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ABSTRACT

The proliferation of wearable devices, e.g., smartwatcres ac-
tivity trackers, with embedded sensors has already shangréat
potential on monitoring and inferring human daily actie#ti This
paper reveals a serious security breach of wearable devicbs
context of divulging secret information (i.e., key entjiesile peo-
ple accessing key-based security systems. Existing methfoab-
taining such secret information relies on installationsledlicated
hardware (e.g., video camera or fake keypad), or training la-
beled data from body sensors, which restrict use cases dtigab
adversary scenarios. In this work, we show that a wearableale
can be exploited to discriminate mm-level distances anettons
of the user’s fine-grained hand movements, which enablekatts
to reproduce the trajectories of the user’'s hand and futthee-
cover the secret key entries. In particular, our system guosfthe
possibility of using embedded sensors in wearable devieesac-
celerometers, gyroscopes, and magnetometers, to deevedi-
ing distance of the user’s hand between consecutive keiesmé-
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1. INTRODUCTION

The convenience of wearable devices, such as smartwatotles a
fithess bands (e.g., Fitbit and Jawbone), has greatly sitedithe
growth of the market of mobile devices in recent years; ntarke
researchers estimated that 72.1 million wearable devidkdev
shipped in 2015, which will be about 173% from the 26.4 millio
wearable devices shipped in 2014 [4]. Such increasing jpoipyl
of wearable devices has enabled a broad range of usefucappli
tions, including fitness tracking, falling detection, gestcontrol
and user authentication. Since such wearable devices heabi-
ity to capture users’ hand movements and derive human dysami
directly, a major concern arises on whether a user’'s seesditi
formation could be leaked and obtained by adversaries dirau
the user’s PIN sequence when accessing an ATM machine @ usin

gardless of the pose of the hand. Our Backward PIN-Sequencedebit cards for payment.

Inference algorithm exploits the inherent physical caxists be-
tween key entries to infer the complete user key entry sempien
Extensive experiments are conducted with o¥800 key entry
traces collected fror20 adults for key-based security systems (i.e.
ATM keypads and regular keyboards) through testing on wiffe
kinds of wearables. Results demonstrate that such a taehoan
achieve80% accuracy with only one try and more th&®% accu-
racy with three tries, which to our knowledge, is the firshtdaque
that reveals personal PINs leveraging wearable devicéoutithe
need for labeled training data and contextual information.

*Yingying Chen is the corresponding author.
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In this work, we demonstrate that a user’s personal PIN segue
could be leaked through his wearable devices (e.g, smattveat
fitness tracker), when accessing a key-based securitynsyStach
systems are very common in daily lives. Examples include ac-
cessing ATM cash machines, electronic door locks, and kkypa
controlled enterprise servers. A key-based security systguires
people to enter personal key combinations on the keypadiéor-i
tity verification. With people tending to wear wearable deg
around-the-clock, the movements of their wrists duringkéneen-
try process to a security system (i.e., clicking keys and imgpv
between clicks) are captured by the sensors on wearableedevi
As such, wearables could cause a new way of sensitive informa
tion leakage when a user accesses the key-based secutéynsys
In particular, adversaries can obtain sensor readings afatées
via sniffing Bluetooth communications [16, 19] or instafjimal-
wares [3] on the devices, and further infer the user’'s PINisage
(e.g., ATM PIN sequences or key sequences on access coatrol p
els) for his own use.

There has been active study on sensitive information leakag
when using key-based security systems. Traditional ateally on
either shoulder surfing or hidden cameras [6, 11]. Suchlsttes
quire direct visual contact to key entry actions and addéidnstal-



lation efforts. Furthermore, Shukkt al. propose a side-channel
attack utilizing a camera-based method to recover smantplack
PINs from the user’s spatial-temporal hand dynamics witltbu

rectly seeing the keypad on screen [18]. The proposed method

has a low inference accuracy and requires cameras to capeire
user’s hand and the back side of the touch screen. Two recen
work [10, 20] propose to utilize sensors in smartwatchesferi
user’s typed words or passwords. The MoLe [20] system relies

a linguistic model to infer user’s typed words, which is ditfit to
work with non-contextual inputs. Liet al. [10] devise a system
that requires training of the sensor data to classify ugart

In contrast to these prior studies, we develop a trainieg;fr
context-free technique to reveal a user’s private PIN secpi€to a
key-based security system) when a wrist-worn wearablecddsi
employed. The wrist-worn wearable devices could be eitimars
watches or fitness trackers. While the digital smartwatcteis
signed to be worn on either hand, the user can wear it on the rig
hand without the concern on traditional watch designed josad
time easily when wearing it on the left hand. Additionallyamy
people tend to wear fitness tracker on the right hand whilgp-kee
ing wearing traditional watch on the left hand. The basiaibeto
exploit embedded sensors in wearable devices to capturrdyn
ics of key entry activities and derive fine-grained hand moset
trajectories traversing secret key entries. While wearalelvices
have equipped with various sensors, it is challenging tarately
recover such fine-grained hand-movement trajectoriesetttabit
only mm-level difference in distance between keys via |aelity
sensors. In addition, due to hand vibrations and rotatitesco-
ordinate system of a wearable device is not always alignédl avi
fixed reference, which makes it hard to track the hand movésnen
by using sensor readings directly. Additionally, in ordeobtain a
person’s key entries without user cooperation or drawirngeadten-
tion, the adversary has to achieve the PIN sequence witlaimirtg
or contextual information.

To address these challenges, our approach examines thre inhe
ent physics phenomenon extracted from the user’s key entry a
tivities via wearable sensors and develops distance edionland
direction derivation schemes to produce mm-level accuveauogn
estimating the moving distance and angle between two cansec
tive key entries. To obtain the complete PIN sequence, ock-ba
ward PIN-sequence inference algorithm exploits the playsion-
straints of distance between keys and temporal sequenay afrk
try activities to construct a tree of candidate key entrasdieter-
mining the PIN sequence in a reversed manner, because in man
practical cases, the “Enter” key is the last key after the asters
his/her PIN sequence. The mme-level precision of estimaitireg
fine-grained moving distance and direction between two lkeyb
the backward PIN-sequence inference algorithm enable ysir s
tem to obtain the user’s PIN sequence without training amteco
tual information. Such a technique can also be extendedpjoosti
password recovery when people type on keyboards while ngari
wearables.

We summarize our main contributions as follows:

e We demonstrate that a single wrist-worn wearable device can

e We show that it is possible to infer a complete user’s PIN
number via a backward PIN-sequence inference algorithm.
By exploiting spatial and temporal constraints of PIN exgri
and the fine-grained hand movement analysis, our approach
can accurately pin-point the location of each PIN entry with

t the right sequence.

We conduct extensive experiments withparticipants wear-

ing two types of smartwatch and a prototype of wearable on
key-based security systems such as ATM keypads and key-
boards over an eleven-month period. We show that our sys-
tem can achiev80% accuracy of inferring PIN sequences
with only one try and oveB0% accuracy with three tries
without training and contextual information.

