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Abstract— We investigate the impact of landmark
placement on localization performance using a com-
bination of analytic and experimental analysis. For
our analysis, we have derived an upper bound for the
localization error of the linear least squares algorithm.
This bound reflects the placement of landmarks as
well as measurement errors at the landmarks. We next
develop a novel algorithm,maxL−minE , that using our
analysis, finds a pattern for landmark placement that
minimizes the maximum localization error. To show
our results are applicable to a variety of localization
algorithms, we then conducted a series of localization
experiments using both an 802.11 (WiFi) network as
well as an 802.15.4 (ZigBee) network in a real building
environment. We use both Received Signal Strength
(RSS) and Time-of-Arrival (ToA) as ranging modali-
ties. Our experimental results show that our landmark
placement algorithm is generic because the resulting
placements improve localization performance across
a diverse set of algorithms, networks, and ranging
modalities.

I. I NTRODUCTION

Localization of nodes in wireless and sensor net-
works is important because the location of sensors
is a critical input to many higher-level networking
tasks, such as tracking, monitoring and geometric-
based routing. Although recent efforts have resulted
in a plethora of methods to localize sensor nodes,
little work to date has systematically investigated how
the placement of the nodes with known locations,
or landmarks, impacts localization performance. In
this work we investigate the impact of landmark
placement on localization performance using a com-
bination of analytic and experimental analysis.

Our analytic approach focuses on the Least Squares
(LS) algorithm, and in particular, a variant we call
Linear Least Squares (LLS). Our analysis centers on
the algorithm for two reasons. First, LS is a widely
used multilateration algorithm, as is evidenced by
its application as a step in many recent localiza-
tion research works [1]–[5]. Second, mathematical
analysis of LLS is tractable, resulting in equations
with closed-form solutions. For a myriad of other
algorithms, closed form solutions that describe the

localization error as a function of landmark place-
ment are not tractable and as a result heuristic search
strategies must be used to find an optimal placement,
as was done in [6].

Our analysis of landmark placement can find an
optimal placement of landmarks in well-defined reg-
ular regions, thus making it quite suitable for indoor
localization. The analysis begins with LLS and places
an upper bound of the maximum localization error
given a set of landmark placements. We can show
that this upper bound is minimized by a combination
of minimizing the distance estimation error together
with the employment of the optimal patterns for
landmark placement.

Using this result, we can compare the maximum
error between any two placements. We can then
constrain a search of placements to minimize the
maximum error. We have developed a simple algo-
rithm calledmaxL − minE algorithm that finds an
optimized landmark deployment for the LLS algo-
rithm.

We show that our placement minimizing the upper
bounds of LLS also reduces the Hölder parameter
for a variety of algorithms. The Hölder parameter [7]
describes the maximum change in physical space that
can arise from a change in signal space. This is strong
evidence that ourmaxL − minE algorithm finds a
landmark placement that minimizes the errors due to
noise, bias, and measurement error.

Another interesting result of our analysis is that for
a small number of landmarks, simple shapes such as
equilateral triangles and squares result in placements
with better localization performance. Interestingly,
for higher number of landmarks, we can show that
extensions of shapes with equal sides, e.g. a hexagon,
are non-optimal. Rather, the simple shapes enclose
one another, for example, two enclosing equilateral
triangles. We detail these geometries and describe
rule-of-thumb for landmark placement in Section III.

To show the generality of our results, we conducted
localization experiments with both an 802.11 (WiFi)
network as well as an 802.15.4 (ZigBee) network in
a real building environment. For the 802.11 network,



we used two ranging modalities, Received Signal
Strength (RSS) to distance, and Time of Arrival
(TOA). In the 802.15.4 network, we used only RSS-
to-distance.

We compared the accuracy of a suite of localization
algorithms using landmarks placed according to our
analysis as well as landmarks placed in positions that
provide good signal coverage but ignore localization
concerns. While we found that all algorithms im-
proved their performance, over a non-optimal place-
ment for localization, we also observed that LS
became competitive with the other algorithms, and
that coarse-grained TOA ranging was less accurate
than RSS-based approaches.

The remainder of the paper is as follows. Sec-
tion II discusses previous research in localization. We
provide the theoretical analysis in Section III. Then
Section IV describes the metrics that we use to char-
acterize the localization performance. The investiga-
tion of the number of landmarks and their positions
is provided in Section V. Section VI presents the
experimental results across localization algorithms,
networks, and ranging strategies. Finally we bring
our conclusion in Section VII.

