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Theory and Engineering

e Science is able to provide the framework to perform
analysis but is often ill-equipped to perform synthesis.
Our ability to synthesize purposeful artifacts, crucial for
practical application, is much more limited.

e Engineering is to use existing knowledge to sythesize an
artifact such as an airplane or a portfolio.

e Financial engineering relies on finance theory, in particular
on the ability to forecast financial quantities.

e Sometimes solution fails, and one possible cause is the

failure to recognize that the solution to the problem calls
for a true theoretical advance.



Theory and Engineering
°

Engineering and Theoretical Science

@ Modern science is based on the concept of laws of nature
formulated in mathematical language and (for the most part)
expressed through differential equations.

o A differential equation is an expression that links quantities
and their rates of change. For example:
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Given initial or boundary conditions, a differential equation
allows infering the behavior of a system in the future or in
other regions of space.

@ When probablistic laws are involved, differential equations, or
their discrete counterpart, describe the evolution of probablity
distributions. For example, the price of an asset can be

expressed as:
dst == ,LLStdt + O'Stth (2)



Theory and Engineering
.

Engineering and Theoretical Science

@ Engineering is a process of synthesis in the sense that the
objective of the engineering process is to construct purposeful
artifacts, such as airplanes, trains or, in finance, portfolios or
derivative products.

@ We are given a problem formulated in terms of design
specifications and we attempt to synthesize a design or an
artifact that meets these specifications.

@ The process of engineering is based on iterating cycles of
synthesis and analysis - we start by sythesizing and overall
design and then we analyze the design with analytical tools
based on our scientific knowledge.

@ Problem-solving abilities can be formalized and mimicked by
computer programs - Herbert Simon, 1978 Nobel Prize in
Economic Science.



Theory and Engineering
°

Engineering and Theoretical Science

@ Automatic problem-solving works well when solutions can be
expressed as the maximization of some goal function; that is,
when the problem can be cast in an optimization framework.

@ Constructive methodoloties are available only when we arrive
at the point where we can optimize, that is, codify our design
in terms of variables and express the quality of our design in
terms of a goal function defined on the design variables.

e Science is analytic: We have the models to analyze a given
system.

e Design is a constructive process: We need to synthesze a
design starting from general high-level specification.

o Constructive design is performed iteratively: We make an
approximate design and analyze it.

o Design automation: The process of design can be automated
only when we arrive at the stage of expressing the design
quality in terms of a goal function.



Theory and Engineering
°

Finanical Engineering can be defined loosely as an
engineering process whose objective is to create financial
products with specific characteristics.
e Designing a derivative-based product to meet specific client
needs is engaged in financial engineering;
e Managing a portfolio with desired properties such as a given
risk return profile is also engaged in financial engineering;
e Design a tradging strategy with specified risk return profile is
also engaged in financial engineering.

@ Indeed most of the financial engineering processes, including
portfolio construction and derivative-based strategies, can be
cast, at least theoretically, in an optimization framework.

@ Optimization depends critically on the ability to make

forecasts and to evaluate the risk of those forecasts. Much of
its success can be atrributed to the following two reasons:
e We have learned how to make forecast more effective;
e We have the technology necessary to make the optimization
process more robust to measurement erros and uncertainty in
the inputs.



Approaches to Portfolio Management

Learning, Theoretical, and Hybrid Approaches to Portfolio

Management

There are three basic approaches to finanical modeling: the
learning approach, the theoretical approach, and the
learning-theoretical approach.

@ The learning approach to financial modeling is in principle a

consequence of the diffusion of low-cost high-performance
computers. It is based on using a family of models that

(1) include an unlimited number of parameters and
(2) can approximiate sample data with high precision.

- Neural networks are a classical example. With an unrestricted
number of layers and nodes, a neural network can
approximate any function with arbitrary precision.

- However, practice has shown that if we represent sample data
with very high precision, we typically obtain poor forecasting
performance.



Approaches to Portfolio Management
°

Overfitting: In general, the main features of the data can be
described by a simple structural model plus unpredictable
noise. As the noise is unpredictable, the goal of a model is to
capture the structural components. A very precise model of a
sample data (in-sample) will also try to match the
unpredictable noise. This leads to poor (out-of-sample)
forecasting abilities.

- To avoid over-fitting, the learning approach constrains the
complexity of models. This is typically done by introducing
what is called a penalty function.

- The central idea in learning theory is to add a penalty term to
the objective function that grows with the number of
parameters but gets smaller if the number of sample points
increases.



Approaches to Portfolio Management
°

@ The Theoretical Approach to financial modeling is based on
human creativity. In this approach, models are the result of
new scientific insights that have been embodied in theories.

- Laws such as the Maxwell equations of electromagnetism were
discovered not through a process of learning but by a stroke of
genius.

