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Ito’s Lemma

- The stochastic version of the chain rule is known as Ito’s
Lemma.

- Let St be a continuous time process which depends on the
Wiener process Wt . Suppose we are given a function of St

denoted by F (St , t), and suppose we would like to
calculate the change in F (·) when dt amount of time
passes.

- Clearly, passing time would influence the F (St , t) in two
different ways.

First, there is a direct influence through the t variable in
F (St , t).

Second, as time passes, one obtains new information
about Wt and observes a new increment, dSt . This will
also make F (·) change.



Ito’s Lemma Uses of Ito’s Lemma

Ito’s Lemma (continued)

- The sum of these two effects is represented by the stochastic
differential dF (St , t) and is given by the stochastic equivalent
of the chain rule.

dF (St , t)

dt
= Fs

dSt
dt

+ Ft . (1)

- We again partition the time interval [0,T ] into n equal
pieces, each with length h. We apply the Taylor series
formula to F (Sk , k), k = 1, 2, ..., where the Sk is assumed
to obey

∆Sk = akh + σk∆Wk . (2)

First, fix k . Given the information set Ik−1, Sk−1 is a
known number.

Next, apply Taylor formula to expand F (Sk , k) around
Sk−1 and k − 1.
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Ito’s Lemma (continued)

Using Taylor expansion to approximate F (Sk , k):

F (Sk , k) = F (Sk−1, k − 1) + Fs [Sk − Sk−1] + Ft [h]

+
1

2
Fss [Sk − Sk−1]2 +

1

2
Ftt [h]2 + Fst [h(Sk − Sk−1)] + R, (3)

where the partials Fs ,Fss ,Ftt ,Fst are all evaluated at
Sk−1, k − 1. R represents the remaining terms.

- Transpose F (Sk−1, k − 1) and relabel the increments, and
substitute these into (3):

F (Sk , k)− F (Sk−1, k − 1) = ∆F (k) (4)

Sk − Sk−1 = ∆Sk . (5)

and

∆F (Sk , k) = Fs∆Sk + Ft [h] +
1

2
Fss [∆Sk ]2

+
1

2
Ftt [h]2 + Fst [h(∆Sk)] + R, (6)
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Ito’s Lemma (continued)

- But we know that the dynamics of St are governed by Eq.
(2), and we can substitute the right-hand side of this for ∆Sk
in the Taylor series expansion:

∆F (Sk , k) = Fs [akh + σk∆Wk ] + Ft [h] +
1

2
Fss [akh + σk∆Wk ]2

+
1

2
Ftt [h]2 + Fst [h][akh + σk∆Wk ] + R, (7)

- The first-order effects are the effects of time, represented
by Ft [h], and the effects of change in the underlying
asset’s price, Fs [akh + σk∆Wk ].

- The second-order effects are those changes that are
represented by squared terms and by cross products.
Higher-order terms are grouped in the remainder R .

- In order to obtain a chain rule in stochastic environments,
the terms will be classified as negligible and nonnegligible.
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The Notion of “Size” in Stochastic Calculus

- In stochastic settings, the time variable t is still deterministic.
So, with respect to the time variable, the same criterion of
smallness as in deterministic calculus can be applied.

- On the other hand, the same rationale cannot be used for a
stochastic differential such as dS2

t . We will use

dW 2
t = dt. (8)

Hence, terms involving dS2
t are likely to have sizes of

order dt, which was considered as nonnegligible.
CONVENTION: Given a function g(∆Wk , h) dependent
on the increments of the Wiener process Wt , and on the
time increment, if the ratio

lim
h→0

g(∆Wk , h)

h
= 0. (9)

then we consider g(∆Wk , h) as negligible.
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The First-Order Terms

Here, the terms that contain h or ∆Sk are clearly first-order

increments that are not negligible. As Fs [akh + ∆Wk ] or Fth

are divided by h, and h is made smaller and smaller, there

terms do not vanish.

lim
n→∞

Fsakh

h
= Fsak lim

n→∞

Fth

h
= Ft (10)

are clearly independent ofh, and do not vanish as h gets
smaller.

