FE610 Stochastic Calculus for Financial Engineers Lecture 10. The Dynamics of Derivative Prices - Stochastic Differential Equations

Steve Yang

Stevens Institute of Technology

04/04/2013

Outline

- 1 [Stochastic Differential Equation](#page-2-0)
- 2 [Verification of Solutions to SDEs](#page-11-0)
- 3 [Major Models of SDEs](#page-12-0)

A Geometric Description of Paths Implied by SDEs

- Consider the stochastic differential equation

$$
dS_t = a(S_t, t)dt + \sigma(S_t, t)dW_t, t \in [0, \infty),
$$
\n(1)

where the drift and diffusion parameters depend on the level of observed asset price S_t and (possibly) on t. These parameters are themselves random variables. Conditional on available information, they "become" constant.

– The $\mathit{a}(S_t,t)$ and $\sigma(S_t,t)$ parameters are assumed to satisfy the conditions

$$
P\left(\int_0^t |a(S_u, u)|du < \infty\right) = 1
$$

and

$$
P\left(\int_0^t |\sigma(S_u, u)|du < \infty\right) = 1
$$
 (2)

A Geometric Description of Paths Implied by SDEs (continued)

Figure : This geometric derivation emphasizes that the trajectories of S_t are likely to be very erratic when h becomes infinitesimal.

Types of Solutions

- The first type of solution to an SDE is similar to the case of ordinary differential equations. Given the drift and diffusion parameters and the random innovation term dW_t , we determine a random process S_t paths of which satisfy the SDE:

$$
dS_t = a(S_t, t)dt + \sigma(S_t, t)dW_t, t \in [0, \infty),
$$
\n(3)

Clearly, such a solution S_t will depend on time t, and on the past and contemraneous values of the random variable W_t , as the underlying integral equation illustrates:

$$
S_t = S_0 + \int_0^t a(S_u, u) du + \int_0^t \sigma(S_u, u) dW_u, t > 0
$$
 (4)

When W_t on the right-hand side is given exogenously and S_t is then determined, we obtain the so-called strong solution of the SDE.

Types of Solutions (continued)

- The second solution concept is specific to stochastic differential equations. It is called weak solution. In the weak solution, one determines the process \tilde{S}_t ,

$$
\tilde{S}_t = f(t, \tilde{W}_t), \tag{5}
$$

where \tilde{W}_t is a Wiener process whose distribution is determined *simultaneously* with \tilde{S}_t .

- The idea of a weak solution is that given that solving SDEs involves finding random variables that satisfy

$$
\int_0^t dS_u = \int_0^t a(S_u, u) du + \int_0^t \sigma(S_u, u) dW_u, t > 0
$$
 (6)

One can argue that finding an \tilde{S}_t and a \tilde{W}_t such that the pair $\{\tilde{S}_t, \tilde{W_t}\}$ satisfies this equation is also a type of solution.

Types of Solutions (continued)

- The weak solution is in contrast with strong solutions where one does not solve for the W_t , but considers it another given of the problem.
- If we look at the form of distribution, the density functions of dW_t and $d\tilde{W}_t$ are given by the same formula. In this sense, there is no difference between the two random errors.
- The strong solution calculates an S_t that satisfies the SDE with dW_t given. That is, in order to obtain the strong solution S_t , we need to know the family I_t .
- The weak solution \tilde{S}_t , on the other hand, is not calculated using the process that generates the information set I_t . Instead, it is found along with some process \tilde{W}_t . The process \tilde{W}_t could generate some other information set H_t . The corresponding \tilde{S}_t will not necessarily be *l*-adapted. But \tilde{W}_t will still be a martingale with respect to histories H_t .

