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Dynamic spectrum access has been proposed as a means to share scarce radio resources,
and requires devices to follow protocols that access spectrum resources in a proper, disci-
plined manner. For a cognitive radio network to achieve this goal, spectrum policies and
the ability to enforce them are necessary. Detection of an unauthorized (anomalous) usage
is one of the critical issues in spectrum etiquette enforcement. In this paper, we present a
network structure for dynamic spectrum access and formulate the anomalous usage detec-
tion problem using statistical significance testing. The detection problem investigated con-
siders two cases, namely, the authorized (primary) transmitter is (i) mobile and (ii) fixed.
We propose a detection scheme for each case by exploiting the spatial pattern of received
signal energy across a network of sensors. Analytical models are formulated when the dis-
tribution of the energy measurements is given and, due to the intractability of the general
problem, we present an algorithm using machine learning techniques to solve the general
case when the statistics of the energy measurements are unknown. Our simulation results
show that our approaches can effectively detect unauthorized spectrum usage with a
detection probability above 0.9 while keeping the false alarm rate less than 0.1 when only
one unauthorized radio is present, and the detection probability is even higher for more
unauthorized radios.

� 2011 Published by Elsevier B.V.
1. Introduction

The openness of the lower-layer protocol stacks in cog-
nitive radios (CR), and their subsequent ability to adapt
their waveforms, make them an appealing solution to dy-
namic spectrum access (DSA). The open nature of their
protocols facilitates the flexible spectrum utilization and
promote spectrally-efficient communication. Nevertheless,
due to the exposure of the protocol stacks to the public, CR
platforms can become a tempting target for adversaries or
irresponsible secondary users [1]. A misuse of a CR can sig-
nificantly compromise the benefits of DSA and threaten the
y Elsevier B.V.
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rs.edu (W. Trappe),
privileges of incumbent users. This problem is especially
challenging when CR are organized as an ad hoc network
whose topology can be varying dynamically without cen-
tral coordination [2,3]. Therefore, having the ability to en-
force spectrum etiquettes is critical to effectiveness and
correctness of a DSA system.

Identification of a malicious or reckless spectrum usage
is an essential component of etiquette enforcement func-
tions. This is basically a problem of distinguishing bad
(unauthorized) transmissions from good (authorized) ones.
While sophisticated signal processing techniques have
been designed for detecting a desired signal from interfer-
ence [4,5], they are of little help in this new paradigm of
spectrum access. In many DSA systems (e.g., spectrum
leasing), there can be a heterogeneous collection of autho-
rized users and it is impractical to enumerate all of their
signal structures. Even if the authorized signal is known
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(e.g., TV signals in IEEE 802.22), unauthorized users can
disguise themselves by emulating authorized signals [6].
Therefore, an effective detection mechanism should not
rely on programmable features, such as signal patterns.
Fortunately, there is one aspect of the problem that cannot
be easily modified—the propagation channel. This moti-
vates us to pursue a reliable detection approach by making
use of the characteristics of radio propagation. Specifically,
in this paper, our detection will be based on the measure-
ment of received signal energy at a group of collaborating
sensors. Anomaly (or attack) detection based on received
signal strength in wireless networks has been addressed
in several papers. However, most of the existing studies as-
sume some constraints on unauthorized transmitters, such
as location [7] and mobility [8], or assume a constant
transmission power of the authorized transmitters [9].
Such assumptions limit the flexibility and robustness of
the solutions, especially for DSA in ad hoc networks.

In this paper, we investigate the spectrum anomaly
detection problem in a broader context, where we do not
make any assumption about unauthorized users. Since it
is impractical to find a comprehensive description about
anomalous behaviors, our detection method is only based
on energy measurements from authorized transmitters.
As a result, we formulate the detection problem as a statis-
tical significance test. Here, we define normal usage as
being no more than one transmitter (static or mobile)
operating in each portion (e.g., channel) of the spectrum.
Based on this assumption, our work is motivated by two
properties of the spatial distribution of the received signal
strength (RSS):

� The RSS (or received power in dB) from a single trans-
mitter1 decays approximately linearly with the logarith-
mic distance from the source, but it is no longer the case
when the RSS is a sum of multiple transmitters at differ-
ent locations.
� Transmitters at different locations will lead to different

spatial distributions of the RSS. This spatial map, or sig-
nalprint, is an effective characterization of a transmitter.

By making use of these properties, we propose two
detection methods according to the mobility of the autho-
rized transmitter. Specifically, when the authorized trans-
mitter is mobile, we exploit the property that log-scale
path loss tends to increase linearly with log-distance.
Unauthorized transmitters can then be detected by a sig-
nificance test of the linearity of measured dB energy vs.
log-distance. For the case where the authorized transmit-
ter is fixed, we use the notion of signalprints, i.e., the spa-
tial pattern of RSS. Unauthorized transmitters can then be
detected by a significance test by comparing the current
pattern with a stored pattern of the authorized transmitter.
In each case, we initially assume the sensor network knows
the statistics of the detected energies, and so it can set its
decision region to obtain a specified false alarm rate. We
also describe a machine-learning approach that can be
1 Since the measuring circuit we use is commonly called an energy
detector, we will use ‘RSS’ and ‘energy’ interchangeably in subsequent
discussions.
used in the more general scenario when the statistics of
the detected energies are not known.

The rest of the paper is organized as follows. Section 2
reviews previous works in anomalous signal detection.
Section 3 presents our detection system structure and an
analytical model of the energy detector output. In Section
4, we present a general significance testing model for the
anomalous spectrum usage detection. We propose analyt-
ical and empirical solutions in Section 5 and present simu-
lation results in Section 6. Section 7 concludes our work.
2. Related work

Spectrum usage enforcement is an emerging issue com-
ing with the development of cognitive radios. [1] presented
a trusted radio infrastructure dedicated to spectrum regu-
lation in a DSA environment. The work formalized the
spectrum policies and proposed a sensing architecture
which is the system basis of our study. An unauthorized
user in a DSA network can either be a reckless radio or a
malicious attacker. The attack by emulating a primary user,
named PUE by Chen and Park [7], is in fact a spoofing at-
tack specially launched in DSA networks for illegal occupa-
tion of the spectrum. Detection methods based on location
verification were proposed in [7,10]. Given the location of
the primary transmitter, dedicated sensors collaboratively
verify the source location of a received signal by its path
loss fading rate, time difference of arrival, and location of
the maximum received signal strength, respectively. All
these methods are non-interactive based which do not re-
quire to modify the incumbent system. However, they all
assume the primary transmitter’s location is known and
far away from the sensing area where illegal users reside.
Otherwise, these methods may not work well due to the
low accuracy of their location estimations.