II. RELATED WORK

There have been many active research efforts de-
veloping localization systems for wireless and sensor
networks. We cannot cover the entire body of works
in this section. Rather, we give a short overview of
the different localization strategies and then describe
the works most closely related to ours.

The localization techniques can be categorized
along several dimensions. Range-based algorithms
involve distance estimation to landmarks using the
measurement of various physical properties [8] like
RSS [9], [10], Time Of Arrival (TOA) [1] and Time
Difference Of Arrival (TDOA) [11]. While range-
free algorithms [2], [12] use coarser metrics to place
bounds on candidate positions. Another method of
classification describes the strategy used to map a
node to a location. Lateration approaches [1]–[5],
use distances to landmarks, while angulation uses
the angles from landmarks. Scene matching strategies
[9], [10], [13], [14] use a function that maps observed
radio properties to locations on a pre-constructed
radio map or database. Scene matching is often
used in indoor environments because local conditions
distort the signal propagation from free space models.
Finally, a third dimension of classification extends to
aggregate [12], [15] or singular algorithms.

Our work is novel in that instead of improving
the localization algorithms themselves, we focus on
improving the deployment of landmarks, and this

should help a wide variety of algorithms.
[16] used simple linear and multiple regression

methods to estimate the signal strength model. With
simulation, it analyzed the relationship between stan-
dard deviation of location error and signal strength
error for a few Access Point (AP) configurations.
However, They did not analyze for the optimized
geometry of AP deployment and provide experimen-
tal comparison as we have in our work. Another
work examined placement, but did not find optimal
solutions [17]. [6] developed a set of heuristic search
algorithms to find optimal AP deployment for a
balance of signal coverage and location errors. Com-
pared to our simple approach, the heuristic search
algorithms are more complex and time consuming.
The results were only shown for the probability
matching algorithms, thus may not be general for
other type of algorithms.

Finally, a large body of works have examined
AP placement to maximize coverage and throughput
properties of Wireless LANs and sensor networks.
We do not cover these works here, except to say that
future work would be to examine the tradeoffs in
landmark and AP deployment assuming they use the
same hardware, although this does not need to be
the case. Recall that landmarks provide a node with
signals from known locations, while APs provide
media access control as well as gateways into the
wired network.

III. T HEORETICAL ANALYSIS

In this section we first provide background on using
LS algorithms for localization, and then describe the
LLS variant. We next present our theoretical analysis
of an upper bound on the error, and then discuss our
maxL − minE placement algorithm.

A. Background: Localization with LS

To perform localization with LS requires 2 steps:
ranging and lateration.

Ranging Step: Recent research has seen a host
of variants on the ranging step. For example, in the
APS algorithm [2], hop counts are used to estimate
ranges. Other approaches are also possible, [11] used
the time-difference of arrival between an ultrasound
pulse and a radio packet. In this work, we focus on
RSS and TOA as ranging strategies.

Lateration Step: From the estimated distancesdi

and known positions (xi, yi) of the landmarks, the
position (x, y) of the localizing node can be found
by finding (x̂, ŷ) satisfying:

(x̂, ŷ) = arg min
x,y

N
∑

i=1

[
√

(xi − x)2 + (yi − y)2−di]
2 (1)
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whereN is the total number of landmarks. We call
solving the above problemNonlinear Least Squares,
or NLS. It can be viewed as an optimization problem
where the objective is to minimize the sum of the
error square.

Solving the NLS problem requires significant com-
plexity and is difficult to analyze. We may approxi-
mate the NLS solution and linearize the problem by
introducing a constraint in the formulation. We start
with the N ≥ 2 equations:

(x1 − x)2 + (y1 − y)2 = d2
1

(x2 − x)2 + (y2 − y)2 = d2
2 (2)

...

(xN − x)2 + (yN − y)2 = d2
N

Now, subtracting the constraint

1

N

N
∑

i=1

[(xi − x)2 + (yi − y)2] =
1

N

N
∑

i=1

d2
i (3)

from both sides, we obtain the following set of linear
equations

(x1 − 1

N

N
∑

i=1

xi)x + (y1 − 1

N

N
∑

i=1

yi)y =

1

2
[(x2

1 − 1

N

N
∑

i=1

x2
i ) + (y2

1 − 1

N

N
∑

i=1

y2
i ) − (d2

1 − 1

N

N
∑

i=1

d2
i )]

... (4)

(xN − 1

N

N
∑

i=1

xi)x + (yN − 1

N

N
∑

i=1

yi)y =

1

2
[(x2

N − 1

N

N
∑

i=1

x2
i ) + (y2

N − 1

N

N
∑

i=1

y2
i ) − (d2

N − 1

N

N
∑

i=1

d2
i )].