The rest of the paper is organized as follows. We first put our
work in the context of related studies in Section 2. In secto
we investigate the feasibility of using wearables to obtaimser’s
PIN sequence of key-based services. We then describe tlgndes
of our PIN-sequence inference framework in Section 4. Negt,
present two schemes of distance estimation and directidvation
to capture fine-grained hand movements via sensors on wesrab
in Section 5. The backward PIN-sequence inference algorith
recover the complete user PIN sequence is described im8es:ti
We present the detailed implementation of our frameworlerms
of pre-processing of the sensor data and coordinate alighine
Section 7. In Section 8, we perform extensive evaluationuwf o
approach involving real key-based security systems. Kinake
discuss the relative issues and conclude our work in Sexcfiamd
10 respectively.

2. RELATED WORK

Recent studies show that embedded sensors on mobile devices
such as accelerometers and touch screens, can capturenusers
tion and leak their sensitive information [13, 15, 17]. Rabte
wearable devices, such as smartwatches and fitness batelsd ex
the sensing capability to limbs and enable many useful eppli
tions [9, 14, 22]. These existing studies have shown theirsgns
capabilities of up-to-date mobile devices, which inspiseta ex-
plore the potential of using wrist-mounted wearables tavec
fine-grained hand movements, and study to what extent thé&suse
sensitive information could be leaked from their fingers.

Toward this end, we explore the possibility of recoveringpe
ple’s private PIN sequences through their wrist-worn mmloié-
vices when they enter PINs on key-based security systenme. Tr
yditionally, key-based security systems could be breachesel-
eral methods, such as hidden cameras and skimmers. For exam-
ple, some ATM machines are attached by a hidden camera, which
was used to record PIN sequences or body movements of enterin
PINs [11]. An adversary may also put a skimmer into the ATM
machine card slot. When the customer slides their cardlligei
through the skimmer first and then into the machine. A chipims
the skimmer device records information about the accoutitout
the knowledge of the customer [1]. These existing methadeln
depend on installing dedicated devices in the restricted.ar

In addition, researchers show that itis possible to reamgmsers’

reveal a user's PIN sequence to key-based security systemskeystrokes by using acoustic approaches. Begget. [7] demon-

We develop a training-free approach by exploiting the inher

ent physics meaning extracted from sensor readings on wear-

ables. Such an approach does not require contextual informa
tion, allowing it to recover random key entries.

We develop the distance estimation and direction derimatio

strate that by using linguistic models and recorded typiognd

on a keyboard, an attacker can successfully reconstrudypieel
words. Zhuet al. [23] present a context-free and geometry-based
approach to recover keystrokes by using multiple smartpsida
record acoustic emanations from the keystrokes. Waraj. [21]
develop a system that extracts and optimizes the locagperntent

schemes that capture the fine-grained hand movements atmultipath fading features from the audio signals and leyesahe

mm-level precision.

signal diversity resulted from the dual-microphone irdged in a
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Figure 1: Acceleration patterns inherited from key entry adiv-
ities, shown in the readings of a 3-axis accelerometer on IMU

mobile device to identify key entries typed on a keyboardondl
this line, Jiaret al.[8] demonstrate that mobile audio hardware in
off-the-shelf mobile devices can be exploited to discriaénmm-
level position differences, based on which they developsiesy
that can locate the origin of keystrokes by using only a sipflione
behind a keyboard [8]. Marquaret al. develop an application that
can utilize accelerometers in a smartphone to sense thaticibs
caused by keystrokes from a nearby keyboard and furthetifigen
the keystrokes [12]. Their proposed technique relies ongulstic
model and labeled training data and the system is highlyitaens
to environment noise (e.g., people moving around).

The most related work to ours are two concurrent studiesgtwhi
analyze the leak of users’ passwords or typed words fromtsmar
watches [10, 20]. Wangt al. [20] devise a system that can infer
typed words on a keyboard by utilizing motion sensors in $mar
watches. The system assumes to know the fixed initial paositio
of the smartwatch and relies on a linguistic model to inferety
words, which makes it hard to deal with non-contextual isput
such as passwords and PIN sequences.etial. [10] apply sen-
sors in a smartwatch to infer users’ inputs on a keyboard d8 PO
terminal by utilizing machine-learning based techniquéseir ap-
proach requires training of hand movements between kéestro
and it is unclear how the system handles changing positibtieeo
wrist during typing. Moreover, both of the above work canyonl
achieve moderate accuracy in deriving the user inputs djveted
number of tries. Different from previous work, our key entrfer-
ence system is training-free, contextual-free and doesnmotve
additional devices. Furthermore, our backward PIN-secgién-
ference framework is not subject to environmental noisesh sis
ambient noise, light interference and people walking atoun

3. ATTACK MODEL AND FEASIBILITY STUDY

The positions of wearable devices on human bodies natugaily
hance the devices’ capability of the activity recognitiom dacili-
tate many applications based on the context of activitiesveéver,
such strong sensing ability brings up new security and pyivs-
sues. In this work, we study the possible personal secrkadea
in a very common scenario that people wear wrist-worn wearab
devices while using key-based security systems, such as &M
chines, password secured door entries, and keypad-deuitreh-
terprise servers. In this section, we describe the attaakeirend
explore the feasibility of utilizing wearable devices tcoeer per-
sonal key entries in key-based security systems.

3.1 Attack Model

We consider an adversary aiming at recovering a personstsec
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Figure 2: Distance estimation of the number pad on the Dell
keyboard based on IMU.

PIN entries leveraging embedded sensors (e.g., accelernrgg-
roscope and magnetometer) in wearable devices worn orehis/h
wrist. The adversary has the knowledge of where the victisa vi
its the key-based security system and can obtain the laydbeo
keypad. We assume that the adversary is able to access gw sen
data and communicate over networks on the smartphone, but ca
not observe the PIN entry activities visually by any meanke T
wearable device is usually paired with the user's smartphoa
Bluetooth and constantly sends sensor data to the persoak-s
phone for logging purpose. Most wearables are using Bltietoo
Low Energy (BLE) to transmit sensor data. BLE comes with low
security capability compared with Bluetooth, and as a tethd
sensor data could be sniffed by the adversary [16, 19]. Buath
versary does not have access to training data, which isfapteca
particular key-based security system. Particularly, veniidy two
representative attacking scenarios as follows:

Sniffing Attacks. An adversary can place a wireless sniffer close
to a key-based security system (e.g., ATM machine or kegdas
security door) to eavesdrop sensor data from the wearakleede
which is worn on the victim’s wrist when he/she enters séguri
PINs into the security system. The adversary utilizes theless
sniffer to capture Bluetooth packets sent by the wearablicee
to its associated smartphone [16, 19], and determines thtiens
PIN sequence based on the sensor data extracted from Bluetoo
packets.

Internal Attacks. An adversary can access the embedded sen-
sors in the victim’s wrist-worn wearable device by instadlia mal-
ware app without the victim’s notice [3]. The malware apptwai
until the victim accesses the key-based security systenkeapls
sending sensor data back to the adversary’s server thriwegim+t
ternet. The adversary can aggregate the sensor data omibetse
determine the victim’s PIN sequence remotely.

3.2 Intuitions of Hand Movements behind Key

Entry Activities

When accessing a key-based security system, a person'sPIN s
quence is entered through multiple key clicks. During eaeh k
click, there exhibits acceleration and deceleration ofskegnen
pressed and released by the user. This simple informatioaarae
as a guideline to discriminate different key clicks. Theical ques-
tion we need to answer is that whether the sensors on wearable
devices can discriminate between key clicks and capturéiribe
grained movements between two consecutive clicks. Inquadati,
we look for unique sensing patterns inherited from such lacae
tion and deceleration that could be used to facilitate tiserdh-
ination of key clicks and distance estimation of hand mowame
between two key clicks.