Although few research efforts are dedicated to anomaly
detection in DSA networks, there is a rich body of works
addressing the detection of spoofing attacks in generic
wireless networks. RSS based detection is one of the exten-
sively studied methods due to its low implementation
complexity and inherent correspondence to the propaga-
tion environments. The most related work to ours was
published in [11]. In that work, two transmitters at differ-
ent locations are distinguished by comparing their signal-
prints, a vector of RSS measured at multiple receivers.
The proposed method share the same principle as the fin-
gerprint based localization [12]. Specifically, transmitters
at different locations lead to different spatial distribution
of RSS and thus an attacker can be detected by examining
the difference between its signalprint and the authentic
one. Without specifying the false alarm probability, the pa-
per reported above 95% detection accuracy by a testbed
experiment. However, since the method is not based on
the statistic of RSS values, it is impossible to choose a
detection threshold according to a desired false alarm
probability.

On the other hand, model based detection methods are
based on the stochastic characteristics of RSS, where the
detection threshold can be analytically determined given
the false alarm probability. In [9], the authors proposed a
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Gaussian Mixture Model (GMM) to characterize the distri-
bution of RSS, given the fact that commercial 802.11 radio
devices generally have multiple antennas. The RSS from an
authentic transmitter is profiled in terms of its GMM mod-
el parameters and attackers are detected using a likeli-
hood-ratio test based on this profile. The method
demonstrated superior performance to the method in
[11]. However, it requires a constant transmission power
at the authentic transmitter during detection, which limits
its application in a more general system. A frequency do-
main fingerprint method was proposed in [13], where a
profile of the channel response is built between the
authentic transmitter and a receiver. The method also as-
sumed a constant transmission power of the authentic user
in order to compare two measurements at different times.

We have addressed the above limitations previously
[14] by proposing two detection schemes based on the
characteristics of radio propagation. In this paper, we have
extended this previous work and present rigorous formula-
tions for analyzing the two schemes.

3. A system model of dynamic spectrum access

3.1. DSA network structure

We consider a DSA network as illustrated in Fig. 1,
where licensed (i.e., primary) and unlicensed (i.e., second-
ary) transmitters are scattered in an area filled with auxil-
iary spectrum sensors. In the paradigm of DSA, secondary
users make use of idle spectrum resources by opportunis-
tically accessing the network in these idle bands, which
will not result in interference to incumbent users.
Fig. 1. A DSA environment, with primary and unauthorized transmitters within
detect the presence of the unauthorized transmitters via the local exchange of e
However, such a spectrum efficiency can be easily under-
mined by a reckless user or an attacker who disguises itself
as the primary transmitter in an attempt to convince other
secondary users that a primary users has returned to use
that spectrum band. Thus, a spectrum access policy is nec-
essary as such a policy explicitly states the conditions for
when a secondary user can and cannot use spectrum. The
policies are defined by spectrum policy makers and are
broadcast by a management unit, which can be either a
stand alone central processor or a part of the primary
transmitter’s functions. For spectrum agility, the policies
can change dynamically and users should be able to inter-
pret them without human intervention. Interpreted lan-
guages, such as XG Policy Language (XGPL), have been
proposed to formalize the policies [1]. To enforce spectrum
policies, a trusted spectrum sensor network is responsible
for collecting spectrum usage data and reporting them to
the spectrum management unit. Given the inherent corre-
lation of the spectrum measurements over space and time,
various source coding and data fusion strategies have been
proposed to optimize the cost of data gathering. Interested
users are referred to the related work in [15,16]. By utiliz-
ing the measurements over multiple sensors, the manage-
ment unit applies appropriate detection rules to identify
anomalous usage and further locate anomalous transmit-
ters. A cooperative decision scheme is often preferred to
combat the sensing uncertainties due to fading channels
and other spectrum irregularities [17,18].

To minimize the interference, we assume there should
be no more than one authorized transmitter in a certain
spectrum band at any time. In addition, since an interfer-
ence signal may use the same signal structure as a primary
an area populated with spectrum sensors. Spectrum sensors cooperatively
nergy measurements.
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signal, the proposed detection algorithms will be based on
received signal energy.

3.2. Energy detection model at one sensor

We consider a time-domain energy detector consisting
of a band-pass filter (BPF), Nyquist sampling A/D converter,
square-law device and integrator, as depicted in Fig. 2. At
the nth sensor, the output of an energy detector can be ex-
pressed as

yn ¼
XL

l¼1

jrnðlÞ þwnðlÞj2; ð1Þ

where rn(l) is the complex received signal at the nth sensor,
and wn(l) is the complex Gaussian noise with zero mean
and variance r2

w at each phase. wn(l) is i.i.d. over the L tem-
poral energy samples. Previous work has shown that yn=r2

w

has a noncentral chi square distribution [19]. In this sec-
tion, we will show that its distribution can be approxi-
mated to lognormal for two extreme cases. The results
here will be utilized to develop our detection algorithms.

Let lr,n(l)coshn(l) and lr,n(l)sinhn(l) be the real and imag-
inary part of rn(l), respectively, where hn is an arbitrary
phase value. Then the total received signal envelop
jrn(l) + wn(l)j is Ricean distributed with the K-factor

KnðlÞ ¼
l2

r;nðlÞ
2r2

w
: ð2Þ

It is easy to see that Kn(l) is the instantaneous SNR at the
nth sensor. By approximating a Ricean distribution as
Nakagami [20, p. 79], pn = jrn(l) + wn(l)j2 has a gamma dis-
tribution with the PDF

f ðpnÞ ¼
p

mn;l�1
n

Cðmn;lÞa
mn;l
n

exp � pn

an

� �
; ð3Þ

where

an ¼
E½pn�
mn;l

; ð4Þ

and

mn;l ¼
ðKnðlÞ þ 1Þ2

2KnðlÞ þ 1
: ð5Þ

In the following two asymptotic cases, we show that the
sum of L energy samples are also gamma distributed.