The above can be easily solved linearly using the
form Ax = b with:

A =







x1 − 1
N

∑N

i=1
xi y1 − 1

N

∑N

i=1
yi

...
...

xN − 1
N

∑N

i=1
xi yN − 1

N

∑N

i=1
yi







(5)

and

b =
1

2















(x2
1 − 1

N

∑N

i=1
x2

i
) + (y2

1 − 1
N

∑N

i=1
y2

i
)

−(d2
1 − 1

N

∑N

i=1
d2

i
)

...

(x2
N

− 1
N

∑N

i=1
x2

i
) + (y2

N
− 1

N

∑N

i=1
y2

i
)

−(d2
N

− 1
N

∑N

i=1
d2

i
)















. (6)

Note that A is described by the coordinates of
landmarks only, whileb is represented by the dis-
tances to the landmarks together with the coordinates
of landmarks. We call the above formulation of
the problemLinear Least Squares, or LLS. NLS

trades higher computational complexity for better
accuracy. The introduction of the constraint collapsed
the nonlinear problem into a linear problem, which
greatly simplifies the computation needed to arrive at
a location estimate. In addition to its computational
advantages, the LLS formulation allows for tractable
error analysis, as we shall soon provide.

B. Error Analysis

Our objective is to minimize the location estimation
error introduced by LLS. we have matrixA and
vector b presented in Equations (5) and (6). In an
ideal situation solving forx = [x, y]T is done via

x = (AT
A)−1

A
T
b (7)

However, the estimated distances are impacted by
noise, bias, and measurement error. We express the
resulting distance estimation errore in terms of b̃
with estimated distances andb with true distances
as b̃ = b + e, and hence the localization result is

x̃ = (AT
A)−1

A
T
b̃. (8)

The location estimation error is thus bounded by

‖x − x̃‖ ≤ ‖A+‖‖e‖, (9)

where the matrixA+ is the Moore-Penrose pseudo-
inverse ofA. It can be shown that, under the 2-norm,
‖A+‖ = 1

γ2

, whereγ1 ≥ γ2 are the singular values
of A. This means that for a certain size on errore

the LS estimation error is stretched by1
γ2

. It can be
proved that the eigenvalues ofA

T
A are the squares

of the singular values ofA. Therefore, we can limit
our concern to the eigenvalues ofA

T
A, whereAT

A

is a matrix of the form:

A
T
A = 4

(

a b

b c

)

with:

a =
N

∑

i=1

(xi −
1

N

N
∑

i=1

xi)
2 (10)

b =
N

∑

i=1

[(xi −
1

N

N
∑

i=1

xi)(yi −
1

N

N
∑

i=1

yi)] (11)

c =
N

∑

i=1

(yi −
1

N

N
∑

i=1

yi)
2. (12)

Note that a, b and c are only related to the
coordinates of landmarks (xi, yi). The eigenvalues
of A

T
A can be found as the roots of:

λ2 − 4(a + c)λ + 16(ac − b2) = 0.

Thus, we have:

λ = 4(a + c) ± 2
√

(a − c)2 + 4b2, (13)

where the discriminant,(a−c)2+4b2, is non-negative.
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C. Deployment Patterns

Our goal in this section is to minimize the total
error. Recall there are two terms on the right side of
Equation (9). Our approach is to choosexi and yi

so as to makeλ2 (the smaller eigenvalue) as close to
λ1 as possible, because this will minimize the first
term, ‖A+‖. Given the first term is minimized, we
then minimize the second term. Having minimized
the second term given the first term is minimized is
clearly a local minima. We call such a local minima
an optimal deployment, because no movement of
a single landmark can improve the error bound.
However, our piecewise minimization approach still
leaves open a proof that this local minima is the
true minima over all possible landmark positions. We
leave such a proof as future work.

Returning to minimizing the first term‖A+‖, to
minimize 1√

λ2

, a general strategy would be to make
(a−c) small or to makeb small or both. Interestingly,
this is determined only by the coordinates of the
landmarks.