- The Capital Asset Pricing Model (CAPM) is the most
well-known example of a theoretical model in financial
economics.

o The Hybrid Approach to financial modeling retains
characteristics of both the theoretical and learning
approaches. It uses a theoretical foundation to identify
families of models but uses a learning approaches to choose
the correct model within the family.

- For example the ARCH/GARCH family of models is suggested
by theoretical considerations while the right model is selected
through a learning approach that identifies the model
parameters.



Approaches to Portfolio Management
°

Biases

@ Survivorship Bias is exhibited by samples selected on the
basis of criteria valid at the last point in the sample
population.

- In the presence of survivorship biases in our data, return
processes relative to firms that ceased to exist prior to that
date are ignored.

- For example, while poorly performing mutual funds often close
down (and therefore drop out of the sample), better
performing mutual funds continue to exist (and therefore
remain in the sample).

- In this situation, estimating past returns from the full sample
would result in overestimation due to survivorship bias.



Approaches to Portfolio Management
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Biases

@ Selection Bias is an error in choosing the individuals or
groups to take part in a scientific study.

- Intrinsic in common indexes such the Russell 1000 universe
(large-cap stocks). In order to understand the selection bias,
we can apply a selection rule similar to that of the Russell
1000 to artificially generated random walks.

- Assume we have 10,0000 independent random walk price
processes, each representing the price of a company'’s stock,
over 1,000 periods using the recursive formula:

Pi(2) = (1 + Ri(2)) x Pi(1) = 1+ 0.007 x €;(2)

Pi(3) = (L + Ri(3)) X Pi(2) = (1 +0.007 x €;(3)) X (1 +0.007 x €;(2)) 3

P;(n) = (14 0.007 X €;(n)) X ... X (1+0.007 X €;(3)) X (1 +0.007 X €;(2))



Approaches to Portfolio Management
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Pitfalls in Choosing from Large Datasets

STATEMENT: Any statistical test, regardless of its
complexity and power, will fail in a certain number of cases
simply by chance.

- For example, pairs trading is based on selecting pairs of stocks
that stay close together. Suppose we know that the price
paths of two stocks will stay close together. When they are at
their maximum distance, we can go long in the stock with the
highest value and short in the other stock. When their
distance is reduced or changes sign a profit is realized.

- Given a large universe of stocks, a pairs trading strategy will
look for cointegrate pairs. A typical approach will consist in
running a cointegration test on each pair. Actually test can
consist of multiple tests that each pair has to pass in order to
be accepted as cointegrated.

- However, a pair can appear cointegrated in a sample period
purely by chance. Or a truly cointegrated pair may fail the test.



Approaches to Portfolio Management
°

Pitfalls in Choosing from Large Datasets

To illustrate this phenomenon, let's consider a set of 1,000
artificial arithmetic random walk paths that are 1,000 steps
long. Consider that is the sample set there are

(1,000 x 1,000 — 1,000)/2 = 1,000 x 999 x 0.5 = 499, 500
different pairs of processes.

- The random walk is defined by the following recursive
equation:
Pi(t) = P,‘(t — 1) + 0.007 x 6,‘(t)

where the ¢;(t) are independent draws from a standard normal
distribution N(0, 1).
- Using the ADF test at 1% significance level, in run 1, 1.1%
pass the cointegration test, in run 2, 0.8%.
- Using the Johansen test at 99% significance level, in run 1,
2.7% pass the cointegration test, in run 2, 1.9%.
- Using the Johansen maximum eigenvalue test, in run 1, 1.7%
pass the cointegration test, in run 2, 1.1%.



Approaches to Portfolio Management
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Pitfalls in Selection of Data Frequency

@ In financial theory, we have both discrete-time and
continuous-time models. For example, the Black-Scholes
option pricing equation, under certain assumptions, can be
solved in a closed-form format. In other cases, we have to
look for numeric solutions.

@ Let's look at a discrete-time models. For example a vector
autoregressive model of order 1:

Xe=AXi_1+ E;

Such as model is characterized by a time step. If the X are
returns, the time steps could be days, weeks, or months.

@ Given a process that we believe is described by a given model,
can we select the time step arbitrarily? Or are different time
steps characterized by different models?

@ There is no general answer to these questions. Most models
currently used are not invariant after time aggregation.



Model Risk and Its Mitigation

Model Risk and Its Mitigation

e We have to conclude that errors in choosing and
estimating models cannot be avoided. This is because
models are inevitably misspecified as they are only an
approximation, more or less faithful, of the true data
generating process (DGP).

e Model risk means that we cannot be certain that the
model that we have selected to represent the data is
correctly specified. If models are misspecified, forecasting
errors might be significant.

e The notion of model risk entered science with the
engineering of complex artifacts, the study of complex
systems, and the widespread adoption of statistical
learning methods.