3.2.1. Asymptotic distribution of yn for very large-SNR
When l2

r;nðlÞ � 2r2
w;KnðlÞ � 1 and

an ¼
E½pn�
mn;l

¼
l2

r;nðlÞ þ 2r2
w

mn;l
¼ ð2KnðlÞ þ 1Þ2r2

w

ðKnðlÞ þ 1Þ � 4r2
w: ð6Þ
∑
L

1

Fig. 2. The signal processing of the assumed energy detector. The square-
law envelope detector produces the squared envelope of the BPF output,
which is then sampled at uniform intervals. W is the bandwidth of the
BPF. The energy is estimated as the sum of L such samples.
Then, the scale an is a constant over the sample index l
and thus yn is also gamma distributed with the scale an and
the shape

mn ¼
XL

l¼1

mn;l ¼
XL

l¼1

ðKnðlÞ þ 1Þ2

2KnðlÞ þ 1
� 1

2

XL

l¼1

ðKnðlÞ þ 1Þ

¼ L
2
þ 1

4r2
w

XL

l¼1

l2
r;nðlÞ ¼

L
2
ð1þ �bnÞ; ð7Þ

where

�bn ¼
PL

l¼1l2
r;nðlÞ

2r2
wL

; ð8Þ

is the average received SNR within one measurement.
When �bn is sufficiently large, mn in (7) can be further sim-
plified by neglecting L/2. Following Appendix A, the dB
quantity

Yn ¼ 10log10ðynÞ ð9Þ

is approximately Gaussian-distributed.

3.2.2. Asymptotic distribution of yn for very small-SNR
When l2

r;nðlÞ � 2r2
w, Kn(l) � 0, mn,l � 1, and

an ¼
E½pn�
mn;l

¼ ð2KnðlÞ þ 1Þ2r2
w

ðKnðlÞ þ 1Þ � 2r2
w: ð10Þ

Again, the scale an is a constant over the sample index l
and thus yn is also gamma distributed with the scale an and
the shape

mn ¼
XL

l¼1

mn;l � L: ð11Þ

Similarly, Yn is Gaussian-distributed when L is large. In
addition, the signal power is negligible in this case and
thus the energy measurement only includes the noise.

Therefore, for both of the above asymptotic distribu-
tions, Yn � N lY ;n;r2

W ;n

� �
with the mean

lY ;n ¼ 10log10ðanmnÞ; ð12Þ

and the variance

r2
W ;n ¼

10
ln 10

� �2

w0ðmnÞ: ð13Þ

The parameters an and mn are given by (6) and (7) or
(10) and (11), depending on the approximations. A special
treatment to lY,n in the large-SNR approximation is that,
we neglect the term, L/2, in (7), that is, mn ¼ �bnL=2. The
reason will be clear as follows.

In the detection analysis, we will approximate an en-
ergy measurement to either of these two asymptotic solu-
tions, depending on the received SNR. It is then necessary
to find an optimal SNR threshold to minimize the approx-
imation error. From (7) we see that, when the average SNR
�bn ¼ 1, two asymptotic approximations will give the same
lY,n and r2

W ;n. Therefore, in the proposed analytical solu-
tions, we will use the large-SNR approximation when the
average SNR is greater than 0 dB, and use the small-SNR
approximation otherwise.
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3.3. Energy detection model over multiple sensors

In the case of a large-SNR, by neglecting the term L/2 in
(7),

lY;n ¼ 10log10

XL

l¼1

l2
r;nðlÞ

 !
: ð14Þ

Note that Yn is Gaussian-distributed conditional on the
received signal energy

PL
l¼1l2

r;nðlÞ within one measure-
ment, we rewrite the energy detector output as

Yn ¼ Y0;n þ YS;n þ YW;n; ð15Þ

where Y0,n + YS,n = lY,n and YW ;n � N 0;r2
W;n

� �
accounts for

the randomness due to the noise.
We use Y0,n to quantify the measured energy due only

to the deterministic path loss fading, and it is generally gi-
ven by

Y0;n ¼ Y0 � 10c log10ðdn=d0Þ; ð16Þ

where Y0 is the signal strength measured at the reference
distance d0, dn is the distance between the transmitter
and the nth sensor, and c is the path loss exponent.2

Further, YS,n accounts for the multipath and shadow
fading at different locations, and we model YS,n as a spatial

Gaussian process,3 YS;n � N 0;r2
S;n

� �
. Taking into account

the spatial correlation of channel fading, we assume YS = (Y-
S,1, YS,2, . . . , YS,N) are jointly Gaussian, YS � Nð0;RSÞ.

Since the randomness due to the noise (quantified by
YW,n) and that due to the channel fading (quantified by
YS,n) are independent, Yn is Gaussian-distributed over
space, that is,

Yn � N Y0;n;r2
S;n þ r2

M þ r2
W;n

� �
: ð17Þ

In addition, the measurements from all the N sensors,
Y = (Y1, Y2, . . . , YN), are also jointly Gaussian with the
covariance matrix

RY ¼ RS þKW ; ð18Þ

where KW is a diagonal matrix and its nth diagonal ele-
ment is r2

W;n.
In the case of very small-SNR, we virtually neglect the

signal strength (see (10) and (11)) and thus the energy
measurement Yn is i.i.d. Gaussian across sensors.

In the following, we devise detection algorithms based
on the above models. Before proceeding, we note the sum-
mation over l in (14) may itself vary from measurement to
measurement, depending on the signal format. For exam-
ple, for constant-envelope modulations, it will be fixed;
and it will vary slightly for QPSK. For OFDM, the individual
terms will be i.i.d. with a distribution close to exponential;
thus, the summation over l will be Gamma-distributed,
2 Here we do not specify the direction of a propagation link, as depicted
in the model (16). Therefore, the authorized transmitter is assumed to use
an omnidirectional antenna.

3 The shadow fading is widely modeled as lognormal over space [21]. The
multipath fading can be modeled as a Nakagami distribution and thus its
gain (in the linear ratio) is also gamma distributed. Again by Appendix A, it
approximates to lognormal. However, this approximation is not always
accurate as the parameter m in (39) can be small.
with order L. Our detailed analysis of this case (not re-
ported here) shows that the result is an added Gaussian
term in Yn, (15), which is totally correlated across n. For
all practical values of L, the statistical variation is so small
that its impact on the numerical results is negligible. We
thus assert that our formulation is good for all signal
formats.

