the following cross-product term (divide by h):

$$
\frac{F_{st}[h][a_kh+\sigma_k\Delta W_k]}{h}=F_{st}[a_kh+\sigma_k\Delta W_k].
$$
 (15)

This another way of saying that the Wiener process has continuous sample paths.

Higher-Order Terms

The right-hand side depends on ΔW_k . As $h \to 0$, ΔW_k goes to zero.

All the terms in the remainder *contain powers of* $*h*$ *and* of ΔW_k greater than 2. According to the convention adopted earlier, if the unpredictable shocks are of "normal" type - i.e., there are no "rare events" - powers of ΔW_k greater than two will be negligible.

The Ito Formula

ITO's LEMMA: Let $F(S_t, t)$ be a twice-differentiable function of t and of the random process S_t :

$$
dS_t = a_t dt + \sigma_t dW_t, t \ge 0,
$$
\n(16)

with well-behaved drift and diffusion parameters, a_t, σ_t . Then we have

$$
dF_t = \frac{\partial F}{\partial S_t} dS_t + \frac{\partial F}{\partial t} dt + \frac{1}{2} \frac{\partial^2 F}{\partial S_t^2} \sigma_t^2 dt \qquad (17)
$$

or, after substituting for dS_t using the relevant SDE,

$$
dF_t = \left[\frac{\partial F}{\partial S_t}a_t + \frac{\partial F}{\partial t} + \frac{1}{2}\frac{\partial^2 F}{\partial S_t^2}\sigma_t^2\right] + \frac{\partial F}{\partial S_t}\sigma_t dW_t, \quad (18)
$$

where the equality holds in the mean square sense.

Uses of Ito's Lemma

- The Ito's Lemma provides a tool for obtaining stochastic differentials for functions of random processes. For example, we want to know what happens to the price of an option if the underlying asset's price changes.
- Letting $\mathit{F}(S_t,t)$ be the option price, and S_t the underlying asset's price, we can write

$$
dF_t(S_t,t) = F_s dS_t + F_t dt + \frac{1}{2} F_{ss} \sigma_t^2 dt, \qquad (19)
$$

If one has an exact formula for $F(S_t,t)$, one can then take the partial derivative explicitly and replace them in the foregoing formula to get the stochastic differential, $dF(S_t, t)$.

- The second use of Ito's Lemma is quite different. Ito's Lemma is useful in evaluating Ito integrals.

Ito's Formula as a Chain Rule

- Consider a function of the standard Wiener process W_t given by

$$
F(W_t, t) = W_t^2. \tag{20}
$$

Remember that W_t has a drift parameter 0 and a diffusion parameter 1. Applying the Ito formula to this function,

$$
dF_t = \frac{1}{2}[2dt] + 2W_t dW_t \qquad (21)
$$

or

$$
dF_t = dt + 2W_t dW_t \tag{22}
$$

Note that Ito's formula results, in this particular case, in an SDE that has $a(l_t,t)=1$ and $\sigma(l_t,t)=2W_t.$

- Hence, the drift is constant and the diffusion depends on the information set I_t .

Ito's Formula as a Chain Rule - Example

- Lets apply Ito's formula to the function

$$
F(W_t, t) = 3 + t + e^{W_t}.
$$
 (23)

We obtain

$$
dF_t = dt + e^{W_t} dW_t + \frac{1}{2} e^{W_t} dt.
$$
 (24)

Grouping,

$$
dF_t = \left[1 + \frac{1}{2}e^{W_t}\right]dt + e^{W_t}dW_t
$$
 (25)

In this case, we obtain a SDE for $F(S_t, t)$ with I_t -dependent drift and diffusion terms:

$$
a(l_t, t) = \left[1 + \frac{1}{2}e^{W_t}\right]dt \text{ and } \sigma(l_t, t) = e^{W_t} \qquad (26)
$$

Ito's Formula as an Integration Tool

- Suppose one needs to evaluate the following Ito integral

$$
\int_0^t W_s dW_s. \tag{27}
$$

We define

$$
F(W_t, t) = \frac{1}{2}W_t^2,
$$
\n⁽²⁸⁾

and apply the Ito formula to $F(W_t,t)$:

$$
dF_t = 0 + W_t dW_t + \frac{1}{2} dt \qquad (29)
$$

This is an SDE with drift $1/2$ and diffusion $W_t.$ Writing the corresponding integral equation,

$$
F(W_t, t) = \int_0^t W_s dW_s + \frac{1}{2} \int_0^t ds,
$$
 (30)

