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Forming Risk-Free Portfolios

- Derivative instruments are contracts written on other
securities, and these contracts have finite maturities. At
the time of maturity denoted by T , the price FT of the
derivative contract should depend solely on the value of
the underlying security ST , the time T , and nothing else:

FT = F (ST ,T ), (1)

This implies that at expiration, we know the exact form of
the function F (ST ,T ). We assume that the same
relationship is true for times other than T , and that the
price of the derivative product can be written as

F (St , t). (2)

At the outset, a market participant will not know the
function form of F (St , t) at times other than expiration.
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Forming Risk-Free Portfolios (continued)

- If we have an equation describing the way dSt is determined -
then we can use Ito’s Lemma to obtain dFt . This means that
dFt and dSt would be increments that have the same source
of underlying uncertainty. Such relationship makes it possible
to form risk-free portfolios in countinuous time.

- Let Pt value invested in a combination of F (St , t) and St :

Pt = θ1F (St , t) + θ2St , (3)

where θ1 and θ2 are the quantities of the derivative
instrument and the underlying security purchased. They
represent portfolio weights.

- The value of this portfolio changes as time t passes
because of changes in F (St , t) and St . Taking θ1 and θ2

as constant, we can write:

dPt = θ1dFt + θ2dSt . (4)
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Forming Risk-Free Portfolios (continued)

- Our main interest is in the price of the derivative product, and
how this price changes. Thus, we begin by positing a model
that determines the dynamics of the underlying asset St , and
from there we try to determine how F (St , t) behaves.

- Accordingly, we assume that the stochastic differential dSt
obeys the SDE

dSt = a(St , t)dt + σ(St , t)dWt, t ∈ [0,∞). (5)

- Using this, we can apply Ito’s Lemma to find dFt :

dFt = Ftdt +
1

2
Fssσ

2
t dt + FsdSt . (6)

- We substitute for dSt using Eq.(5), and obtain the SDE:

dFt =

[
Fsat +

1

2
Fssσ

2
t + Ft

]
dt + FsσtdWt . (7)
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Forming Risk-Free Portfolios (continued)

- We first see that the SDE in (7) describing the dynamics of
dFt is driven by the same Wiener increment dWt that drives
the St .

- Second, the latter can always be set such that the dPt is
independent of the innovation term dWt and hence is
completely predictable.

- Given that dFt and dSt have the same unpredictable
component, and given that θ1 and θ2 can be set as desired,
one can always eliminate the dWt component. Consider (4)
again

dPt = θ1dFt + θ2dSt . (8)

and substitute dFt using (6):

dFt = θ1

[
FsdSt +

1

2
Fssσ

2
t dSt + Ftdt

]
+ θ2dSt . (9)
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Forming Risk-Free Portfolios (continued)

- In this equation we are free to set θ1, θ2 the way we wish.

Suppose we ignore for a minute that Fs depends on St and

select

θ1 = 1 and θ2 = −Fs . (10)

- These particular values for portfolio weights will lead to
cancellation of the terms involving dSt in (9) and reduces
it to

dPt = Ftdt +
1

2
Fssσ

2
t dt. (11)

Clearly, given the information set It , in this expression
there is no random term. The dPt is a completely
predictable, deterministic increment for all times t. This
means that the portfolio Pt is risk-free.
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Forming Risk-Free Portfolios (continued)

- Since there is no risk in Pt , its appreciation must equal the
earnings of a risk-free investment during an interval dt in
order to avoid arbitrage. Assuming that the (constant)
risk-free interest rate is given by r , the expected capital gains:

rPtdt (12)

in the case where St pays no “dividends”, and must equal

rPtdt − δdt (13)

in the case where St pays dividends δ per unit time. In
the latter case, the capital gains plus the dividends earned
will equal the risk-free rate.

- Utilizing the case with no dividends, we get:

rPtdt = Ftdt +
1

2
Fssσ

2
t dt. (14)
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Forming Risk-Free Portfolios (continued)

- Since dt terms are common to all factors, they can be
“eliminated” to obtain a partial differential equation:

r(F (St , t)− FsSt) = Ft +
1

2
Fssσ

2
t . (15)

We rewrite the last with a simple notation as

−rF + rFsSt + Ft +
1

2
Fssσ

2
t = 0, 0 ≤ St , 0 ≤ t ≤ T . (16)

- We also know at expiration that the price of the derivative
product is given by

F (ST ,T ) = G (ST ,T ). (17)

where G (·) is a known function of ST and T . In the case
of a call option, we have

G (ST ,T ) = max [ST − K , 0]. K: the strike price (18)
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Accuracy of the Method (continued)

- When we develop the SDE using the risk-free portfolio

method, we selected the portfolio weights as:

θ1 = 1, θ2 = −Fs . (19)

This selection “works” for constructing a risk-free
portfolio, but unfortunately it also violates the assumption
that θ1 and θ2 are constant. In fact, the θ2 is now
dependent on St because, in general, Fs is a function of
St and t. Thus, first replacing θ1 and θ2 with their
selected values, and then taking the differential should
give a very different results.