4. Modeling anomalous detection using significance
testing

In general, we only have the information in the normal
situation and thus the detection of anomalous usage can be
formulated as a statistical significance testing problem.
The received signal at each sensor is defined as:

H0 : rðtÞ þwðtÞ; normal usage; ð19aÞ
H1 : rðtÞ þ uðtÞ þwðtÞ; anomalous usage; ð19bÞ

where r(t) is the signal from an authorized transmitters
complying with the spectrum policy, u(t) is an unknown
unauthorized signal, and w(t) is noise that we assume to
be additive and white Gaussian with zero mean. The nor-
mal spectrum usage is defined as the null hypothesis H0.

A significance testing problem consists of the following
key components:

� Test statistic v: a measure of the observed data.
� Acceptance region X: if v 2X, we accept the null

hypothesis H0.
� Significance level a: the probability of incorrectly

rejecting the null hypothesis, i.e., the probability of false
alarm.

In our detection problem, the observed data is a series
of energy measurements, Y = (Y1, Y2, . . . , YN), where Yn is
given by Sections 3.2 and 3.3. For different statistics of Y
in what follows, we will define v and X so that, for a spec-
ified false alarm probability a, Probðv R XjH0Þ 6 a, where v
not in X declares the presence of the anomalous behaviors
in the network.

5. Detecting unauthorized spectrum usage in DSA
networks

Unlike the conventional energy detection problems
where a signal is detected from noise based on the noise
power level [19,22], it is generally impractical to apply a
threshold based on the authorized signal strength to detect
interference. The authorized signal strength can be time-
variant because of several effects, such as power control
and transmitter mobility. This power variation can render
the energy estimation useless. In this section, we propose
two detection algorithms, one for the case where the
authorized transmitter is mobile and one that works better
but only for the stationary case. Provided the distribution
of the authorized signal energy is known, we present ana-
lytical solutions to determining detection thresholds. In
the more general case where it is hard to obtain such infor-
mation, we propose to utilize a machine learning tech-
nique to derive empirical thresholds.
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5.1. Linearity check for a mobile authorized transmitter

Following the discussion in Section 3.1, there should be
only one authorized transmitter at any time in the spec-
trum under surveillance. Thus, the detection problem
becomes distinguishing between single and multiple
transmissions in the same spectral resource. To do this,
we need a decision statistic that captures the characteris-
tics of the radiation power in the case of a single transmis-
sion. Provided a single radio source, we rewrite the energy
detector output in (15) as

Yn ¼ Y0 � 10c log10ðdn=d0Þ þ YR;n; ð20Þ

where YR;n ¼ YS;n þ YW;n � N 0;r2
S;n þ r2

M þ r2
W ;n

� �
. Eq. (20)

shows that, when the received SNR is large, the energy
measurement (in log-scale) is a linear function of the log-
distance (i.e., log10(d)) plus a random Gaussian term, YR,n,
across the sensors. On the other hand, this linearity breaks
when the measurement consists of signals from multiple
transmitters (as corresponds to anomalous spectrum activ-
ity). As depicted in Fig. 3, where we measure the received
signal energy at 10 sensors for 10 independent trials, the
energy from a single transmitter shows distinct linear de-
cay with the log-distance, whereas the RSS from two trans-
mitters does not present the similar pattern. Thus, by
examining the linearity of the energy measurements with
log-distance, we may distinguish the case of a single trans-
mission (i.e., normal usage) from the case of multiple over-
lapped transmissions (i.e., anomalous usage). It is worth
noting that, as shown in (15), this method relies on the lin-
ear property of the channel fading, and thus the detection
is performed only based on the energy measurements
where the received SNR is greater than 0 dB (i.e., the
large-SNR approximation is acceptable). With a slight
abuse of notations, N in the following denotes the number
of energy measurements we actually use, which is less or
equal to the number of all the sensors.

Further, the distance dn between the transmitter and a
sensor can be obtained in two ways: (a) the authorized
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Fig. 3. Energy measurement vs. logarithmic distance between an authorized tr
transmitter is located at the center and the sensors are uniformly scattered. In
exponent c = 3.5 and rS,n = 1 dB in (15). The noise power is neglected. Detail
independent trial with random shadow fading and random location of the unau
transmitter periodically announces its location, using a sig-
nal format that is decodable at the sensors or (b) the sen-
sors cooperatively estimate the transmitter location
based on measured RSS. In either case, a sensor knows its
own location.

Given the distance dn, the remaining unknown parame-
ters are the mean Y0 and the path loss exponent c. In gen-
eral, it is hard to obtain their accurate values, so we use
linear least squares to estimate them.

Suppose Y = (Y1, . . . , YN)T is the vector of N energy mea-
surements, and

A ¼

1 �10log10ðd1=d0Þ
..
. ..

.

1 �10log10ðdN=d0Þ

2664
3775: ð21Þ

Note that A has a rank of 2 as long as there are at least
two sensors with difference distances from the transmit-
ter. Then, the least square estimation of Y0 and c gives

bY 0

ĉ

" #
¼ AT A
� ��1

AT Y ¼ AT A
� ��1

AT A
Y0

c

� �
þ YR

� �
¼

Y0

c

� �
þ AT A
� ��1

AT YR;

ð22Þ

where YR ¼ ðYR;1;YR;2; . . . ;YR;NÞT � Nð0;RYÞ as defined in
(18). Further, we define the vector of the estimation error
(residuals) ê as

ê ¼ Y � bY ¼ A
Y0

c

� �
þ YR � A

bY 0

ĉ

" #
¼ YR � AðAT AÞ�1AT YR ¼ ðI� AðAT AÞ�1ATÞYR:

ð23Þ

When the distance matrix A is exactly known, the resid-
uals are independent of the transmission power. Based on
the linearity of the propagation model, we infer that the
distribution of the residuals in the normal usage case
should differ from that of the anomalous case. Then, the
residuals ê can be a measure of linearity. However, its
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ansmitter and N = 10 sensors. In an 100-m 	 100-m area, the authorized
the H1 case, one unauthorized transmitter is randomly located. Path loss
ed simulation settings are given in Section 6.1. Each curve denotes an
thorized transmitter.
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distribution is not always explicit. As Appendix B shows,
the matrix D = (I � A(ATA)�1AT) in (23) is singular, so ê is
no longer a multivariate Gaussian even though YR is. To
facilitate the analysis, we seek a new measure of the line-
arity, which not only has a known distribution but also re-
tains as much information from ê as possible. Given that
the N 	 N matrix D has two zero eigenvalues (see Appendix
B), ê only has N � 2 independent bases from YR. Therefore,
we can construct a new statistic êu whose distribution can
be derived in the normal usage case, using the following
theorem:

Theorem 1. Given a multivariate Gaussian YR � Nð0;RY Þ
and a N 	 2 matrix A with rank of 2, we define êu ¼ UT

2ê,
where U2 is an N 	 (N � 2) matrix consisting of (N � 2)
eigenvectors of AAT that correspond to the (N � 2) zero
eigenvalues. Then

êu � Nð0;ReÞ; ð24Þ

where Re ¼ UT
2RY U2.
4 Note that the ROCs of the analytical solution and SVM are not
necessarily the same even if they both use êLCM as the test statistic,
because they have different acceptance regions. Specifically, the analytical
solution has a single-sided acceptance region as defined in (26) but the
SVM has a double-sided acceptance region as given by (52).
Proof. See Appendix B. h

Similar to the significance test in [23], we can define a
likelihood-based acceptance region for êu as

X ¼ fêu : f ðêuÞP fTg; ð25Þ

where the probability density function is

f ðêuÞ ¼ ð2pÞ�N=2jRej�1=2 exp �1
2

êT
uR
�1
e êu

� �
:

Then, X in (25) can also be expressed as

X ¼ êu : êT
uR
�1
e êu < Te

� 	
: ð26Þ

Therefore, we obtain the test statistic êLCM ¼ êT
uR
�1
e êu. It

can be shown that êLCM follows a chi-square distribution
with N � 2 degrees (e.g., see Section V-C in [23]). Thus,
the false alarm probability is given by

PF ¼
CððN � 2Þ=2; Te=2Þ

CððN � 2Þ=2Þ ; ð27Þ

where C(k, x) is the upper incomplete gamma function.
This probability is accurate only when the distance ma-

trix A (or equivalently, the location of the authorized trans-
mitter) is exactly known and the distribution of the energy
measurements across sensors is lognormal. These two con-
ditions are not often met in practice, which will result in an
unknown distribution for the test statistic êLCM and distort
the target false alarm rate (i.e., PF in (27)), as we shall see in
Section 6.2. To extend our algorithm to a more general sce-
nario, we propose the application of One-class SVM (Sup-
port Vector Machines), proposed in [24], to find an
acceptance region.

One-class SVM is a kernel based machine learning tech-
nique for data classification, which involves a training
phase and a testing phase. Each data instance, either in
the training set or in the testing set, is represented by
one or multiple attributes. As the name of One-class SVM
implies, all training data are from a class of interest and
the goal is to empirically generate a model that can predict
whether a data instance from the testing set belongs to this
class. One-class SVM finds its use in the anomalous or out-
lier detection problems where the anomalous case cannot
be accurately described using training data and thus the
classification can only be formulated as a significance test
(see Section 4). Therefore, the data attributes are the test
statistics in our significance test model.

Since the SVM method can handle data with an un-
known distribution, there can be many choices of data
attributes in our anomalous detection problem. An obvious
option is êLCM derived in the analytical solution. However,
it will result in a similar4 detection performance to that of
the analytical one in terms of the receiver operating charac-
teristic (ROC). Since we are actually interested in the estima-
tion residues ê given in (23), we use it directly in the SVM. ê
is also more reliable compared to êLCM as it involves less ma-
trix manipulations, which are based on the assumption of
the Gaussian distribution. Note that it is not necessary to as-
sume the received SNR >0 dB in the SVM solution. Hence ê
utilizes energy measurements from all the sensors regard-
less of the received SNR.

Provided the training data are sufficiently sampled from
an underlying probability distribution (i.e., in the normal
class), we apply One-class SVM to estimate a subset, X
(i.e., a fraction of the training data), so that, any testing
data from the same distribution will lie outside of X with
a probability equal to a specified value, m 2 (0, 1). Appar-
ently m corresponds to the false alarm probability and X
is the acceptance region in the significance test. In sum-
mary, given the energy measurements (thus ê) that are
well-sampled in the normal usage case, we use One-class
SVM to find an empirical acceptance region corresponding
to a specified false alarm probability, PF. See Appendix C for
the mathematical description of One-class SVM.
5.2. Signalprint check for a stationary authorized transmitter

Provided the authorized transmitter is stationary, we
can further improve the performance of unauthorized sig-
nal detection by exploiting a more reliable metric, the sig-
nalprint. In this section, we present a fingerprint based
method analogous to the fingerprint based localization
[12]. Specifically, transmitters at different locations lead
to different spatial distribution of RSS. Thus, an interfer-
ence signal can be detected by examining the difference
between its signalprint (i.e., the vector of energy measure-
ments Y) and the authorized one. The authorized signal-
print can be obtained (i) if the authorized transmitter
periodically broadcasts an ‘‘identity’’ signal that is decoda-
ble at the sensors or (ii) by using a previous measurement
that is known from the authorized signal.

Denote the known authorized signal energy by Yn and
the currently measured energy by eY n at the n-th sensor.
For measurements with large-SNR, since the channel is sta-
tionary, the shadowing and multipath fading YS,n in (15) is
constant over time. Thus,
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eY n � Yn ¼ eY 0;n � Y0;n þ eY W;n � YW;n

¼ eY 0 � Y0 þ eY W;n � YW ;n ¼ eY 0 � Y0 þ dYW;n: ð28Þ

Since YW,n and eY W;n are due to noise, they are indepen-

dent of each other and dYW;n ¼ eY W;n � YW;n is also Gauss-

ian-distributed, that is, dYW ;n � N 0;r2eW ;n
þ r2

W;n

� �
, where

eY W ;n � N 0;r2eW ;n

� �
. The reference energy Y0 can also be

time-variant because (i) the authorized transmission
power may change over time (e.g., by power control) and
(ii) the signal strength jr(t)j may change over time (e.g.,
an OFDM signal with many subcarriers). For measure-
ments with small-SNR, we neglect the signal strength var-
iation (see Section 3.2) comparing to dYW,n. Combining the
two approximations, we have5