Then our next task is to find the landmark po-
sitions that satisfyλ1

∼= λ2. We found that the
optimal landmark deployment setup follows some
simple and symmetric patterns. This makes it not
only possible to achieve but also easy to deploy
practically. Figure 1 shows the patterns for an optimal
landmark deployment setup when utilizing 3, 4, 5,
6, 7, 8 landmarks in the indoor environment. These
patterns consist of squares, equilateral triangles, or
the enclosing of them. We observe that for higher
number of landmarks, the extensions of shapes with
equal sides, e.g. a hexagon, do not satisfyλ1

∼= λ2,
and thus are not optimal. Instead, the simple shapes
enclose one another present optimal solutions.

D. Finding an Optimized landmark Deployment

The above discussion dealt with deploying the
landmarks without considering the physical con-
straints of the building and, as such, only provide a
general guideline as to the "shape" of the deployment.
Placing the landmarks within a particular building
requires stretching/shrinking the deployment shape
so that it fits within the confines of the building. The
stretching/shrinking should be done so as to minimize
localization errors.

Recall in Equation (9), the location estimation error
is also contributed by‖e‖, and thatb̃ = b + e.
The term ‖e‖ is a result of distance estimation
errors introduced by ranging. We have developed
an iterative algorithm, calledmaxL − minE (i.e.
maximum lambda and minimum error), which helps
to find the real landmark coordinates given the floor

Fig. 1. Patterns for optimal landmark deployments

—————————————————————————–
input floorSize, numOfLandmark
output optimized landmark coordinates

[initialize] get optimal pattern based on geometry
fit optimal pattern into maximum floorsize
generate initial landmark coordinates
calculateλ1 andλ2

minError = maxNum
loop until thisError > minError

generate random localizing nodes
for each localizing nodebegin

apply random noise or bias
B = ‖b − b̃‖

end for
thisError =

avg(B)√
lambda2

if thisError < minError, minError = thisError
[landmark adjustment] move towards the center of mass one

step
end loop
return optimized landmark coordinates

—————————————————————————–

Fig. 2. The maxL-minE algorithm

size, number of landmarks, and the optimal landmark
deployment pattern. Figure 2 shows the pseudo-
code that implementsmaxL−minE . The algorithm
first minimizes‖A+‖ using geometry, then uses an
iterative search. The search begins with a maximal
sized optimal pattern (e.g. a square) and simply keeps
reducing the size of the pattern until such movements
stop reducing the distance estimation errore. We
observe the algorithm usually converges very quickly
within a number of iterations.

IV. EVALUATION METRICS

In this section we describe the three metrics we use
throughout the rest of the paper.
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Average error: All of our observations are the
results of many localization trials. This metric takes
the average of the distances between the localized
result and the true location over all trials. In area-
based algorithms, as opposed to point-based ones,
the result is a returned area. To compare these two
kinds of algorithms, we use the median X and Y of
the returned area to the true location to generate a
point and then average these distance errors.

Accuracy CDF: We also return the entire cumula-
tive density function (CDF) of all our localization
attempts. We simply report all attempts in sorted
order, and then normalize the Y axis by the total
number of attempts to obtain a domain of[0, 1]. For
area-based algorithms, we also report CDFs of the
minimum and maximum error. For a given attempt,
these are points in the returned area that are closest
to and furthest from the true location.

Hölder Metrics: In addition to error performance,
we are also interested in how dramatically the local-
ization results can be perturbed by changes in signal
strength. Hölder metrics for RSS based localization
were introduced in a previous work [7]. Intuitively,
these metrics relate the magnitude of a perturbation
to its effect on the localization result. The idea here
is that certain landmark placements can reduce the
impacts of perturbations due to noise or bias, and
we should be able to observe these as lower Hölder
parameters.

The Hölder parameterHp
alg for a given place-

ment and algorithm is defined asHp
alg =

maxs,v
‖Lp

alg
(s)−L

p

alg
(v)‖

‖s−v‖ , whereL
p
alg is the result of

a localization algorithmalg given placementp, with
s as a signal strength vector andv as a perturbed
vector.

Since the traditional Hölder parameter describes
the maximum effect a perturbation might have, it is
natural to also provide an average-case measurement.
We therefore examine the average-case Hölder pa-
rameter,H

p
alg, as well. In both cases, we measure

the metrics by statistical sampling in the case of
simulation, or direct computation over all localization
attempts for experimentally measured data.

V. L ANDMARK POSITION AND QUANTITY

In this section we investigate the impact of land-
mark position and quantity on localization per-
formance. Because the data collection process us-
ing many real deployments is prohibitively time-
consuming, we use a trace-driven simulation method-
ology for this section. We first describe our method-
ology, then present our results investigating both the
impact of landmark deployment and quantity using

our previously defined metrics.