- Writing the dependence of Fs on St and then
differentiating yield:

dPt = (Ftdt + FsdSt)− FsdSt − StdFs . (20)
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Accuracy of the Method (continued)

- When we develop the SDE using the risk-free portfolio

method, we selected the portfolio weights as:

θ1 = 1, θ2 = −Fs . (21)

This selection “works” for constructing a risk-free
portfolio, but unfortunately it also violates the assumption
that θ1 and θ2 are constant. In fact, the θ2 is now
dependent on St because, in general, Fs is a function of
St and t. Thus, first replacing θ1 and θ2 with their
selected values, and then taking the differential should
give a very different results.

- Writing the dependence of Fs on St and then
differentiating yield:

dPt = (Ftdt + FsdSt)− FsdSt − StdFs . (22)
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Accuracy of the Method (continued)

- Note that we now have a third term since the Fs is dependent
on St and, hence, is time dependent and stochastic. In
general, this term will not vanish. In fact, we can use Ito’s
Lemma and calculate the dFs , which is a function of St and t.
This is equivalent to taking the stochastic differential of the
derivative’s DELTA:

dFs(St , t) = Fstdt + FssdSt +
1

2
Fsssσ

2S2
t dt, (23)

where the third derivative of F is there because we are
applying Ito’s Lemma to the F already differentiated with
respect to St . After replacing the differential dSt , and
arranging:

dFs(St , t) = Fstdt + Fss(µStdt + σStdWt) +
1

2
Fsssσ

2S2
t dt

=

[
Fst + FssµSt +

1

2
Fsssσ

2S2
t

]
dt + FssσStdWt . (24)
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Accuracy of the Method (continued)

- Thus, the formal differential of

dPt = θ1dF (St , t) + θ2dSt , (25)

when θ2 is equal to −Fs will be given by:

dPt = (Ftdt + FsdSt)− FsdSt

−St

[[
Fst + FssµSt +

1

2
Fsssσ

2S2
t

]
dt + FssσStdWt

]
. (26)

- This portfolio is self-financing, since we do not have:

dPt = dF (St , t)− FsdSt . (27)

On the right-hand side there are extra terms, and these
extra terms will not equal zero unless we have:

S2
t Fss(σdWt + (µ− r)dt) = 0, (28)
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Accuracy of the Method (continued)

- In order to see this, note that differentiating the Black-Scholes
PDE in (16) with respect to St again, we can write

Fst + Fss rSt +
1

2
Fsssσ

2S2
t + σ2FssSt = 0. (29)

Using this equation eliminates most of the unwated terms
in (26). But we are still left with:

dPt = (Ftdt + FsdSt)− FsdSt − StdSt − St [Fss(µ− r)Stdt]

+FssσS
2
t dWt . (30)

- Thus, in order to make the portfolio Pt self-financing we
need

S2
t Fss(σdWt + (µ− r)dt) = 0, (31)

which will not hold in general.
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Accuracy of the Method (continued)

- Although, formally speaking, the risk-free portfolio method is
not satisfactory and, in general, makes one work with
portfolios that require infusions of cash or leave some capital
gains, the method still gives us the correct PDE.

- How to interpret this result? The answer is in the
additional term, S2

t Fss(σdWt + (µ− r)dt). This term has
nonzero expectation under the true probability P. But once
we switch to a risk-free measure P̃ and define a new Wiener
process Wt∗ under this probability, we can write:

dWt∗ = (σdWt + (µ− r)dt). (32)

We will have (under synthetic risk measure):

E P̃ [S2
t Fss(σdWt + (µ− r)dt)] ∼= 0. (33)

It is as if, on the average, self-financing.
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Partial Differential Equations

- We rewrite the partial differential equation in a general form,
using the shorthand notation F (St , t) = F ,

a0F + a1FsSt + a2Ft + a3Fss = 0, 0 ≤ St , 0 ≤ t ≤ T , (34)

with boundary condition

F (ST ,T ) = G (ST ,T ), (35)

G (·) being a known function.

- Forming such risk-free portfolio to obtain arbitrage-free
prices for derivatives will always lead to PDEs. The
formation of such arbitrage-free portfolios is in general
quite straightforward, but the boundary conditions may
get more complicated depending on the derivative product
we are working with.

- Overall, the method will center on the solution to a PDE.
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Questions about PDEs

- Why is the PDE an “Equation”?

Unlike the usual cases in algebra where equations are solved
with respect to some variable or vector x , the unknown in our
PDE is in the form of a function.

It is not known what type of function F (St , t) represents
neither. What is known is that if one takes various partial
derivatives of F (St , t) and combines them by multiplying by
coefficients ai the result will equal zero.

Also, at time t = T , this function must equal the (known)
G (ST ,T ) – i.e., it must satisfy the boundary condition.

- What is the Boundary Condition?

In finance, boundary conditions play an important role in
determining solutions of a PDE. They represent some
contractual clauses of various derivative products.

The most obvious ones are initial or terminal values.
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Classification of PDEs

There are several different ways of classifying PDEs.