eY n � Yn ¼
C þ dYW ;n if �bn P 0 dB; ðaÞ
dYW;n if �bn < 0 dB; ðbÞ

(
ð29Þ

where the signal strength shift C ¼ eY 0 � Y0 is a constant
across all the sensors. Denote Y = [Y1, Y2, . . . , YN]T andeY ¼ eY 1; eY 2; . . . ; eY N

h iT
. We estimate C using a simple linear

regression model,

bC ¼ bC ¼ 1
Nr

eT
r
eY � Y
� �

¼ 1
Nr

PNr

n¼1

eY n � Yn

� �
; Nr > 0; ðaÞ

0; Nr ¼ 0; ðbÞ

8><>:
ð30Þ

where er is a N 	 1 vector with the nth element

er;n ¼
1 if �bn P 0 dB; ðaÞ
0 if �bn < 0 dB: ðbÞ

(
ð31Þ

Nr is the number of 1’s in er. Without loss of generality,
we assume the energy measurements from all the N sen-
sors are arranged so that the first Nr measurements have
SNR P0 dB and thus the first Nr elements of er are 1 and
the rest of them are 0.

Then, the residue of the estimation is

ê ¼ eY � Y � bCer ¼ eY � Y � 1
Nr

ereT
r
eY � Y
� �

; for Nr > 0;

¼ ðI � ErÞ eY � Y
� �

; ð32Þ

where Er is a N 	 N matrix where all elements in the top
left Nr 	 Nr block are 1/Nr and others are zeros.

The mean of the estimate residue is

E ê½ � ¼ ðI � ErÞE eY � Y
h i

: ð33Þ

From (29), E eY � Y
h i

gives a N 	 1 vector whose first Nr

elements are C and the remaining elements are zeros. Then
ê has zero mean.
5 This method requires the same asymptotic approximation (either for
large- or small-SNR) for both measurements Yn and eY n . For a good
approximation in practice, we will only use the measurements where Yn

and eY n both have SNR greater or less than zero.
It is easy to show that (I � Er) is a singular matrix with
rank of (N � 1). Thus the N elements of ê is not jointly
Gaussian-distributed. Similar to Theorem 1, we construct
another vector (see Appendix D)

êsub ¼ QT
2ê ¼ Q T

2
eY � Y
� �

; ð34Þ

where QT
2 is a (N � 1) 	 N matrix, consisting of N � 1 eigen-

vectors of Er that correspond to N � 1 zero eigenvalues.
Then, the N � 1 elements of êsub are jointly Gaussian-
distributed with zero mean and variance (see Appendix D)

Re ¼ E êsubêT
sub


 �
¼ Q T

2E
eY � Y
� � eY � Y

� �T
� �

Q 2

¼ Q T
2 KeW þKW

� �
Q 2; ð35Þ

where KeY and KW are covariance matrix for eY W and YW,
respectively, as defined in (18).

Similar to (26), the likelihood-based acceptance region
for êsub is

X ¼ êsub : êSCS ¼ êT
subR

�1
e êsub < Te

n o
: ð36Þ

The false alarm probability is

PF ¼
CððN � 1Þ=2; Te=2Þ

CððN � 1Þ=2Þ : ð37Þ

Since this analytical solution is derived based on the
asymptotic approximations in Section 3.2, we will see from
Section 6.2 that, it is only accurate when the received SNR
is either very large or very small. Therefore, for a general
scenario where the approximations are no longer accept-
able, we will apply the SVM method to obtain an empirical
detection threshold. Similarly, we will use the residues, ê,
from (32) as the test statistics of the SVM.

6. Simulation evaluation

6.1. Simulation settings

In this section we evaluate the performance of our
proposed methods, which we call LCM (Linearity-Check-
for-Mobile-Transmitter, Section 5.1) and SCS (Signalprint-
Check-for-Stationary-Transmitter, Section 5.2). Their
performance were tested in a 100-m 	 100-m square area,
where N sensors are randomly placed with a uniform
probability distribution. Both authorized transmitter and
unauthorized transmitters are randomly located in the
area. Each result is an average over 20,000 independent
trials (i.e., independent transmitter and sensor locations
and independent random channel fadings). Unless
otherwise noted, in these numerical studies we assume
that, (a) there is only one unauthorized transmitter and it
uses the same transmission power as the authorized user;
(b) N = 50 for LCM and N = 10 for SCS; (c) the path loss,
c = 3.5, and the standard deviation of the fading, rS,n = 4 dB,
which are typical values in an urban microcell environ-
ment with a very mild random fading; (d) the variation
of the channel fading across all sensors is i.i.d., that is, RS

in (18) is a diagonal matrix; (e) the number of samples in
each energy measurement, L = 16.
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6.2. Detection performance

Fig. 4 shows the complementary receiver operating
characteristic (C-ROC) curves by LCM and SCS methods un-
der various SNR conditions. The target false alarm proba-
bilities are both from 0.002 to 0.2, set by (27) and (37),
respectively. The ROC curves are shown for different SNR
levels of energy measurements, represented by the median
of received SNR among all the sensors, �bmed. For the SVM
method in LCM where the location of the authorized trans-
mitter is unknown (i.e., ‘‘SVM w/o location’’), we estimate
it by the weighted centroid as

½x; y� ¼
PNC

i¼1pi½xi; yi�PNC
i¼1pi

; ð38Þ

where pi is the ith largest signal strength (in linear scale)
from all the sensors and (xi, yi) is the location of the corre-
sponding sensor. It has been shown in [25] that an unbal-
anced distribution of sensors (with respect to the
transmitter to be localized) can degrade the accuracy of a
centroid based algorithm. To mitigate the impact due to
the unbalanced network topology, we choose NC = 10 sen-
sors with the strongest energy measurement to perform
the localization. An advantage of the SVM solutions seen
from the results is that the actual PF is close to the desig-
nated one regardless of the SNR level. On the contrary,
the analytical solution fails to predict the correct false
alarm probability under certain SNR conditions. Specifi-
cally, in LCM, the actual and analytical false alarm proba-
bilities match each other only for large �bmed (e.g., >20 dB),
because the analytical solution is based on the large-SNR
approximation. In SCS, the analytical false alarm probabil-
ity is accurate when the absolute dB value of �bmed is large
(e.g., ±20 dB), because the method makes use of data in
both asymptotic conditions.