A key click can be separated into two consecutive time psriod
key pressingand key releasingperiods. The key pressing period
starts when a person’s finger touches the key and ends when the
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Figure 3: Accelerometer readings from IMU.

(b) Moving along the Y axis.

finger presses the key to the bottom of the keypad (denote@ss-

ing poind. The key releasing period starts when the person’s finger
releases the key from the bottom of the keypad and ends wien th
finger stops moving after it is detached from the key (denasze-
leasing poin}. Intuitively, the hand accelerates towards the keypad
while pressing the key before the pressing point, and detele
and stops quickly due to the reaction force from the key thathes

the bottom of the keypad. When releasing the key, the haral-acc
erates towards the opposite direction to the keypad and siiogr

the finger is detached from the keypad. We illustrate the Band
acceleration/deceleration in the Z-axis caused by keysprgsind
releasing in Figure 1. We use the keypad’s coordinate sysifigm

the Z-axis perpendicular to the keypad plane and pointinidrom

the keypad, and the X-axis aligned to the direction conngdtie
first and the second key.

Furthermore, in between two consecutive key clicks, thedtey
try activity involves the hand movement from one key to arath
As shown in Figure 1, the accelerations on the X axis present a
obvious up-and-down trend, while the accelerations on tle@ad@

Y axes remain stable. The intuition behind this phenomeaadhait
the hand usually accelerates and moves relatively in ghraith
the keypad on the shortest trajectory between the first armhde
keys. After passing the middle point of the trajectory, thadhde-
celerates to stop when it reaches the Beyposition. Such unique
up-and-down acceleration trend is very useful to help acapjuhe
small distance of hand movement between two keys.

Feasibility Study. To study whether the sensors on wearables
can capture such detailed acceleration patterns duringrkey ac-
tivities, we conduct two sets of experiments on the numbdrgia
a Dell USB wired keyboard L100 with an Invensense MPU-9150
9-axis motion sensor (i.e., IMU), which is a prototypingeaita-
tive to a wearable device. The sensor uses a moderate sgmplin

rate of 100Hz and contains an accelerometer, gyroscope and mag-

netometer that are comparable to embedded sensors in \Wearab
devices. During the experiments, the participant wears#msor
on his wrist and keeps his hand in parallel to the keypad bstw
that the sensor’s Z axis points out and is perpendicularddkéy-
pad. The first set of experiments moves from kéye 5, which is
along the sensor'’¥ axis, and the second set of experiments moves
from keysb5 to 8 along the sensor’®” axis. The distance between
keys4 to 5 is only 1.9cm, the same as that between kéy® 8. We
use a camera on top of the keyboard to record the moving distan
ground truth of the sensor. We note that these two experisent
tups are special as the sensor’s coordinate system is fidtyeal
with the keypad'’s coordinate system.

We estimate the sensor’s moving distance by applying the dou
ble integration to the acceleration readings of the X axi$ e
Y axis from the accelerometer on the sensor. The detailseof th
distance estimation scheme are presented in Section 5reFRu
compares the ground truth and the estimated distance inns0ofu
aforementioned settings, respectively. We find that ol/éneles-
timation errors are less thdmm, the mean error of the 10 runs of
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each experimental setting is as low@87c¢m and0.24cm on the
X and Y axes, respectively.

Additionally, we find that there is an unique up-and-down ac-
celeration pattern captured by the sensor, which can headito
determine the sensor’'s moving direction. Figure 3 showsttie
up-and-down acceleration pattern (like a sine wave) agpaarX
and Y axes respectively when the sensor is moving along X or Y
axes. The capability of accurate distance estimation ofthall
moving distance between keys and the moving direction deter
nation are the foundation for recovering the user’s seciigtde-
quence. Thus, these observations are encouraging as thegta
the sensors on wearables have the capability to capturertie fi
grained hand movements to facilitate PIN sequence recovery

4. SYSTEM DESIGN

In this section, we discuss the challenges in our systengaesi
and provide an overview of our system.

4.1 Challenges

The goal of accurately recovering personal PIN sequencas-by
ing the embedded sensor of wearable devices worn on themscti
wrist is not trivial. Our system design and implementatieea to
overcome the following challenges:

Robust Fine-grained Hand Movement Tracking. Using em-
bedded sensors in wrist-worn wearable devices to recanstra
trajectories of hand movements in key-entry activitieshialleng-
ing since the sensors not only capture the acceleratioprpatof
key clicks and movements from key to key, but also are aftebie
the users’s unconscious hand vibration and rotation. Eurtbre,
due to the limited size of the keypad, the distance betwegs ike
small, making it hard to estimate using the low-grade sensar
wearables. Thus, we need to design distance estimationiand d
rection derivation schemes to accurately estimate the haowihg
distance between keys and track the direction of fine-gddliraand



movements despite various interfering sensing factors.

Training-free Key Entry Recognition. Considering the attack-
ing nature of our goal, it would be unlikely for the advers&my
collect any training data (e.g., sensor data of hand movtshba-
fore recovering a user’s PIN sequence. And it is also unjikel
have the user’s cooperation during this process. Thus, meai
infer the user’s secret PIN sequence leveraging wearalitaswi
training efforts involving target users’ participation.

Recovering PIN Sequence without Contextual Information.
The target user’s PIN sequences used in key-based seclatignss
are usually consisted of numbers without contextual infdiam or
linguistic meaning. Our developed method should have thgyab
to recover sensitive information consisting of random ciration
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of numbers. This requires our system to be able to recover PIN pad and examples of moving directions of key clicksl 3, 39, 16,

sequences without relying on linguistic model or dictioesr

Sensing with Single Free-axis Wearable DevicdJsing a sin-
gle wearable device to recover PIN sequence is necessaaydeec
usually there is only one wearable device available on thstwf
the hand that performs key entry activities. There is noresfee
point available besides the single wearable device. Fumbes,
sensor readings are with respect to the wearable deviceislieo
nate system, which is not stable and changes often accotding
the device’s posture. In order to recognize key entry aaiviand
derive fine-grained hand movement trajectories, it is irtgrarfor
our system to translate the sensor readings from the weadabl
vice’s coordinate system to a fixed coordinate system, sachea
keypad'’s coordinate system.

4.2 System Overview

The main goal of our work is to demonstrate that using wearabl
devices could reveal people’s secret PIN sequence to kegde-
curity systems such as ATM machines, electronic-key based d
entries, and enterprise servers. We design and implemestens
that has the capability to reveal target user’s secret PiNesaces
through tracking the fine-grained hand movement trajessore-
lated to key entry activities. The basic idea is to examireeat-
celeration of the user’'s hand movements when accessingritay e
based security systems. Based on the feasibility study ofspe-
cial cases in Section 3, wrist-worn wearables can captererifgue
patterns of acceleration embedded in the hand movemensedau
by entering the secret PINs. Such unique patterns can beitgl
to estimate hand moving distances and directions durindcdlge
entry activities, which can be leveraged to reconstructdirsned
moving trajectories of the user’s hand and infer the PIN saga
traversed by the trajectories. We note that our approachlsarbe
extended to recover letters on any kind of keypad.