Model Risk and Its Mitigation
°

Source of Model Risk

When modeling complex systems such as financial
markets, we might encounter one of the following:

e The phenomena under study might be very complex and
thus only a simplified description is possible; this leaves
open the possibility that some critical aspect is
overlooked.

@ The phenomena under study can bey very noisy; as a
consequence, the scientific endeavor consists in extracting
small amounts of information from highly noisy
environments.

e Being not a law of nature but the behavior of an artifact,
the object under study is subject to unpredictable changes.



Model Risk and Its Mitigation
°

Source of Model Risk

Existing techniques to reduce sources of error in model
selection and estimation:

e Information theory, to assess the complexity and the limits
of the predictability of time series.

e Bayesian modeling, which assumes that models are
variations of some a priori model.

e Shrinkage, a form of averaging between different models.

e Random coefficient models, a technique that averages
models estimated on clusters of data.



Model Risk and Its Mitigation
°

Information Theory Approach to Model Risk

The critical questions to be asked:

@ Is it possible to estimate the maximum information
extractable from a financial time series?

e Can we prescribe an information boundary such that
sound robust models are not able to yield information
beyond that boundary?

e Is it possible to assess the intrinsic complexity of empirical
time series?

In a finite probability scheme, with N outcomes each with
probability p;,i = 1,2, .... N information is defined as

.
I = Z pilog(p:)
i—1



Model Risk and Its Mitigation
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Information Theory Approach - Entropy

The quality /, which always negative, assumes a minimum

1
I = log (N)

if all outcomes have the same probability; it assumes a
maximum / = 0; if one outcome has probability 1 and all
other outcomes probability 0, that is, in the case of
certainty of one outcome.

Entropy is a measure of disorder in physics. And we
define:

| =—-H
If we can associate the quantity of information to physical
processes, we can establish laws that make sense
empirically.



Model Risk and Its Mitigation
.

Information Theory Approach - Coarse Graining and

Symbolic Dynamics

Coarse graning means dividing the possible outcome x; of
the series into discrete segments (or partitions) and
associating a symbol to each segment.

For example the symbol a; is associated to values x; in the
range v;_; < X; < V;. In doing so, the original DGP of the
time series entails a discrete stochastic dynamics of the
corresponding sequence of symbols.

Given the probabilistic dynamics of the symbol sequence,

we can associate a probability to any sequence of n
symbols p(i1, ..., in). The entropy H can be defined as

;
H=—Y" pilog(pi)
i=1



Model Risk and Its Mitigation
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Information Theory Approach - Kolmogorow-Sinai Entropy

We can therefore define the entropy per block of length n
(or block entropy) as follows:

== p(it, s in)log(p1, ... Pn)

From the block entropy, we can now define the conditional entropy
h, as the difference of the entropies per blocks of length n+ 1 and
n:

hn = Hn+1 - H,= *Zp(in—ﬁ-l“la ) i,,)/og(p,,+1|p1, -~~apn)

Finally, we can define the Kolmogorow-Sinai entropy, or
entropy of the source, as the limit for large n of the
conditional entropy. The conditional entropy is the
information on the following step conditional on the
knowledge of the previous n steps. The quantity

r, =1 — h, is called the predictability of the series.



Model Risk and Its Mitigation
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Information Theory Approach - Entropy Applications

The concepts of conditional entropy and entropy of the
source are fundamental to an understanding of the
complexity of a series.

They supply a model-free methodology for estimating the
basic predictability of a time series.

It establishes a reasonable boundary to the performance of
models. Models that seem to exceed by a large measure
the predictability level of entropy-based estimation are
also likely to exhibit a high level of model risk.

In general, the conditional entropy and the entropy of
source of coarse graining models give an assessment of
the complexity of a series and its predictability.



Model Risk and Its Mitigation
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Information Theory Approach - Other Methods

e Transfer entropy gauges the information flow from one
series to another. It is defined as the information about
future observation /(t + 1) gained from past observations
of I and J minus the information about future observation
I(t + 1) gained from past observations of / only:

p(im+1|(i17 ceey im+17.j17 7.//))
p(im+1|i15 ceey im+1)

TI~>J = ZP("L ceey im+17j17 "'7j/)/0g

This quantity evaluates the amount of information that
flows from one series to another.

e Vapnik and Chervonenkis (VC) theory establishes limits to
the ability of given models to learn in a sense made
precise by concepts such as Vapnik entropy, empirical risk,
structural risk, and the VC dimension.