Regarding the detection performance, given a large-SNR
(e.g., �bmed ¼ 20 dB), both schemes achieve detection rate
above 90% for a false alarm rate of 10%. Moreover, SCS
achieves much higher detection probability using far fewer
sensors than LCM, thanks to the more reliable metric based
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Fig. 4. Complementary ROC by (a) LCM and (b) SCS. The target false alarm pr
markers. In LCM, the median of the received SNR among all the sensors is 0 dB (so
SNR among all the sensors is �20 dB (solid), 0 dB (dashed), and 20 dB (dotted).
on signalprints. However, SCS can only be used in the case
where the authorized transmitter is fixed while LCM does
not have this constraint. In addition, the results show the
effects of using the estimation residues, ê, as the test statis-
tics. In LCM, we observe that, given the location of the
authorized transmitter, the analytical and SVM solutions
have similar ROCs although they use different test statis-
tics. In SCS, the detection rate by the SVM solution is more
stable against SNR than that of the analytical solution. Par-
ticularly, the SVM solution is superior to the analytical one
when the SNR of energy measurements is small (i.e.,
�bmed 6 0 dB).

In the following results, we fix the false alarm rate at
PF = 0.1 and investigate the effects of different system
parameters on the detection probability, PD, of the pro-
posed methods, where PD = 1 � PM.

The variation in energy measurements are mostly
caused by the random channel fading and noise, as we
have seen from (15). Their effects are illustrated in Fig. 5.
From (20), we see that the variation of measurements
mostly results from the random channel fading, rS,n. The
noise, averaged by L samples, has little impact on LCM.
On the other hand, from (28), the variation of measure-
ments is caused solely by the noise. Thus, with more sam-
ples in a measurement, the detection rate of SCS is higher.

Fig. 6 shows the detection probability for different val-
ues of interference-to-signal ratio (ISR), which is defined
by the ratio of transmission power from unauthorized
and authorized transmitter. For both methods, the detec-
tion rates monotonically increase with the interference
power, except for the LCM’s SVM solution where the unau-
thorized transmitter location is unknown (i.e., curves with
triangle markers). For these cases, and when the noise
power is negligible (e.g., �bmed ¼ 20 dB), the machine learn-
ing based solution treats the signal strengths from both
transmitters equally and it only tries to tell whether there
are simultaneous transmissions. Thus, the detection prob-
abilities appear approximately symmetric with respect to
the ISR of 0 dB, where the highest accuracy is usually
obtained. When the noise power is significant (e.g.,
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Fig. 5. The effects of energy measurement variation on the detection probability, PD = 1 � PM, for the actual false alarm rate of 0.1. �bmed ¼ 20 dB. (a) PD vs.
rS,n for LCM. L = 8 (solid) and L = 128 (dashed); (b) PD vs. L for SCS. rS,n = 0 dB (solid), 6 dB (dashed), and 12 dB (dotted).
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Fig. 6. Detection probability vs. transmission ISR by (a) LCM and (b) SCS, where �bmed is 20 dB (solid), 10 dB (dashed) and 0 dB (dotted). The actual PF = 0.1.
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Fig. 7. Detection probability vs. the number of independent authorized transmitters, for (a) LCM and (b) SCS, where �bmed is 20 dB (solid), 10 dB (dashed), and
5 dB (dotted). The total transmission power of the unauthorized radios equals the authorized transmission power (i.e., ISR = 0 dB). The actual PF = 0.1.
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�bmed ¼ 0 dB), the estimation residues, ê, are mostly contrib-
uted by noise in the normal case. When the interference
power is significant (i.e., ISR > 0 dB), its impact on ê
increases and it deviates the residues from those in the
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normal (large noise) case. Therefore, when ISR > 0 dB, the
detection probability increases as the SNR decreases.

We now consider the case of multiple unauthorized
transmitters. The transmitters are assumed non-colluding
and independent, so that their powers add noncoherently
at each sensor. Intuitively, more unauthorized radios
should lead to better detection because the total amount
of transmitted power (and the resulting interference
power at each sensor) increases. We thus address a more
interesting scenario, where the total transmission powers
from all unauthorized radios is fixed. Fig. 7 shows the
detection probabilities of LCM and SCS schemes for differ-
ent numbers of unauthorized transmitters. The unautho-
rized transmitters have equal transmission powers and
are randomly located in the test area with a uniform distri-
bution. In addition, the total transmission power from all
the unauthorized radios is equal to the authorized one.
We observe that more unauthorized radios leads to higher
detection rates for both schemes, even if the aggregate
interference power remains constant.
7. Conclusion

In this paper, we investigated the problem of detecting
unauthorized spectrum usage in a dynamic spectrum ac-
cess network. Assuming there is only one authorized user
in each spectrum channel, we formulated the detection of
anomalous spectrum usage as several statistical signifi-
cance testing problems. With respect to the mobility of
the authorized transmitter, we propose two detection
algorithms. For the mobile case, we present a Linearity-
Check-for-Mobile-Transmitter (LCM) method to examine
the linear relation between log-scale RSS and logarithmic
link distance. For the stationary case, we present a Signal-
print-Check-for-Stationary-Transmitter (SCS) method to
compare the current RSS pattern with a stored pattern
of the authorized transmitter. Provided the distribution
of the energy measurements is known, we derive analyt-
ical models for the significance test statistics. In the gen-
eral case where the distribution is unknown, we
introduce a machine-learning approach to provide empir-
ical solutions.

The simulation results show that, the false alarm prob-
abilities predicted by the analytical solutions are sensitive
to the SNR of energy measurements across the sensor net-
work. The accuracy of (27) increases with the SNR and the
accuracy of (37) increases as the SNR changes away from
0 dB. Given the authorized transmitter location in LCM,
the SVM based empirical solution and analytical solution
have very similar detection probabilities. On the other
hand, the empirical solution of SCS is more stable against
noise than the analytical solution in terms of the detec-
tion performance. Furthermore, the random variation of
measurements has different effects on the detection
performance of two proposed schemes. Specifically, the
random channel fading significantly deteriorates the
detection rate of LCM but has little impact on SCS. In
contrast, the number of samples in each measurement,
indicating how well the noise can be averaged, is the only
factor that determines the variance of measurements in
SCS. Provided a large-SNR and a single unauthorized
radio, both LCM and SCS schemes achieve a detection
probability above 0.9 while keeping the false alarm rate
less than 0.1. The detection probabilities are even higher
when there are multiple unauthorized radios, for the
same total interference power. Moreover, SCS is always
superior to LCM in that it achieves much higher detection
probability using far fewer sensors, thanks to the more
reliable metric based on signalprints.
Appendix A. Approximating a gamma distribution
using a lognormal distribution

For a gamma distributed random variable y whose PDF
is given by

f ðyÞ ¼ ym�1

CðmÞam exp � y
a

� �
; a ¼ E½y�

m
; ð39Þ

Y = ln(y) can be approximated by a normal distribution
NðlY ;r2

YÞ given m is large [26], where

lY ¼ lnðaÞ þ wðmÞ; ð40Þ

and

rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w0ðmÞ

q
: ð41Þ

wðmÞ ¼ d
dm ln CðmÞ is the digamma function and

w0ðmÞ ¼ d2

dm2 ln CðmÞ is the trigamma function. In addition,
w(m) � ln(m) for a large m. We denote a lognormally dis-
tributed random variable y � Log—N lY ;r2

Y

 �
.