The flow of our system is illustrated in Figure 4. Our system
takes as input the raw sensor readings, such as accelenatian
tion rate, and quaternion, from the wearable device worntanget
user’s wrist. Then the system perforidsy Click Detection and
Trace Segmentatioto detect each key click by examining accel-
erations and separate the sensor readings into segmeasaum
consecutive key entries. Tiata CalibrationutilizesQuaternion-
based Coordinate Alignmersnd Noise Reductioriechniques to
translate each segment of accelerations into the measntremith
respect to the coordinate system of the keypad, and remase no
from readings by using the Savitzky-Golay filter.

The core of our system consists of two componefitse-grained
Subpath Recovergnd Backward PIN-Sequence Inferenaghich
first estimate the distance and direction of hand movemargach
segment of acceleration collected between two consedkaiyen-
tries, and then integrate the estimated distance and idinegfteach
segment to determine the entire PIN sequence based on the phy

and 68.

cal constraints of the keypad and temporal relationshipnefkey
entering sequence. We definesabpathas the trajectory of the
user’s hand movement between two consecutive key clickddns
one segment. As shown in Figure 4, the Fine-grained Subpath R
covery consists of two subtask3istance EstimatioandDirection
Derivation The Distance Estimation identifies the unique acceler-
ation patterns embedded in the key pressing and releadingias
and perform distance estimation based on such patternstidwdd
ally, the Direction Derivation leverages the estimatedadise to-
gether with the acceleration patterns caused by the handmm

in each subpath to derive the hand moving direction.

After obtaining the estimated moving distance and directio
each subpath, the system develops the Backward PIN-Segjlrenc
ference to recover the user’s PIN sequence. Specificaligyatiem
first applies th&ackward Subpath Integratidn combine subpaths
in a backward manner in time series. Then the system performs
Point-wise Euclidean Distance Accumulatitancalculate the accu-
mulated Euclidean distance for each candidate of key segquan
each estimated key position (i.e., point-wise). Last, Tree based
Key Sequence Derivatiogenerates a tree with the candidates of
key sequence and their accumulated Euclidean distancekéyhe
sequence candidate with the minimum accumulated Euclidisan
tance is chosen to be the output of the system, which is teered
PIN sequence that the victim uses in the key-based secysitgrs.

5. DISTANCE ESTIMATION AND DIREC-
TION DERIVATION SCHEMES

Our system requires tracking hand movement trajectorissadl
keypads accurately without training. Inspired by the balsad
reckoning technique, we seek to derive such fine-graing¢ecta
ries based on hand movement distances and directionsciiary,
we develofDistance EstimatioandDirection Derivationschemes
to estimate the distances and derive direction for eacheghlfpe.,
between two consecutive key clicks).

5.1 Distance Estimation

In order to accurately estimate the hand movement distagice b
tween two consecutive key clicks, we need to identify thegoas
in the sensor data corresponding to the hand movement ehecis
Therefore, our system needs to first search the starting add e
ing points of the sensor data caused by the hand movemerad bas
on pressing and releasing points of key clicks; then cateutse
hand moving distance by utilizing the extracted patternmfthe
sensor data. In the rest of the section, we assume the system h
performed theKey-click Detectiorand segmented the sensor data
to traces that capture hand movements between two consecuti
key clicks. The sensor data in each trace are translatedtéyfzad
coordinate system througboordinate Alignment The details of



Key-click Detection and Coordinate Alignment will be dissed

in Section 7. Figure 5 illustrates the coordinate systemtgpical
ATM keypad, where the center of kéyis the origin; the directions
of positive X and Y axes are in parallel with the directionfr&eys
510 6 and keysh to 2, respectively; and the Z axis is perpendicular
to the X-Y plane, pointing out from the surface of the keypade
four quadrants of the X-Y plane are defined as the standard-qua
rants in a two-dimensional Cartesian system. Figure 5 dlews
some examples of moving directions of key clicks, é3jindicates
clicking from keysl to 3.

Starting and Ending Points Searching based on Pressing and
Releasing Points.The hand movements from one key to another
happen after releasing the first key and end when touchingetie
ond key. ldeally, the hand movement distance can be cadzllat
based on the acceleration (e.g., acceleration from theig}-ax-
tracted between the releasing point of the first key click ted
pressing point of the second key click. However, such cosege
mentation includes the sensor data resulted from handtiohs
usually result in large estimation errors. In Section 3, wd that
the acceleration captured during the hand movements betweoee
secutive key clicks has significant and unique patterns ondYa
axes (i.e., either up-and-down or down-and-up shapes diiffeo
ent moving directions).

Apparently, such unique acceleration patterns includesipéne
dynamics of the key-to-key hand movements, and can be furthe
utilized to facilitate accurate hand moving distance eatiam. In
order to determine the right segment of acceleration dateeco
sponding to the unique acceleration pattern, we proposertoefr
search the starting and ending points of the pattern baste:aeg-
ment of sensor data. Specifically, we define the first zeresing
point occurring before and after the unique acceleratidtepaas
the starting pointandending point respectively. The intuition be-
hind this is that when a hand moves from one key to another, its
moving trajectory is mainly in parallel with the X-Y plane tife
keypad. Therefore, the acceleration and decelerationeohémd
during such movement dominates the acceleration on X ane¥, ax
and results in the acceleration that always experiencefierpaf
[0, ak,maz(ak,min), 0, @k, min(a@k,maz),0] @as shown in Figure 6,
whereay, mas andag, mq, denote local maximum and minimum of
acceleration on X and Y axes with= z or y.

Thus, we design a strategy to locate the starting and endingsp
of the unique acceleration pattern so that we could estirete
distance between two key clicks accurately. Our strategyives
the following steps: 1) extract the acceleration on X and ¥sax
between the releasing and pressing points of two conseckdy
clicks respectively; 2) examine the extracted accelematiofind
the az,maz, Gz, min, Gy,maz, Gy,min; 3) determine thelominated
axisby choosing the axis has the more significant unique accelera
tion pattern (i.e., a larger peak-to-peak value definethly,q. —
ak,minl|, k = x 0ory); 4) find the starting point of the unique pat-
tern on the dominated axis by searching the first time thatlacc
eration crosses the axis (i.e., zero-crossing point) Bei@lqx
or ax,min, Whichever occurs earlier; 5) similarly, find the ending
point of the unique pattern on the dominated axis by seagcthia
first zero-crossing point afteti min OF ax,maz, Whichever occurs
later. The accelerations within the starting and endingntgoile-

rived above merely correspond to the hand movements between

two consecutive key clicks and are utilized to calculate lthad
movement distance and direction in our schemes.

Distance Calculation. The distance estimation between two
consecutive key clicks is obtained by considering the m@am@m
in both X and Y axes. To perform accurate estimation, we cdenpu

the small movement between two samples in sensor data amd the

Acceleration

A b d Lo ame s

Starting point: first zero-
crossing point before the
unique acceleration pattern
' crossing point after the
unique acceleration pattern

@ xmin

100 110 120 130

Sample Index

140 150 180

Figure 6: Searching for starting and ending points based on
releasing and pressing points within an acceleration segme

sum up to produce the distance estimation in one accelers¢ig-
ment bounded by the identified starting and ending pointsthas
distance is two times integration of accelerations, wezatifrape-
zoidal rule to approximate each integration.