Model Risk and Its Mitigation
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Bayesian Approach to Model Risk

@ Bayesian Statistics:

e Statistical models are uncertain and subject to modification
when new information is acquired.

o There is distinction between prior probability (or prior
distribution), which conveys the best estimate of probabilities
given initial available information, and the posterior probability,
which is the modification of the prior probability consequent to
the acquisition of new information.

o The mathematical link between prior and posterior
probabilities is given by Bayes' Theorem.

Given two events A and B, we have Bayes' Theorem:

piare) = “EEE ppi - FADEE)
We replace the event A with a statistical hypothesis H
and event B with the data:

P(H|data) = DB2EDPH) L ata) o P(datalH)P(H)
P(data)



Model Risk and Its Mitigation
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Bayesian Approach to Model Risk

@ The Bayesian handling of model risk is based on Bayesian
dynamic modeling. It assumes that though there is
uncertainty as regards the model, we have a good idea of a
basic form of the model.

p(0ly) o< L(y|0)=(6)

where, y represents the data, ¢ is the parameter set,
p(0|y) is the posterior distribution, L(y|0) is the likelihood
function, and 7(0) is the prior distribution.

- Uncertainty is expressed as a prior distribution of the
model parameters where the means of the distribution
determine the basic model.

- The estimation process does not determine the model
from the data but uses the data to determine deviations
of the actual model from a standard idealized model.



Model Risk and Its Mitigation
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Bayesian Approach to Model Risk

@ The key issue in Bayesian statistics is how to determine the
prior. Though considered subjective, the prior is not arbitrary.
The prior represents the basic knowledge before specific
measurements are taken into account. Two types of priors are
often used: diffuse priors and conjugate priors.

1 The diffuse prior assumes that a uniform distribution over an
unspecified range.

2 The conjugate prior is a prior such that, for a given likelihood,
the prior and the posterior distribution coincide.



Model Risk and Its Mitigation
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Bayesian Analysis of an Univariate AR(1) Model

o Consider the following simple autoregressive model:
Ye = pYr—1 + €

Assume that the preceding model is Gaussian so that the
likelihood is also Gaussian. The model being linear,
Gaussian innovations entail Gaussian variables. The
likelihood is a given, not a prior.

o We can write the likelihood, which is a function of data
parameterized by the initial conditions yp, the
autoregressive parameters p, and the variance o of the
innovation process as follows:

1 _ T é
L(Y|pa07}/0):w0 Texp—%,—l<p<l,a>0

Assume a flat prior for (p, o), that is m(p,0) o L.



Model Risk and Its Mitigation
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Bayesian Analysis of an Univariate AR(1) Model

@ The the joint posterior distribution is the following:

p(p,oly,y) =0 exp — =~

-
_ 1 o~ T exp — D1y — pyt-1)*

@n)7 207

Let
-
thl YiYi—1

=
>t Yt2—1

ﬁ:

be the OLS estimator of the regressive parameter and call

Q=>yiqand R= 3 (y: — pyr-1)°
Then the marginal distribution of (p, o) are

p(ply;yo) o< (R+(p—p)*Q
ploly,yo) < o~ e><p(—



Model Risk and Its Mitigation

Model Averaging and the Shrinkage Approach to Model

Risk

Model Averaging: Reliable estimations and forecasts from
different models should be highly correlated. When they are
not, this means that the estimation and forecasting processes
have become dubious and averaging can substantially reduce
the forecasting error. If model averaging has a strong impact
on forecasting performance, it is a sign that forecasts are
uncorrelated and thus unreliable.

Shrinkage: The method of shrinkage can be generalized to
averaging between any number of models. The weighting
factors can be determined by Bayesian principles if one has an
idea of the relative strength of the models. Shrinkage is
averaging between possibly different models. In Bayesian
terms this would call for multiple priors.



Model Risk and Its Mitigation
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Random Coefficient Models

@ Random coefficient models are based on the idea of
segmenting data in a number of clusters and estimating
models on multiple clusters.

- Consider an ordinary linear regression, the regression
parameters can be estimated with OLS methods using fully
pooled data. This means that all the available data are pooled
together and fed to the OLS estimator.

- However, this strategy might not be optimal if the regression
data come from entities that have slightly different
characteristics.

- To reduce model risk, we might decide to segment data into

clusters that reflect different types of firms, and estimate
regression for each cluster, and combine the estimates.



Model Risk and Its Mitigation
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Random Coefficient Models - Example

@ Random coefficient modeling techniques perform estimates
assuming that clusters are randomly selected from a
population of clusters with normal distributions.

- We write a regression equation for the j-th cluster:
yi = X5 +¢;

where nj is the number of elements in the j-th cluster and
€; are mutually independent, normally distributed vectors.
We can rewrite the regression as follows:

yi = X8 + Xy + €

where ; are the deviations of the regression coefficients
from their expectations: v; = 5, — 8 ~ N(0, X).
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