A. Simulation Methodology

Our simulation methodology requires we generate
a simulated RSS reading for any point on the floor
of a building from any landmark. We first begin with
the path loss equation that models the received power
as a function of the distance to the landmark:

P (d)[dBm] = P (d0)[dBm] − 10nlog(
d

d0
) (14)

We choose the parametersd0 = 1m, P (d0) = 58.48
and n = 1.523 from [9]. We then apply a random
noise factor to perturb the RSS readings. This corre-
sponds to the random model described in [18], which
represents an upper bound on the signal variability.

In many cases, we found that the localization error
is large enough such that the estimated position is
well outside the floor. This was particularly true
for LLS. Because such results are unrealistic in our
scenario, we apply a simple truncation rule in these
cases: if the X or Y coordinate is outside the floor,
we truncate to the maximum or minimum value along
that dimension.

B. Evaluation of Estimation Error

Table I presents the average location estimation er-
ror after the application of truncation and the Hölder
metrics for both LS algorithms under 5 landmarks
for our two simulated floors. The optimized landmark
deployment setup is obtained from themaxL−minE

algorithm. It is encouraging that both NLS and
LLS provide smallest estimation errors using our
placement algorithm. By comparing the values of
the Hölder parameters, the LS algorithm is the least
susceptible to random noise with the optimized land-
mark deployment, which has 4 landmarks positioned
as the vertex of a square plus the fifth landmark
placed at the center of the mass.

When under the diagonal landmark deployment,
the localization results suffer the largest estimation
errors and the algorithm is the most susceptible.
The following results presented in this section are
bounded by the floor boundary.

C. Impact of Landmark Deployment

In this section we describe the impact of 3 different
deployments on localization performance. We use a
representative situation of 5 landmarks deployed in 3
ways to demonstrate the impact of our algorithm in
a typical case.

The first deployment we callsquare, and in the 5
landmark case it is an optimal deployment when the
shape is a square plus one landmark at the center

5
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Fig. 3. In 200x200ft area: (a) Location estimation error vs.
random noise in RSS (b) Location estimation error vs. ranging
error

deployment optimal horizontal vertical diagonal
Topology 200x200ft
Linear LS

error 59.81 101.26 101.07 141.79
H 58.05 172.23 159.01 206.24
H 8.03 9.51 9.74 9.84

Nonlinear LS
error 39.48 66.82 66.08 70.27

H 75.44 132.61 180.27 230.52
H 6.98 7.31 7.58 7.97

Topology 230ftx150ft
Linear LS

error 57.89 86.97 116.57 146.65
H 66.39 170.98 198.44 352.96
H 7.22 8.20 9.84 8.86

Nonlinear LS
error 39.00 56.24 74.06 61.19

H 80.69 232.88 267.32 265.68
H 6.66 7.12 7.21 7.32

TABLE I

LOCALIZATION ERROR (FT) AND HÖLDER METRICS WHEN STANDARD

DEVIATION OF NOISE ON RSS IS3DB

of the mass. Next, thehorizontal deployment is the
one where all the landmarks placed in a line along
the longest dimension; this will give better signal
coverage than the square for rectangular buildings.
Finally, we also examine the impact of a poor deploy-
ment, in this casediagonal , which equally spaces the
landmarks along a diagonal line.

Figure 3(a) shows the average accuracy of 10000
random trials across the floor for the 3 deployments
as a function of increasing the standard deviation
σrss of the noise term applied to each point. The
six curves correspond to the NLS and LLS for each
deployment.

First, NLS always significantly outperforms LLS.
When theσrss is less than 4dB, which is typical
based on our experimental experience, both algo-
rithms under the optimized landmark deployment
outperform the two other deployments. When the
σrss is larger than 4dB, under the optimized landmark
deployment, the NLS still performs better, while
the performance of the LLS is compatible with the
performance of the NLS for horizontal and diagonal
landmark deployments.

Constant sized deviations in the RSS readings
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Fig. 4. Performance of LS algorithms across different number
of landmarks in 200x200ft area

result in wide differences in the distance estimation
depending on the distance to the landmark. Note
that the relationship between the RSS error and
ranging error is multiplicative with distance, i.e.,
d̃ = d10

ss−s̃s

10n . For example, in our simulation a 3dB
error corresponds to a multiplicative factor of 1.5, at
10ft distance,d̃ = 15ft with an error of 5ft, while
at 100ft distance,̃d = 150ft with an error of 50ft,
a factor of ten larger. We are motivated to study the
magnitude of distance estimation error caused by the
deviation of the RSS readings.