Appendix B. Proof of Theorem 1

Proof. Given that A in (21) is a N 	 2 matrix, using the
singular value decomposition (SVD), we have

A ¼ UKVT ; ð42Þ

where U is a N 	 N orthogonal matrix, V is a 2 	 2 orthog-
onal matrix. K is a N 	 2 diagonal matrix with two nonzero
singular values (i.e., assuming there are at least two sen-
sors that have different distances from the transmitter):

KN	2 ¼

k1 0
0 k2

0 0
..
. ..

.

0 0

26666664

37777775 ¼
eK2	2

0

" #
: ð43Þ

Then we have

A AT A
� ��1

AT ¼ UKVT VKT UT UKVT
� ��1

VKT UT

¼ UK KTK
 ��1

KT UT ¼ U
eK
0

" #
ð~KeKÞ�1 eK 0


 �
UT

¼ U
I
0

� �
I 0½ �UT ¼ U

I2	2 0
0 0

� �
UT :

ð44Þ
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Therefore,

D ¼ I� A AT A
� ��1

AT ¼ U IN	N �
I2	2 0

0 0

� �� �
UT

¼ U
0 0
0 IðN�2Þ	ðN�2Þ

� �
UT :

ð45Þ

There are 2 zero singular values in the matrix D and
thus it is not invertible.

Now let U = [U1, U2], where U1 is N 	 2 and U2 is
N 	 (N � 2). Since

AAT ¼ UKKT UT ¼ U1; U2½ �
eK2 0
0 0

" #
UT

1

UT
2

" #
; ð46Þ

U2 consists of (N � 2) eigenvectors of AAT corresponding to
the (N � 2) zero eigenvalues.

Multiplying the residues ê by UT
2, we have

êu ¼ UT
2ê ¼ UT

2DYR ¼ UT
2U

0 0
0 IðN�2Þ	ðN�2Þ

� �
UT YR

¼ UT
2U2UT

2YR ¼ UT
2YR:

ð47Þ

Given YR � Nð0;RYÞ, it is known that êu � Nð0;ReÞ,
where

Re ¼ E êuêT
u


 �
¼ UT

2RY U2: � ð48Þ
Appendix C. Mathematical model of One-class SVM

One-class SVM is defined by the following optimization
problem [24],

min
q2R;n2Rl

cq2 þ 1
ml

Xl

i¼1

ni;

s:t: UðviÞ � ck k2
6 q2 þ ni; ð49Þ

ni P 0; i ¼ 1; . . . ; l;

where the data instance (i.e., the test statistics), vi, is the
estimate residues in our anomaly detection work, given
in (23) and (32), respectively. Hence vi is a N-dimensional
energy measurements. k is the number of attributes in
each data instance. Hence k equals to N, the total number
of spectrum sensors. l is the number of data instances in
the training set, that is, the number of trials in the training
phase. n = (n1, . . . , nl) are slack variables, which allow a
fraction of training data to be excluded from the hyper-
sphere in the constraint. U(vi) is a mapping function that
maps the measurements, vi, into a feature space where
an inner product can be computed by a kernel function de-
fined as KU(vi, vj) = U(vi)TU(vj). We use the radial basis
function (RBF) as the kernel function in our study:

KUðvi;vjÞ ¼ exp �1
k
kvi � vjk2

� �
; k > 0: ð50Þ

The anomaly detection problem can be viewed as min-
imizing the radius q of a hypersphere, centered at c, that
encloses a subset of the training data (i.e., the acceptance
region, X).
The optimization problem (49) is solved by the dual
problem,

min
a

X
i

X
j

aiajKUðvi;vjÞ �
X

i

aiKUðvi;vjÞ; ð51Þ

s:t: 0 6 ai 6
1
ml
;
X

i

ai ¼ 1:

Each data instance from the testing set, u, is then clas-
sified using the decision function,

H0 :
X

i

X
j

aiajKUðvi;vjÞ � 2
X

i

aiKUðvi;uÞ

þ KUðu;uÞ

6 R2: ð52Þ

Note that we do not need to know the explicit form of
U(vi) to solve the dual problem.

Appendix D. Proof of Eq. (35)

From (29), we have

E eY i � Yi

� � eY i � Yi

� �h i
¼

C2 þ r2eW ;i
þ r2

W;i; if �bi P 0 dB; ðaÞ

r2eW ;i
þ r2

W;i; if �bi < 0 dB; ðbÞ

8<: ð53Þ

and

E eY i � Yi

� � eY j � Yj

� �h i
¼ C2; if �bi P 0 dB and �bj P 0 dB; ðaÞ

0; if �bi < 0 dB and �bj < 0 dB: ðbÞ

( ð54Þ

Then,

E eY � Y
� � eY � Y

� �T
� �

¼ KeW þKW þ C2NrEr ; ð55Þ

where KW is defined in (18) and Er is defined in (32). Since
Er has the rank of 1, we construct a N 	 (N � 1) matrix, Q2,
whose columns are the N � 1 eigenvectors of Er corre-
sponding to its N � 1 zero eigenvalues. Then, we have
ErQ2 = 0 and

Re ¼ E êsubêT
sub


 �
¼ Q T

2E
eY � Y
� � eY � Y

� �T
� �

Q 2

¼ Q T
2 KeW þKW

� �
Q 2 þ C2NrQ

T
2ErQ 2

¼ Q T
2 KeW þKW

� �
Q 2: ð56Þ
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