5.2 Direction Derivation

In order to recover the complete PIN sequence, our systedsnee
to determine the moving direction of each subpath duringkéye
entry process in addition to the distance. We define the ngovin
direction of a subpath as the angle between the positive Xandl
the subpath with counter-clockwise rotation as shown k.
The moving direction is denoted dsc [0°,360°). The basic idea
is to find the direction based on the ratio of distances on X¥and
axis derived from hand movement acceleration. In particule
design a two-step approach, including @eadrant Determination
andSlope-based Direction CalculatioThe Quadrant Determina-
tion first leverages the unique acceleration patterns terohhe
which quadrant of X-Y plane that the hand moving direction be
longs to. Then the Slope-based Direction Calculation eramihe
slope angle of the moving direction in a quadrant rangingnféd
to 90° based on the hand movement distances on X and Y axes,
and converts the slope angle to the moving direction

Quadrant Determination. Intuitively, the hand movement ac-
celeration projected on X and Y axes results in different loioa-
tions of the unique acceleration patterns in terms of thermod
Gk,maz aNdak,min ON X and Y axes withk = x ory. For exam-
ple, when the hand moves towarts’, the acceleration on X and
Y axes both experiences tlg ... before theay ..., While the
acceleration on the X axis experiences &éh&..q. after theas ,min
and the acceleration on the Y axis experiences the oppokite w
the hand moves towards35°. Therefore, we leverage the com-
binations of unique acceleration patterns on X and Y axesto d
termine the quadrant that a certain moving direction shbaldng
to. Specifically, the quadrant of the moving direction cardber-
mined by the following equation:

Lif Tag mar < Lagmin® Loy mas < Lay mins
if Loy mae > lagmin& Loy man < la
0 Tagmaw > Lag min& Loy mae > lay min
if Lo mae < lagmin& Loy man > Lay min -
where( is the quadrant indexXa,.. .., andle,,, .., denotes
the index of the local maximum and minimum on X and Y axes,
respectively.

Slope-based Direction Calculation After quadrant determina-
tion, we compute the slope angle of the moving direction ivith
each quadrant based on the ratio of the distance on X and Y axes

by utilizing the following equation:

¢ = |arctan (i—i) ' . 2)

Equation (2) returns the relative moving direction defined guad-
rant ranging fron0° to 90°, we further convert the to an absolute
moving direction (i.e., the direction defined within keypambrdi-

y,min?
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Figure 7: lllustration of the clustering results of distance
estimation and direction derivation for 6 different subpaths
{46, 28, 19,64, 82,91} by treating the first key click as the ori-
gin. The red star is the ground truth.

nate ranging frond° to 360°). Given the quadrant inde®, the
absolute moving directiott can be derived as follow:

N
180° — ¢; if Q = 2,

V= 180° + ¢ if Q = 3, ®)
360° — ¢; if Q = 4.

Once we estimate the distance and derive the direction db-a su
path, the relationship between two consecutive key cliokthe
contained subpath is determined. Therefore, if the positioei-
ther key click is known, we can derive the position of the othe
key click according to the derived moving distance and diioec
We show an example of distance estimation and directionméte
nation for6 subpaths{46, 28, 37, 64, 82, 73}. Figure 7 shows the
clustering results in both distance and direction whertitigahe
first click as the origin. We observe that each key-click corab
tion is clustered together around the ground truth (showtheased
star) based on our distance estimation and direction datation
schemes, indicating that our schemes have the capabiligptinire
the fine-grained hand movement trajectories in key entiyides.

6. BACKWARD PIN SEQUENCE INFERENCE
ALGORITHM

After performingFine-Grained Subpath Recovegyounded on
distance estimation and direction determination, we nestdbe
how to reconstruct the hand-movement trajectory using #tie e
mated subpaths to infer the target user’s PIN sequence.

6.1 Backward Subpath Integration

We notice that all key-based security systems require teetos
execute the verification by pressing Kegteror Confirm which is
at a known position on the keypad. We can then utilize thisrinf
mation to reconstruct the hand-movement trajectory on gyp&d
by examining the subpaths in a backward time sequence. $hat i
the position of key Enter can be considered as a end of theuast
path, and the starting of the last subpath indicates thdiposif
the last key clicked before key Enter.

More generally, we concatenate the estimated end of the
1)™" subpath to the starting of thé" subpath and continue to re-
peat this step until reaching the starting of the first sunpd&y
integrating all the derived subpaths in such a backward -tesbd
connecting way, we can obtain a trajectory roughly matchiveg
hand movements during the key-entry process, called\tieely
Integrated Trajectory Ideally, the vertices on the Naively Inte-
grated Trajectory should be mapped to real-key positioitis thie
last vertex mapping to the center of Key Enter.

6.2 Point-wise Euclidean Distance Accumula-
tion

L

——Ground truth
= = =Nalvely Integrated path

»

N

Y axis of Keypad(cm)
v o

& A

X axls of Keypad(cm)

Figure 8: Example of the naively integrated trajectory having
a large accumulated error cannot correctly map to the key po-
sitions of the PIN sequence "419" (though the estimation eiwr
of distance and direction of individual subpath is small).

Although we can recover each individual subpath based on the
estimated distance and derived direction, each subpattainen
small errors and the Naively Integrated Trajectory inlsemitd fur-
ther accumulates such small errors in each subpath, rEgutti
mapping to the wrong-key positions on the keypad. Figureo@ish
an example that the naively integrated subpaths (i.e. okldashed
lines) cannot recover the correct target user’s PIN seqeng.,
“419”, instead, they return329” as a result. To reduce cumulative
errors, we propose RBoint-wise Euclidean Distance Accumulation
approach. In this approach, instead of matching the Naivebr
grated Trajectory directly to the keys on the keypad, we idens
each subpath separately by comparing the closeness in¢éthres
Euclidean distance between the starting point of the shbfat,
point-wisely) and real key positions, while the ending paihthe
subpath is fixed on real keys.

In particular, each subpaghcontains the estimated distancg
and direction ¢;). Given a real key’s position as an ending point
(assuming this key is clicked at this ending point), we caimege
the starting pointd;, y;) of each subpath. We conduct this effortin
a backward manner starting from Enter key because we know the
ending point in the last subpath is the Enter key. The eskimaif
the starting point in thg*" subpath is obtained as following:

7, = sin(9; + 180) x S; + Y, @)

{ z; = cos(¥; + 180) x S; + X,
where(X, ) are the coordinates of ten real number kéys2, 3,
..,9,0} on the keypad. Given that there are ten real number keys
in the key pad, there will be ten estimation results of thetisig
points in subpatty. We note that, for the last subpatt®’, V) is
the coordinates of the key Enter. Once the starting pointef t
4" subpath is estimated, our algorithm will recursively mowe t
the previous subpath. By doing so, we introduce the concept o
accumulated Euclidean distanaghich is the sum of the Euclidean
distances between the starting point of a subpath and thidinate
of a real key in the keypad, over all consecutive subpathscakie
recursively run the following equation to calculate theltanalated
Euclidean distance:

D]‘ = Dj+1 + dj, (5)

whereD; andD;: denote the accumulated Euclidean distance of
two consecutive subpaths, respectively, dpés the Euclidean dis-
tance between the estimated starting paiit §;) of the ' sub-
path and a real key in the keypad. The resulted final accustilat
Euclidean distance measures the closeness of the real ke
tion, defined a®IN sequence candidatéo the estimated consec-
utive subpaths while leveraging the dimension of the keyJdu
insight is that we would like to explore the possible cantideeys
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Figure 9: Example of point-wise Euclidean distance accumattion for candidate PIN sequence "846", where the real PIN is'419".

leveraging the estimation from each subpath without fixeng par-
ticular key matching. In this way, we will not end up with ordpe
Naively Integrated Trajectory, instead, we will obtain tple key
sequences as the candidates for PIN sequence recoverfei-urt
more, by conducting the point-wise Euclidean distance mctar
tion for each candidate of PIN sequence, our algorithm calathe
contribution of each estimated subpath and reduce the adated
errors that impact the accuracy of PIN sequence inference.
Example. Figure 9 shows an example of how the Euclidean dis-
tance is accumulated point-wisely in backward for a specHit-
didate PIN sequence’46” (The real PIN entry in this example
is "419"). In the sequence of Figure 9, (a) we first generage th
Naively Integrated Trajectory consisted of three conseelgub-
paths, subpath1, subpath2, and subpath3, which need to be
point-wisely compared with the candidate subpath84”“ 46",
and “6enter” in the candidate PIN sequenc&46”. The gener-
ation of naively integrated trajectory is based on the estibh dis-
tances and derived directions of each subpath. (b) then ave st
by mapping the ending point of subpéatho the key Enter and set
D4 = 0, and utilize the estimated moving distance and derived di-
rection in the subpath to estimate its starting point on #gphkd
in a backward way. The Euclidean distance between the dstima
starting point of subpatB and key6 (i.e. the3™® key entry in
the candidate PIN sequencg46”) is found to beds = 1.2cm,
and the accumulated Euclidean distance for this subpdih is-
D4 4 ds = 1.2¢m; (€) next, assuming the ending point of subpath
2 is mapped to keyt, we similarly estimate the starting point of
the subpath and calculate the Euclidean distance betweessth
mated starting point and the position of kéyi.e.,ds = 2.1cm).
The accumulated Euclidean distance for the previous twatbsps
Do = D3 + d2 = 3.3cm; (d) lastly, we assume the ending point of
the subpath to be key8 and estimate the starting point of the sub-
path. We find the Euclidean distance between the estimaded st
ing point and the position of ke§'to bed; = 0.8cm and calculate
the accumulated Euclidean distance for the entire carelmfa®IN
sequenced46” as: D = Dy + di = 4.1cm. We note that our al-
gorithm recursively calculates the accumulated Euclidiistance
for every possible candidate of PIN sequence based on Bgsati
(4) and (5) and select the candidate with the minimum accated|
Euclidean distance as the final result.

6.3 Tree-based Key Sequence Inference

To implement the Backward PIN-Sequence Inference alguarith
we develop a tree-based approach for the PIN-sequencericter
Next, we discuss how to build and optimize the tree in our -algo
rithm.

Building a Tree with PIN Sequence Candidates.In order to
record and compare different candidates of PIN sequencseele

to build a decimal tree according to the backward order oP M
sequence candidates. Each node is defined2atuple structure
containing its corresponding key entry and the Euclideatadce
accumulated on the path from the root node to the node, d&note
as< NodeKey, AccuDist >. Because the tree is built based on
a backward order, nodes in th#" level of the tree correspond to
the (N — j)th key entries of all candidates of PIN sequences. The
root node is always the last key entry (i.e., key Enter), aliie
leaf nodes are always the first key entry of the candidate Nf Pl
sequence (i.e., number keys on the keypad). Each node (d¢keep
leaf nodes) ha30 child nodes corresponding to kegso 9. The
branches from one parent node to its child nodes represestti
paths between the keys corresponding to the parent andhautes.
The leaves of the tree stores the final accumulated Euclidsan
tance of each candidate of PIN sequence. Our algorithmtsesrc
for the leaf node having the minimum accumulated Euclidgan d
tance, and traces back to recover the path from the leaf woithe t
root node. The inferred PIN sequence is generated by rexptide
key entries corresponding to the nodes on the recovered path

Figure 10 shows an example of a tree for inferring a PIN se-
qguence of 419", where the accumulated Euclidean distance for
one candidate of PIN sequenc&l” is 4.1c¢m, while another can-
didate of PIN sequencett9” has the accumulated Euclidean dis-
tance ofl.6¢m, which is the minimum over all candidates. There-
fore, the candidate of PIN sequened 9” will be determined to be
the inferred PIN sequence.

Subpath Calibration and Tree Pruning. In order to improve
the accuracy of our system, we take the advantage of the éeypa
dimension to calibrate subpaths. Intuitively, the diseanta sub-
path should not exceed the dimension of a keypad. Theréfdine,
estimated distance of a subpath exceeds the dimension gpade
our system replaces the estimated distance of the partsul@ath
with the possible longest distance on the keypad. In addisince
every non-leaf node in a PIN-sequence treeltashild nodes, the
4" level has10’ nodes. Apparently, it is not necessary to store
and calculate the Euclidean distance in every node. Ouridigo
prunes the tree by keeping the child nodes with the leasiccu-
mulated Euclidean distances for each parent node. In thisleaf
nodes are largely reduced frore™ to m®™, whereN is the length
of the PIN sequence. In our experiments, werset= 4, which
balances the tree size and produces good performance.

7. IMPLEMENTATION
7.1 Key-click Detection

Given embedded sensor data from wearable devices, ounsyste
first performs key-click detection based on acceleratiaulirggs to
find the key-click events and the number of keys in a PIN secpien
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Figure 10: lllustration of the construction of the backward trajectory inference tree for recovering PIN "419".

and assist the trace segmentation. Key clicks usually csigaéi-
cant changes of acceleration towards the keypad that hastle-
tial to be distinguished from other hand movements. In paldr,
we calculate the magnitude of the composition of accelematon
three axes first, and apply a threshold to examine the naretli
magnitude of the composed acceleration to detect key clidkes
empirically determine the threshold to b& based on our experi-
ments with20 participants in this work.

7.2 Key-click Trace Segmentation

After key-click detection, we roughly segment input serdata
into small chunks containing the data between two consecug-
tected key clicks. After segmentation, the resulted snialinks
contain the sensor data representing subpaths, whichdec¢he
acceleration caused by hand movements from one key to anothe
In addition, to mitigate high frequency noise caused by hand
bration, we apply th&avitzky — Golay filter to each chunk of
sensor data respectively.

7.3 Quaternion-based Coordinate Alignment

When recovering the user’s PIN sequence from the wearables’
embedded sensors, our system involves three differenticate
systems, namelyyearable coordinateworld coordinateandkey-
pad coordinate The sensor readings from a wearable are defined
within the wearable coordinate and thus cannot be usedtljitec
represent hand movements because of the rotating weacatdi-c
nate caused by frequently changed hand position. In thik,wee
employ quaternion to help convert sensor readings from therw
able coordinate to keypad coordinate for hand trajectoriyalgon.