Figure 3(b) shows the location estimation error vs.
the standard deviationσd of distance estimation error.
We observe that a noiseσrss of 2dB corresponds to
a distance errorσd of 32ft. Further, the estimation
results when theσrss is 4dB and 5dB translate to the
σd of 65ft and 82ft respectively. Thus, even small
random perturbation in RSS readings cause large
ranging estimation errors due to this multiplicative
factor.

D. Impact of Landmark Quantity

In this section we observe the impact of adding
more landmarks. We compare the performance of
the LS algorithms with 4, 6 and 20 landmarks
under square and diagonal deployments. We use
our optimized placement in the case of 4 and 6
landmarks, and a uniform randomized deployment
for 20 landmarks.

Figure 4 shows a promising result that when de-
ploying 4 landmarks and 6 landmarks under their
optimized deployments, the localization results using
LS are compatible with the results using a much
higher number landmarks, 20, in this case. If a small
number of landmarks provide sufficient coverage,
this is an encouraging observation because good
localization performance can be achieved without a
large number of landmarks.

VI. EXPERIMENTAL STUDY

In this section we present our experimental study
by using 802.11 PCMCIA cards and Telos Sky
motes. The objective is to compare the impact of
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our landmark deployment analysis on a variety of al-
gorithms and different ranging modalities. Although
the mathematics of our analysis is based on LLS,
we show that deployments based onmaxL − minE

algorithm improve localization accuracy in widely
diverse scenarios.

We first give a brief description of a set of repre-
sentative RSS-based localization algorithms. We then
describe our experimental method. Next, we quantify
the performance across the algorithms provided dif-
ferent landmark deployments. We also compare the
localization accuracy and Hölder metrics for these al-
gorithms. Finally, we provide a comparison between
the RSS-based and TOA-based LS algorithms using
our deployment strategy.

A. Algorithms

In this study, our main focus is the localization al-
gorithms that employ signal strength measurements.
To demonstrate the general applicability of our land-
mark deployment algorithm, we test our placement
strategy on three widely different localization algo-
rithms, RADAR, ABP, and BN. Although there are
many other RSS-based localization algorithms, this
set spans various strategies, and given all algorithms
have qualitatively similar performance [10] we feel
this set is sufficiently representative.

RADAR is a point-based, scene-matching algo-
rithm. The user first builds a training set of RSS
values from landmarks matched to known locations.
To localize, the object creates a vector of RSS values
from the landmarks and the algorithm returns the
training point closest to the vector using Euclidean
distance as the discriminating function [9]. ABP uses
Bayes rule combined with scene-matching to return
an area the object is likely to reside in and proba-
bilistically bounds the likelihood with a confidence
level [10]. Taking the Bayesian network approach,
the BN algorithm uses a Bayesian graphical model
based on lateration to find the estimated location [19].

B. Experimental Setup and Methodology

A series of experiments are conducted in our
Computer Science Department which resides the
whole 3rd floor of the CoRE building. The floor
size is 200x80ft (16000ft2). The experiments are
performed using 4 landmarks setup in the floor.

Figure 5(a) shows the original collinear landmark
deployment setup in triangles and our optimized
landmark deployment as squares for the 802.11
network. The networking staff of the department
deployed the APs in the collinear deployment specifi-
cally to maximize signal strength coverage. The first
set of RSS data was collected under this collinear

deployment by using a Dell laptop running Linux
equipped with an Orinoco silver card (802.11 card).
The data was collected at 286 locations on the 3rd
floor.

Then we used a trace-driven approach to generate
the RSS data set under the optimized landmark
deployment. We first performed a least squares fit of
the measured data and obtained the parameters of the
path loss model in Equation (14). Then we directly
used measured variance to generate the RSS readings.
Finally, we applied environmental bias using the Ray-
Sector model described in [18] to obtain the new RSS
data set for the optimized deployment case.

To validate that our trace-driven strategy generated
realistic radio signal readings, we placed 4 simulated
landmarks at the same positions as the real collinear
deployment and then generated synthetic RSS values.
We compared the localization performance of using
this synthetic data set against the real data. We found
the estimation CDFs nearly identical for all of our
algorithms under study. Thus we have confidence that
our combination of path-loss model fitting, variance
application, and bias generation result in RSS read-
ings that generate realistic localization results.