A Discussion of Strong Solutions

- In the case of SDEs, the "unknown" under consideration is a stochastic process. By solving an SDE, we mean determining a process S_t such that the integral equation

$$
S_t=S_0+\int_0^t a(S_u,u)du+\int_0^t \sigma(S_u,u)dW_u, t\in [0,\infty),
$$

is valid for all t. In other words, the evolution of S_t , starting from an initial point $S₀$, is determined by the two integrals on the right-hand side. The solution process S_t must be such that when these integrals are added together, they should yield the increment S_t - S_0 .

- This approach verifies the solution using the corresponding integral equation rather than using the SDE directly, because we do not have a theory of differentiation in stochastic environments.

A Discussion of Strong Solutions (continued)

- Consider a simple ordinary differential equation

$$
\frac{dX_t}{dt} = aX_t, \tag{7}
$$

where a is a constant and X_0 is given.

- Suppose the candidate solution

$$
X_t = X_0 e^{at} \tag{8}
$$

- Then, the solution must satisfy two conditions: First, if we take the derivative of X_t with respect to t,

$$
\frac{d}{dt}(X_0e^{at}) = a[X_0e^{at}]
$$
\n(9)

Second, at $t = 0$, the function should give a value X_0 .

$$
\left(X_0 e^{a0}\right) = X_0 \tag{10}
$$

Verification of Solutions to SDEs

- In SDE, one needs to consider a candidate solution, and then use Ito's Lemma, to see if this candidate satisfies the SDE or the corresponding integral equation. Lets consider the special SDE

$$
dS_t = \mu S_t dt + \sigma S_t dW_t, t \in [0, \infty), \qquad (11)
$$

which was used by Black-Scholes (1973) in pricing call options.

- Divide both sides by \mathcal{S}_t , we get

$$
\frac{1}{S_t}dS_t = \mu dt + \sigma dW_t, t \in [0, \infty), \qquad (12)
$$

First, we calculate the implied integral equation:

$$
\int_0^t \frac{1}{S_u} dS_u = \int_0^t \mu du + \int_0^t \sigma dW_u \tag{13}
$$

Verification of Solutions to SDEs (continued)

- The first integral on the right-hand side does not contain any random terms, and it can be calculated in the standard way

$$
\int_0^t \mu dt = \mu t \tag{14}
$$

- The second integral does contain a random term, but the coefficient of dW_{μ} is a time-invariant constant. Hence, this integral can also be taken in the usual way

$$
\int_0^t \sigma dW_u = \sigma[W_t - W_0], \qquad (15)
$$

where by definition $W_0 = 0$. Thus, we have

$$
\int_0^t \frac{1}{S_u} dS_u = \mu t + \sigma W_t.
$$
 (16)

Verification of Solutions to SDEs (continued)

- Consider the candidate

$$
S_t = S_0 e^{(a - \frac{1}{2}\sigma^2)t + \sigma W_t}.
$$
 (17)

Clearly, we are dealing with a strong solution, since S_t depends on W_t and is I_t -adapted.

- Consider calculating the stochastic differential dS_t using Ito's Lemma:

$$
dS_t = \left[S_0 e^{(a-\frac{1}{2}\sigma^2)t+\sigma W_t}\right] \left[\left(a-\frac{1}{2}\sigma^2\right)dt + \sigma dW_t + \frac{1}{2}\sigma^2 dt\right], \quad (18)
$$

where the very last term on the right-hand side corresponds to the second-order term in Ito's Lemma.

- Canceling similar terms and replacing by S_t , we obtain

$$
dS_t = S_t[adt + \sigma dW_t]
$$
 (19)

Linear Constant Coefficient SDEs

- The simplest case of stochastic differential equation is where the drift and diffusion coefficients are independent of the information received over time:

$$
dS_t = \mu dt + \sigma dW_t, t \in [0, \infty), \qquad (20)
$$

where W_t is a standard Wiener process with variance t. The mean of ΔS_t during a small interval of length h is given by

$$
E[\Delta S_t] = \mu h \tag{21}
$$

The expected variation in ΔS_t will be

$$
Var(\Delta S_t) = \sigma^2 h \tag{22}
$$

The observations were determined from the iterations

 $S_k = S_{k-1} + 0.01(0.001) + 0.03(\Delta W_k), k = 1, 2, ..., 1000.$ (23)

Linear Constant Coefficient SDEs - Example

Figure : The behavior of S_t seems to fluctuate around a straight line with slope μ . The size of σ determines the fluctuation around this line.