Specifically, we first convert the sensor readings from tharwe
able coordinate to world coordinate by applyifg = qdwddq;u},
whered,, andad, are the sensor readings in the world coordinate
and werable coordinate, respectively, aagd is the quaternion that
represents the conversion from the werable coordinate tluwo-
ordinate. Theru,, will be further converted to the keypad coordi-
nate viady = qwkawq;;, wheredy, denotes the sensor readings
in the keyboad coordiante and ;. denotes the quaternion that rep-
resents the conversion from the world coordinate to keymeani-c
dinate. The quaterniogs,, can be extracted from wearables dur-
ing hand movements, ang,, can be derived frong,, = q,;uf,
where the quaterniog,,, can be collected by placing a sensor (i.e.,
smartphone, smartwatch, or IMU) aligned with the coordinatt
the target keypad. We note that adversaries can utilizerthtbod
to obtaingy., without attention at a time other than the user entering
the PIN sequence.

8. PERFORMANCE EVALUATION

In this section, we present the experimental methodologyden
scribe the evaluation metrics. We then present the mostriiapto
results of our system with respect to PIN sequence recovery u

Figure 11: Experiments: three different kinds of keypads, -
tachable ATM pad, keypad on ATM machine, keyboard; and
wearable devices.

ing the Backward PIN-sequence Recovery Algorithm. Finally
show the performance of two supporting schemes for PIN segue
recovery, distance estimation and direction derivatidreses.

8.1 Experimental Methodology

Keypads. We evaluate our system with three different kinds of
keypads as shown in Figure 11: 1) A keypad on ATM machine
(from PNC bank) with the dimension df08mm x 76mm; 2)

A real detached ATM keypad with the dimension &frmm x
95mm, both 1) and 2) representing the use cases with different
ATM pad sizes; and 3) A number pad of Dell USB wired keyboard
L100 with the dimension of 7mm x 97mm, representing the use
case of key-based security access to enterprise serveesthiide
keypads have different structures and key depths. It is itapbto
evaluate their effects on our approach when capturing fingxgd
hand movements. We focus on experiments on numbers to recove
PIN-sequences.

Wearable Devices.In our experiments, we use three different
types of wearable devices, including two smartwatches, (L&
W150 and Moto360) and an IMU (Invensence MPU-9150). These
wearables represent different achievable maximum sampdites
(i.e., 200Hz, 25Hz and100Hz, respectively). The LG W150 and
Moto 360 are two commodity smartwatches running on Android
Wear OS with Bluetooth LE. The IMU contains a 9-axis motion
tracking sensor designed for consumer electronics. Wetls® i
a prototyping alternative to a wearable device with its damgp
rate set tol00Hz. During key-entry activities, the wearable de-
vices collect acceleration and quaternion data and semd the
pre-associated storage device (i.e., smartphone via @jtieeand
laptop via an USB cable for smartwatches and IMU respegfivel
The ground truth of the hand moving distance and directicois-
puted through the video recorded by a camera set on top o€the k
pad. In particular, we use AutoCAD to connect two positiofs o
the sensor in two captured video frames corresponding tortiee
points when the finger just leaves the first key and about tohtou
the second key, respectively. The measured distance atel aing
the line (with the positive X axis of the keypad) connectihgge
two sensor positions are used as the ground truth of thendista
and direction of the hand movement.

Data Collection. We conduct experiments of various key-entry
activities with three different types of wearables on thkeels of
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Figure 12: Performance of Backward PIN-sequence Inference
with three kinds of wearables on the detachable ATM Keypad.

keypads.20 volunteers are recruited to performance key-entry ac-
tivities over anl1-month period. The volunteers are asked to enter
keys in two ways: 4-digit PIN sequences consisting of fivesean
utive key clicks (with "Enter" as the last click) and a singlédpath
consisting of two consecutive key clicks. For each subpadked

on the keypad layout, we classify different subpath lengtis
three representative scaleshort mediumandlong. Specifically,
short covers subpaths between two adjacent keys with no keys in
between (e.g45, 41 and75); mediumis for horizontal and vertical
subpaths between two keys with one key in between (¢6gand
82); andlong contains subpaths of two keys neither horizontal nor
vertical and with one or more keys in between (€1, 37 and29).

We collect5000 PIN sequences from three keypads when having
20 volunteers wear three different kinds of wearables. Faglein
subpath, we collec8000 subpaths from three keypads including
long, mediumandshortdistances with volunteers wearing an IMU.

8.2 Evaluation Metrics

We develop the following metrics to evaluate our system wath
gard to the accuracy of distance estimation and directiteroéna-
tion schemes and the performance of our Backward PIN-seguen
Inference Algorithm:

Distance Estimation Error. To evaluate the performance of our
distance estimation scheme, we definediwance Estimation Er-
ror as the difference between the estimated distance and thedjro
truth of the hand moving distance. The ground truth of thedhan
moving distance is computed through the recorded videanduri
experiments. We study the Distance Estimation Error in tagsy
mean errorandcumulative distribution function (CDF)

Direction Classification Accuracy. To evaluate the performance
of our direction derivation scheme, we divide t880° on the X-

Y plane into16 groups (i.e.,5 groups in each quadrant exclud-
ing 4 overlapped groups) and examine whether the derived direc-
tion is classified into the same group as that of the corredipgn
ground truth. The ground truth of angles is also computealitin

the recorded videos. THeirection Classification Accuracis %z,

whereN. is the number of directions have been classified into the
same group containing the corresponding ground-truthctime,
and V. is the total experimental runs of direction classification.
Top-k Success RateGiven an experimental run of a key-entry

activity, our algorithm could return multiple top candidatof key-
entry sequence in an ascending order of the accumulatediEauc|
distance. We define that the inference algorithmTep-k Success
Hit if the firstk candidates of key-entry sequence returned from our
algorithm contain the target user’s key-entry sequencefuieer

define theTop-k Success Rass the ratio f:,—k) of the number of

Top-k Success Hitsﬁs’“) over the total number of experimental
runs (Vs) when applying key-entry sequence inference to recover
the target user’s PIN sequence. Specially, whes 1, the ratio
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Figure 13: Performance of PIN-sequence recovery on three fii
ferent keypads by using medium sampling ratel00Hz (IMU).

indicates the rate of our algorithm that can successfultgrdgne
the target user’s key-entry sequence without ambiguity.

Tries Until Success.Since our system can provide multiple can-
didates as the result for key-entry sequence inferencedbersary
has the chance to try out each key sequence returned in the can
date list to recover the target user’s PIN sequence. We dtfene
Number of Tries Until Success the number of candidate key-entry
sequence the adversary has tried (starting from the caedidth
the smallest accumulated Euclidean distance) until hessbaks
the key-based security system, suggesting a success rgazve
the target user’s PIN sequence. Thus, the Number of Traitd Un
Success indicates the possible efforts that an attack ne¢alse to
break the key-based security system.

8.3 Performance of Backward PIN-Sequence
Inference

Wearable Devices. We first examine the performance of our
PIN-sequence inference algorithm on the detachable ATNb&ey
with three different wearable devices. Figure 12(a) shdwegdp-k
success rate of our system from three different types of atdar
devices. We find that our system can effectively recover RIN s
quences from all the three wearables, and higher successsrat
achieved under higher sampling rates. In particular, byosimg
the top-1 choice, our system can achieve &2 success rate
for the LG W150 and IMU, while the success rate6ig% for
the Moto 360 . Furthermore, the PIN sequences can be inferred
with increasing success rates if the adversary utilizesrboices
from the top-k candidate list. Specifically, when using tbp-2
choices, the adversary can achieve al9ddt success rate with the
LG W150 and IMU, and the success rate for the Moto 360 is over
80%. Although the Moto 360 achieves lower success rates than
the LG W150 and IMU due to its much lower sampling rate (i.e.,
25Hz), an adversary can still achieve a high probability tcesdv
the PIN sequences based on top-2 or 3 choices. This inditetes
our system can tolerate the insufficient information introet by
wearable devices with low sampling rates.