Our second experimental setup was an 802.15.4
network which utilized 4 Telos Sky mote landmarks
and deployed two sets of landmark placement posi-
tions. Figure 5 (b) shows the mote landmarks under
an optimized square deployment as squares and a
horizontal landmark deployment (again, to maximize
signal strength coverage) as triangles. Unlike the
802.11 case, no RSS data was generated; for both
deployments the measured data is used in the algo-
rithms.

We have experimented with different training set
sizes for constructing the radio map for RADAR
and ABP. For 802.11 data sets, we show the results
with 115 training points. While for 802.15.4 data
sets, we use 70 training points. The small stars in
Figure 5 are the randomly selected training points.
The localization at each testing point is performed
by using the leave-one-out method.

C. Localization Accuracy

Figure 6 (a) and (b) present the 802.11 accuracy
CDF under collinear and square landmark deploy-
ments, respectively. A bounded result means we
applied truncation. ABP is calculated with confidence
level 75%. ABP-med is the error of the median
distance of the area, together with ABP-min and
ABP-max are the closest and furthest points of the
returned area.

Figure 6(a) shows that under the horizontal-like de-
ployment, LLS always fairs very poorly, while NLS,
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Fig. 5. Deployment of landmarks and training locations on the experimental floors
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Fig. 6. Localization accuracy CDFs across algorithms for 802.11
network
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Fig. 7. Localization accuracy CDFs across algorithms for
802.15.4 network

RADAR, ABP and BN are qualitatively similar. All
the algorithms have long tails. Figure 7(a) shows a
similar result when using the motes, although in here
the perfect collinear deployment, the horizontal case,
reduces the performance of the lateration approaches
(BN, NLS , and LLS) compared to 802.11.

Figures 6(b) and 7(b) show the key impact of
our work. All of the CDFs have shifted up and to
the left compared to those in Figures 6(a) and 7(a).
Thus, a significant fraction of the results are more
accurate using the optimized deployments generated
by maxL − minE algorithm. In addition, for ABP,
the gap between the min and max CDFs is much
narrower, implying the returned areas are on average
smaller than those in the horizontal deployments.

D. Evaluation of Performance and Sensitivity

Table II summarizes the average error for each
algorithm to further investigate the improvements
gained by using an optimal deployment. The table

shows the average error improves for all the algo-
rithms. For 802.11 data sets, the LLS algorithm im-
proves over 35% and NLS gains 25% in performance.
Both ABP and RADAR have improved over 20%
in localization accuracy, while BN has gained 10%.
Looking at the 802.15.4 network, the performance
improvement results are compatible to the results
from the 802.11 network.

The Hölder metrics presented in Table II for each
algorithm under the optimized landmark deployment
is smaller than the horizontal deployment. Recall
that the Hölder parameter is a measurement of the
sensitivity of the algorithm to perturbations of inputs
such as RSS, which can model random noise, envi-
ronmental bias, and measurement errors. The lower
Hölder values are strong evidence that an optimized
landmark deployment not only can improve the local-
ization performance, but also can make an algorithm
less susceptible to the above classes of perturbations.

E. Using Time of Arrival

In this section we experimentally investigate how
well our deployment algorithm works for an alter-
nate ranging modality. In this second modality, we
compute the distance to a landmark by measuring
many round trip times between a node and a land-
mark, and then calculate the time-of-flight (ToF) of
a packet. Given the ToF and the speed of light, we
can estimate the range. This is a Time-of-Arrival
(TOA) based approach because the actual time-of-
flight is estimated. Space limitations prevent us from
describing this approach in more details, but a full
description of the technique and an analysis of it can
be found in [20].

We used a similar trace-driven based methodology
in our TOA investigation as for the 802.11 RSS one.
We estimated the TOA based on the round trip times
for packets and derived the distance between the
localizing node to each landmark. We then built an
error distribution of the true distance vs. the estimated
distance, and used that to drive a simulation where
we could place the landmarks in the same positions
as the RSS study. The same hardware is used as for
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average location estimation error
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 38.56 94.53 20.23 21.85 22.25 13.11 12.49
square 24.73 31.29 15.37 16.92 20.16 10.09 9.31