Ito's Formula as an Integration Tool (continued)

- Take the second integral to the right-hand side, and apply the definition of $F(W_t, t)$:

$$
\frac{1}{2}W_t^2 = \int_0^t W_s dW_s + \frac{1}{2}t.
$$
\n(31)

Rearranging terms, we obtain the desired result

$$
\int_0^t W_s dW_s = \frac{1}{2}W_t^2 - \frac{1}{2}t.
$$
 (32)

It is important to summarize how Ito's formula was exploited to evaluate Ito integrals.

- (1) We guessed a form for the function $F(W_t, t)$.
- (2) Ito's Lemma was used to obtain the SDE for $F(S_t, t)$.
- (3) We applied the integral operator to both sides of this new SDE, and obtained an integral equation.
- (4) Rearrange the integral equation gave us the desired result.

Integral Form of Ito's Formula

- As repeatedly mentioned, stochastic differentials are simply shorthand for Ito integrals over small time intervals. One can thus write the Ito formula in integral form.

$$
F(S_t,t) = F(S_0,0) + \int_0^t F_s dS_s + \int_0^t [F_u + \frac{1}{2} F_{ss} \sigma_u^2] du(33)
$$

where use has been made of the equality

$$
\int_0^t dF_u = F(S_t, t) - F(S_0, 0)
$$
 (34)

We can use the version of the Ito formula shown above in order to obtain another characterization.

$$
\int_0^t F_s dS_u = [F(S_t, t) - F(S_0, 0)] - \int_0^t [F_u + \frac{1}{2} F_{ss} \sigma_u^2] du(35)
$$

Ito's Formula and Jumps

- Suppose we observe a process \mathcal{S}_t , which is believed to follow the SDE

$$
dS_t = a_t dt + \sigma_t dW_t + dJ_t, t \ge 0,
$$
\n(36)

where dW_t is a standard Wiener process. The new term dJ_t represents possible unanticipated jumps. This jump component has zero mean during a finite interval h:

$$
E[\Delta J_t] = 0. \tag{37}
$$

This assumption is not restrictive, as any predictable part of the jumps may be included in the drift component a_t . We assume that between jumps, J_t remains constant. At jump times $\tau_j, j=1,2,...$, it varies by some discrete and random amount. We assume that there are k possible types of jumps, with sizes $\{a_i, i = 1, 2, ..., k\}$.

Ito's Formula and Jumps (continued)

- The jumps occur at a rate λ_t that may depend on the latest observed S_t . Once a jump occurs, the jump type is selected randomly and independently. The probability that a jump of size a_i will occur is given by p_i .

$$
\Delta J_t = \Delta N_t - \left[\lambda_t h \left(\sum_{i=1}^k a_i p_i\right)\right]
$$
 (38)

where N_t is a process that represents the sum of all jumps up to time $t.$ The term $\sum_{i=1}^k a_i p_i$ is the expected size of a jump, whereas $\lambda_t h$ represents, loosely speaking, the probability that a jump will occur. There are subtracted from ΔN_t to make ΔJ_t unpredictable.

- Under these conditions, the drift coefficient a_t can be seen as representing the sum of two separate drifts (the Wiener and the Jump processes).

Ito's Formula and Jumps (continued)

- We can, therefore, write the drift as:

$$
a_t = \alpha_t + \lambda_t \left(\sum_{i=1}^k a_i p_i \right), \text{ and } S_t^- = \lim_{s \to t} S_s, s < t. \tag{39}
$$

where α_t is a drift of the stochastic process in $\mathcal{S}_t.$

- The occurrence of a jump is a random event. And the size of the jump is also random. Under these conditions, the Ito formula is given by:

$$
dF(S_t, t) = \left[F_t + \lambda_t \sum_{i=1}^k (F(S_t + a_i, t) - F(S_t, t))p_i + \frac{1}{2}F_{ss}\sigma^2 \right] dt
$$

+ $F_s dS_t + [F(S_t, t) - F(S_t^{-}, t)]$

$$
\lambda_t \left[\sum_{i=1}^k (F(S_t + a_i, t) - F(S_t, t))p_i \right] dt.
$$