- First of all, PDEs can be linear nonlinear. This refers to the
coefficients applied to partial derivatives in the equation. If an
equation is a linear combination of F and its partial
derivatives, it is called a linear PDE.

- The second type of classification has to do with the order of
differentiation. If all partial derivatives in the equation are
first-order, then the PDE will also be first-order. If there are
cross-partials, or second partials, then the PDE becomes
second-order. For nonlinear financial derivatives such as
options, or instruments containing options, the resulting PDE
will always be second-order.

- The third type of classification is specific to PDEs. They can
be classified as elliptic, parabolic, or hyperbolic. The PDEs we
encounter in finance are similar to parabolic PDEs.
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Example 1: Linear, First-Order PDE

- Consider the PDE for a function F (St , t):

Ft + Fs = 0, 0 ≤ St , 0 ≤ t ≤ T . (36)

According to this PDE, the negative of the partial of F (·)
with respect to t is equal to its partial with respect to St .

- In a financial market, there is no compelling reason why
such a relationship should exist between the two partial
derivatives. But suppose the equation holds, and we are
to find a solution. We can immediately guess a solution:

F (St , t) = αSt − αt + β, (37)

where α, β are any constants. With such a function, the
partials will be given by

∂F

∂t
= −α and

∂F

∂St
= α. (38)
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Example 1: Linear, First-Order PDE
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F(S_t, t) = 3S_t - 3t + 4

Figure: This figure shows a plane:
F (St , t) = 3St − 3t + 4,−10 ≤ t ≤ 10,−10 ≤ St ≤ 10.



Forming Risk-Free Portfolios Partial Differential Equations

Example 1: Linear, First-Order PDE
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Figure: This figure shows a plane:
F (St , t) = −2St + 2t − 4,−10 ≤ t ≤ 10,−10 ≤ St ≤ 10.
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Example 1: Linear, First-Order PDE

- If in addition to the equation we are given some boundary
conditions as well, then we can determine F (St , t) precisely.
For example, suppose we know that at expiration time t = 5
(the boundary for t) we have

F (S5, 5) = 6− 2S5. (39)

We can now determine the unknown α and β:

α = 2 and β = 4. (40)

- [Figure (2)]If we had a second boundary condition, say, at
St = 100,F (100, t) = 5 + 0.3t then there will be no
meaningful solution because the two boundary conditions
overdetermine the parameters.

- Thus, when F (St , t) is a plane, we need a single boundary
condition to exactly solve the PDE.
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Example 2: Linear, Second-Order PDE

- Now consider a second-order PDE

∂2F

∂t2
= 0.3

∂2F

∂S2
t

,

or − 0.3Fss + Ftt = 0. (41)

- First note that we again are dealing with a linear PDE,
since the partials in question are combined by using
constant coefficients. We may consider a solution as such:

F (St , t) =
1

2
α(St − S0)2

+
0.3

2
α(t − t0)2 + β(St − S0)(t − t0), (42)

where S0, t0 are unknown constants and where the
parameters α and β are again unknown.

- If we take the second partials, we can confirm the solution.
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Example 2: Linear, Second-Order PDE

- Again, the solution of (42) is not unique, we need boundary
conditions. One boundary condition could be at St = 10:

F (10, t) = 100 + t2. (43)

This is a function that traces a parabola in the F , t plane.
But it is no sufficient to determine all the parameters.

- One would need a second boundary condition:

F (S0, 0) = 50 + S2
0 . (44)

This equation is another parabola. But the relevant plane
is F , St .

- We have a new solution

F (St , t) = −10(St − 4)2 − 3(t − 2)2,

−10 ≤ t ≤ 10,−10 ≤ St ≤ 10. (45)
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Example 1: Linear, First-Order PDE
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Figure: Suppose we have some boundary conditions:
F (S10, 10) = −10(S10 − 4)2 − 192 and F (0, t) = 160− 3(t − 2)2
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A Reminder: Bivariate, Second-Degree Equations

- Let x , y denote two deterministic variables, We can define an
equation of the second degree as

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. (46)

Here A,B ,C ,D,E , and F represent various constants.
(a) Circle:

A = C and B = 0. (47)

(b) Ellipse:

B2 − 4AC < 0. (48)

(c) Parabola:

B2 − 4AC = 0. (49)

(d) Hyperbola:

B2 − 4AC > 0. (50)
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Types of PDEs

- Now, we can look at partial differential equations of the form

a0 + a1Ft + a2Fs + a3Fss + a4Ftt + a5Fst = 0 (51)

are called elliptic PDEs if we have

a5 − 4a3a4 < 0 (52)

, and parabolic, if we have

a5 − 4a3a4 = 0 (53)

, and hyperbolic, if we have

a5 − 4a3a4 > 0 (54)

- Consider a parabolic PDE:

F (St , t) = −10(St − 4)2 − 3(t − 2). (55)
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Types of PDEs
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Figure: Such a F (St , t) is one of the solutions of PDE: − 1
4Fss + 5

3Ft = 0.
The coefficients of the PDE are such that a2

5−4a3a4 (a4 = 0 and a5 = 0).
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