On the other hand, we know the ratio

lim
n→∞

Fs∆Wk

h
(11)

gets larger (in a probabilistic sense) as h becomes smaller,
since the term ∆Wk is of the order h1/2.
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The Second-Order Terms

Divide the second-order terms on the right-hand side by h and
consider the ratio

Ftth
2

2h
. (12)

This term remains proportional to h, since in the
numerator we have an increment that depends on h2.
Next, consider the second-order term that depends on
[∆Sk ]2,

lim
n→∞

1

2
Fss

[
a2kh

2

h
+
σk∆Wk

h

]2
(13)

∼=
1

2
Fssσ

2
k . (14)

The difference between the two sides has a variance that
will tend to zero as h→ 0.
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The Cross-Product and Higher-Order Terms

- Consider the following cross-product term (divide by h):

Fst [h][akh + σk∆Wk ]

h
= Fst [akh + σk∆Wk ]. (15)

This another way of saying that the Wiener process has
continuous sample paths.

Higher-Order Terms

The right-hand side depends on ∆Wk . As h→ 0, ∆Wk

goes to zero.

All the terms in the remainder R contain powers of h and
of ∆Wk greater than 2. According to the convention
adopted earlier, if the unpredictable shocks are of
“normal” type - i.e., there are no “rare events” - powers
of ∆Wk greater than two will be negligible.
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The Ito Formula

ITO’s LEMMA: Let F (St , t) be a twice-differentiable
function of t and of the random process St :

dSt = atdt + σtdWt , t ≥ 0, (16)

with well-behaved drift and diffusion parameters, at , σt . Then

we have

dFt =
∂F

∂St
dSt +

∂F

∂t
dt +

1

2

∂2F

∂S2
t

σ2
t dt (17)

or, after substituting for dSt using the relevant SDE,

dFt =

[
∂F

∂St
at +

∂F

∂t
+

1

2

∂2F

∂S2
t

σ2
t

]
+
∂F

∂St
σtdWt , (18)

where the equality holds in the mean square sense.
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Uses of Ito’s Lemma

- The Ito’s Lemma provides a tool for obtaining stochastic
differentials for functions of random processes. For example,
we want to know what happens to the price of an option if
the underlying asset’s price changes.

- Letting F (St , t) be the option price, and St the underlying

asset’s price, we can write

dFt(St , t) = FsdSt + Ftdt +
1

2
Fssσ

2
t dt, (19)

If one has an exact formula for F (St , t), one can then
take the partial derivative explicitly and replace them in
the foregoing formula to get the stochastic differential,
dF (St , t).

- The second use of Ito’s Lemma is quite different. Ito’s
Lemma is useful in evaluating Ito integrals.
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Ito’s Formula as a Chain Rule

- Consider a function of the standard Wiener process Wt given
by

F (Wt , t) = W 2
t . (20)

Remember that Wt has a drift parameter 0 and a diffusion
parameter 1. Applying the Ito formula to this function,

dFt =
1

2
[2dt] + 2WtdWt (21)

or

dFt = dt + 2WtdWt (22)

Note that Ito’s formula results, in this particular case, in
an SDE that has a(It , t) = 1 and σ(It , t) = 2Wt .

- Hence, the drift is constant and the diffusion depends on
the information set It .
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Ito’s Formula as a Chain Rule - Example

- Lets apply Ito’s formula to the function

F (Wt , t) = 3 + t + eWt . (23)

We obtain

dFt = dt + eWtdWt +
1

2
eWtdt. (24)

Grouping,

dFt =

[
1 +

1

2
eWt

]
dt + eWtdWt (25)

In this case, we obtain a SDE for F (St , t) with
It-dependent drift and diffusion terms:

a(It , t) =

[
1 +

1

2
eWt

]
dt and σ(It , t) = eWt (26)
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Ito’s Formula as an Integration Tool