802.15.4 w trun w/o trun w trun w/o trun
horizontal 47.89 608.43 33.15 34.44 28.43 17.86 14.28

square 28.27 92.05 23.65 32.17 24.25 14.27 11.33
Hölder (worst-case)H

Algorithms Linear LS Nonlinear LS BN ABP RADAR
802.11 w trun w/o trun w trun w/o trun

collinear 22.36 48.47 21.55 21.55 31.73 20.03 36.24
square 12.19 15.33 9.62 9.75 15.89 10.64 9.86

802.15.4 w trun w/o trun w trun w/o trun
horizontal 28.88 286.13 91.00 91.00 28.27 64.06 32.58

square 13.86 17.14 10.82 16.32 18.41 11.27 13.42

Hölder (average-case)H
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 2.72 5.37 2.06 2.18 2.06 1.85 1.98
square 2.87 3.57 2.45 2.70 1.63 1.79 2.06

802.15.4 w trun w/o trun w trun w/o trun
horizontal 2.66 33.87 2.45 2.50 1.44 2.05 2.21

square 2.95 5.23 2.35 2.69 2.41 1.95 2.27

TABLE II

LOCATION ESTIMATION ERROR(FT) AND HÖLDER PARAMETERS ACROSS ALGORITHMS

the RSS study.
The linear regression model applied to the distance

estimation error of TOA data with 63 experimental
distances is shown in Figure 8(a). We observe that
shorter the distance to a landmark results in estimated
distance longer than the true distance, while longer
the distance to a landmark results in estimation dis-
tance shorter than the true distance. The correspond-
ing distance estimation error of RSS data is presented
in Figure 8(b). Comparing the TOA results to RSS
distance estimation errors, while the magnitude of
the distance estimation error grows with lengthening
distance, unlike in TOA the resulted estimation in
RSS is longer or shorter with near equal probability.

With the mean and variance estimated from lin-
ear regression, we have modeled distance estimation
error of TOA as a Gaussian distribution defined in
Equation (15):

error ∼ N(µ, σ2) (15)

with µ̂ = b0 + b1di

and σ̂2 =

∑n
i=1(d̃i − µ̂)2

n − 1
,

wheredi is the true distance and̃di is the estimated
distance.n is the total number of distances under
experimentation.b0 andb1 are the coefficients of the
linear regression.

We further conducted a trace-driven approach to
localize 286 positions on the floor using 4 land-
marks setup with collinear and square deployment
respectively according to Figure 5(a) for the 802.11
network.

Figure 9 plots the localization accuracy CDF of the
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Fig. 8. Linear regression on TOA data
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Fig. 9. Localization accuracy CDFs using TOA

LS algorithms using TOA. The figure shows that as
with RSS, the performance of LS increases under an
optimized deployment as compared to a horizontal
deployment designed for coverage. Quantitatively,
the performance improvement is over 30%. Compar-
ing the absolute performance of this technique with
RSS, our TOA approach is qualitatively worse. This
is likely due to the very coarse grained microseconds-
level clocks currently available in standard 802.11.
Additional clocks with much higher frequencies
would help to reduce much of the measurement
uncertainty.
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VII. C ONCLUSION

By analyzing the Linear Least Squares algorithm,
we derived an upper bound on the maximum location
error given the placement of landmarks. Based on
this theoretical analysis, we found optimal patterns
for landmark placement and further developed a
novel algorithm,maxL − minE , for finding optimal
landmark placement that minimizes the maximum
localization error.

To show the generality of our results, we conducted
experiments using both an 802.11 (WiFi) network
and an 802.15.4 (ZigBee) network. Based on the
experimental data, we investigated the impact of
landmark position and quantity on localization per-
formance using both the measurements of RSS in
an actual building as well as trace-driven simulations
that used the RSS measurements. In addition, we ap-
ply the trace-driven approach to an alternate ranging
modality, in this case, TOA.

We found that the performance of a wide variety
of algorithms showed significant improvements when
using landmarks placed according to our algorithm,
as opposed to alternate deployments. We evaluated
these improvements under several different metrics.
The experimental results provide strong evidence that
our analysis and algorithm for landmark placement
is very generic as the resulting placement has im-
proved localization performance across a diverse set
of algorithms, networks, and ranging modalities.

Our results also point out that there is a tension be-
tween the ideal landmark deployment for localization
vs. deployments that optimize for signal coverage.
We found that in our building, the better coverage de-
ployment was very collinear, and this had pronounced
negative impact on localization performance. Future
work would conversely investigate the impact of
a deployment optimized for localization on signal
coverage, as well as try to find a method of trading
one kind of deployment for another depending on the
users’ needs.
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