Geometric SDEs

- The standard SDE used to model underlying asset prices is not the linear constant coefficient model, but is the geometric process. It is the model exploited by Black and Scholes:

$$
dS_t = \mu S_t dt + \sigma S_t dW_t, t \in [0, \infty), \qquad (24)
$$

This model implies that in terms of the formal notation,

$$
a(S_t, t) = \mu S_t \tag{25}
$$

and

$$
\sigma(S_t, t) = \sigma S_t \tag{26}
$$

Divide both sides by S_t , we obtain

$$
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t.
$$
 (27)

Example:
$$
dS_t = 0.15S_t dt + 0.30S_t dW_t
$$
. (28)

Geometric SDEs

Figure : There is an exponential trend, and random fluctuations around this trend. These variations increase over time because of higher prices.

Square Root SDEs

- A model close the one just discussed is the square root process,

$$
dS_t = \mu S_t dt + \sigma \sqrt{S_t} dW_t, t \in [0, \infty), \qquad (29)
$$

Here the S_t is made to follow an exponential trend, while the standard deviation is made a function of the square root of S_t , rather than of S_t itself. This makes the "variance" of the error term proportional to S_t We provide an example as following:

$$
dS_t = 0.15S_t dt + 0.30\sqrt{S_t} dW_t.
$$
 (30)

where the drift and diffusion coefficients are as in the previous case, but where the diffusion is now proportional previous case, but where the diffusion is no
to $\sqrt{S_t}$ instead of being proportional to S_t .

Square Root SDEs - Example

Figure : The fluctuation is more subdued than the ones in the Geometric SDE, yet the sample paths have "similar" trend.

Mean Reverting SDEs

- An SDE that has been found useful in modeling asset prices is the mean reverting model

$$
dS_t = \lambda(\mu - S_t)dt + \sigma S_t dW_t, t \in [0, \infty), \qquad (31)
$$

As S_t falls below some "mean value" μ , the term in parentheses, $(\mu - S_t)$, will become positive. This makes dS_t more likely to be positive. S_t will eventually move toward and revert to the value μ .

A related SDE is the one where the drift is of the mean reverting type, but the diffusion is dependent on the square root of \mathcal{S}_t :

$$
dS_t = \lambda(\mu - S_t)dt + \sigma \sqrt{S_t}dW_t, t \in [0, \infty), \qquad (32)
$$

Example:

 $\Delta S_k = .5(.05 - S_{k-1})(.001) + .8\Delta W_k, k = 1, 2, ..., 1000.$

Mean Reverting - Example

Figure : The mean reverting process has a trend, but the deviation around this trend are not completely random.

Ornstein SDEs

- Another useful SDE is the Ornstein-Uhlenbeck process,

$$
dS_t = -\mu S_t dt + \sigma dW_t, t \in [0, \infty), \qquad (33)
$$

where $\mu > 0$. Here the drift depends on S_t negatively through the parameter μ , and the diffusion term is of the constant parameter type. Obviously, this is a special case of "mean reverting SDE".

- This model can be used to represent asset prices that fluctuate around zero. The fluctuations can be in the form of excursions, which eventually revert to the long-run mean of zero. The parameter μ controls how long excursions away from this mean will take. The larger the μ , the faster the S_t will go back toward the mean.

 $\Delta dS_k = -.05S_{k-1}0.001 + .8\Delta W_k, k = 1, 2, ..., 1000.$

Ornstein - Example

Figure : The fluctuations of the Ornstein process can be in the form of excursions, which eventually revert to the long-run mean of zero.