- Suppose one needs to evaluate the following Ito integral∫ t

0

WsdWs . (27)

We define

F (Wt , t) =
1

2
W 2

t , (28)

and apply the Ito formula to F (Wt , t):

dFt = 0 + WtdWt +
1

2
dt (29)

This is an SDE with drift 1/2 and diffusion Wt . Writing
the corresponding integral equation,

F (Wt , t) =

∫ t

0

WsdWs +
1

2

∫ t

0

ds, (30)
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Ito’s Formula as an Integration Tool (continued)

- Take the second integral to the right-hand side, and apply the
definition of F (Wt , t):

1

2
W 2

t =

∫ t

0

WsdWs +
1

2
t. (31)

Rearranging terms, we obtain the desired result∫ t

0

WsdWs =
1

2
W 2

t −
1

2
t. (32)

It is important to summarize how Ito’s formula was
exploited to evaluate Ito integrals.
(1) We guessed a form for the function F (Wt , t).
(2) Ito’s Lemma was used to obtain the SDE for F (St , t).
(3) We applied the integral operator to both sides of this new

SDE, and obtained an integral equation.
(4) Rearrange the integral equation gave us the desired result.
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Integral Form of Ito’s Formula

- As repeatedly mentioned, stochastic differentials are simply

shorthand for Ito integrals over small time intervals. One can

thus write the Ito formula in integral form.

F (St , t) = F (S0, 0) +

∫ t

0

FsdSs +

∫ t

0

[Fu +
1

2
Fssσ

2
u]du(33)

where use has been made of the equality∫ t

0

dFu = F (St , t)− F (S0, 0) (34)

We can use the version of the Ito formula shown above in
order to obtain another characterization.∫ t

0

FsdSu = [F (St , t)− F (S0, 0)]−
∫ t

0

[Fu +
1

2
Fssσ

2
u]du(35)
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Ito’s Formula and Jumps

- Suppose we observe a process St , which is believed to follow

the SDE

dSt = atdt + σtdWt + dJt , t ≥ 0, (36)

where dWt is a standard Wiener process. The new term
dJt represents possible unanticipated jumps. This jump
component has zero mean during a finite interval h:

E [∆Jt ] = 0. (37)

This assumption is not restrictive, as any predictable part
of the jumps may be included in the drift component at .

We assume that between jumps, Jt remains constant. At
jump times τj , j = 1, 2, ..., it varies by some discrete and
random amount. We assume that there are k possible
types of jumps, with sizes {ai , i = 1, 2, ..., k}.
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Ito’s Formula and Jumps (continued)

- The jumps occur at a rate λt that may depend on the latest
observed St . Once a jump occurs, the jump type is selected
randomly and independently. The probability that a jump of
size ai will occur is given by pi .

∆Jt = ∆Nt −

[
λth

(
k∑

i=1

aipi

)]
(38)

where Nt is a process that represents the sum of all jumps
up to time t. The term

∑k
i=1 aipi is the expected size of a

jump, whereas λth represents, loosely speaking, the
probability that a jump will occur. There are subtracted
from ∆Nt to make ∆Jt unpredictable.

- Under these conditions, the drift coefficient at can be seen
as representing the sum of two separate drifts (the Wiener
and the Jump processes).
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Ito’s Formula and Jumps (continued)

- We can, therefore, write the drift as:

at = αt + λt

(
k∑

i=1

aipi

)
, and S−t = lim

s→t
Ss , s < t. (39)

where αt is a drift of the stochastic process in St .
- The occurrence of a jump is a random event. And the size

of the jump is also random. Under these conditions, the
Ito formula is given by:

dF (St , t) =

[
Ft + λt

k∑
i=1

(F (St + ai , t)− F (St , t))pi +
1

2
Fssσ

2

]
dt

+FsdSt + [F (St , t)− F (S−t , t)]

λt

[
k∑

i=1

(F (St + ai , t)− F (St , t))pi

]
dt.
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