Figure 12(b) depicts the cumulative distribution of the tnem
of tries until successfully recovering the user’s PIN semeefrom
three wearables. We find that the adversary can break anjgr
PIN entries from the LG W150 and IMU withif tries, which is
usually the maximum PIN tries on ATM machine. The number of
PIN entries revealed increaseso@, if the attacker conducts)
tries. For Moto360, the attacker can bre@k% PIN entries within
5 tries and96% within 10 tries. Therefore, regardless of the types
of wearable, the attacker can break the user’'s PIN sequeithe w
few tries. Although the LG W150 is set to ug60Hz sampling
rate and generates the best performance, we find that L8y
sampling rate is enough to achieve comparable good re3iese-
fore, we present the results using the IMU for the rest sestio

ATM Keypads and Keyboard. Figure 13(a) shows the top-k
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success rate to recover PIN sequences on three keypads. -We obby showing the performance under three different kinds of ke
serve that our system can achieve aro86% success rate for all pads. According to the keypad layout, we select five reptatiea
three keypads with the topehoice. When using the top-5 choices, directions in one quadrant. Take ATM machine as an examipe, t
our system can achieve ov& % success rate with both of the de-  five directions within the fourth quadrant are: keyo 8, keys2
tachable ATM pad and the number pad on keyboard, while on real to 9, keys1 to 9, keys4 to 9 and keys4 to 6. The corresponding
ATM machine, the success rate is 0¥.5%. Figure 13(b) con- direction angle for these subpaths on the keypad i@ , 302° ,
firms our observation in Figure 13(a). The results demotestheat 321°, 338° and360°. To evaluate our direction derivation scheme,
our Backward PIN-sequence Inference is effective wheniegpl  we study the direction classification accuracy of classiythe di-
with keypads of different layouts and coordinates. The esgcate rections of testing subpaths into the aforementiofegtoups of

is higher with both of the detachable ATM pad and the numbedr pa directions angles. Figure 14(b) shows the direction diassion

on keyboard than that with the ATM machine. Our results sstgge  accuracy with five directions on ATM machine. The X axis rep-

that the electronic magnetic field and the tilt angle of thévwha- resents the ground truth direction between two keys on thid AT

chine affect the PIN entry recovery result on ATM machine. machine. We find that there are few subpaths mistakenlyifiass

8.4 Distance Estimation of Different Kinds of as incorrect direction. In particular, our scheme can ae$6%
Keypads classification accuracy f@70° and we observe that directions with

larger angles have better accuracy, which is Tt accuracy for
360°. This may due to that when user performs vertical key clicks
(e.g., key2 to 8 with 270° on ATM pad), there might be a small
inclined angle between hand moving direction and wrist mgvi
direction. For keyboard and ATM pad, we have similar higlsela
sification accuracy. In addition, Figure 15(b) shows the alam
tive distribution function of estimated five directions hetfourth
quadrant. We find that all five directions obtained from ouresne
only have small overlap for any two adjacent directions. ééwer,
90% of the derived direction are close to the ground truth dicect
within £10°. The above results show that our system provides ef-
fective distance estimation and direction derivation soé® under
various keypads and is robust in real environments.

We next study the performance of two supporting schemes. The
study of the distance estimation scheme is described instiis
section, and the results of the direction determinatioresthis
presented in the next subsection. We apply our distanaaatsbin
scheme to various subpaths across three different kindsypids.

We compare the distance difference between ground treth ¢b-
tained from camera) and the estimated distance from seiasar d
Take ATM machine as an example, the distancesHiort medium
andlongare2.5¢m, 5¢m and6.4cm, respectively.

We observe that the mean error is proportional to the distanc
scale, i.e., short distance has relative smaller error epatpwith
long distance, as shown in Figure 14(a). In particular, tleam
error of ATM machine for short, medium and long distance are
5mm, Tmm and8.5mm, respectively. For detachable ATM pad, 9. DISCUSSION
the error of long, medium and short distance &wem, 6mm and Wearing the Wearable Device on the Left Hand or Right
3.5mm, respectively. The mean error of long distance in keyboard Hand. Our training-free approach does not require mirroring the
number pad experiment &nm, 5mm for medium distance and  derivation from sensor data when applied to either theHeftded
for short distance the error is as low &&m. The experiment re- or right-handed user since the inherent physics of key exttiy-
sults from keyboard shows relative smaller distance efnmesthe ities will be preserved regardless of either case. We asshee
physical layout of keyboard number pad is smaller than ATM ma victim use either hand wearing a wearable (i.e. a smartwatch
chine keypad and detachable ATM pad. We observe that sush err fitness tracker) to access key-based security systems.eWli
difference is marginal and reveal the effectiveness of cheme. very difficult to know the exact number of how many people shar

Figure 15(a) shows the cumulative distributive functionde- ing this style, we instead discuss the population of the itk
tance estimation errors. We observe that8bth percentile errors wearable user victims. We take the right-handed user faudis
are8mm, 10mm and12mm for short, medium and long distance  sjon as the left-handed user share the same conclusion.allear

of ATM machine, respectively. For detachable ATM pad 80¢h devices are usually designed in a way that allows users téorbm
percentile error arémm, 10mm and13mm, receptively and the  ably wear them on either wrist (e.g., smartwatches no longer
80th percentile error of number pad experiment &rem, 8mm essarily have crowns as traditional watches do). There amym
and13.2mm respectively. The results also show the effectiveness smartwatch users [2, 5] claiming that they wear smartwatcire
and robustness of our scheme under various keypads. their right wrists. Furthermore, for those wearing tramfitil watch

. . . . . . on the left wrist, they tend to wear fithess tracker on thetnigist
8.5 Direction Derivation of Different Kinds of for health-related applications. Naturally, the rightitlad people

Keypads use their right hand to perform key entry and the sensorsdin th
Next, we evaluate our slope-based direction derivatioreseh smartwatches or fitness trackers can be utilized by our apprto



reveal PINs. Given the growing cheaper price of these wéarab
devices, many people wear both a smartwatch and a fitnegstrac
on separate hand to better serve their work and health afiphs,
which further increases the number of potential victims.stlya
the increasing popular usage of wearables leaves adveyszay
chances to recover the user’s sensitive information, nggikinul-
nerable irrespective of the hand on which it is worn.

Using Sensor Moving Direction as Hand Moving Direction.
We discuss the rationality of using sensor moving direcéi®hand 6]
moving direction. The current system is designed for redogea
PIN sequence by reconstructing hand movement trajectovies
leverage embedded sensor readings from wearable devicas on
user's wrist to determine the direction. We use the sensaemo
ment to represent the hand movement since the hand and tte wri
are moving together. During our extensive experimentalystwe
observe that sensor movement and hand movement sharersimila
moving trend. Therefore such a representation is reasenabl

10. CONCLUSION

In this paper, we show that the embedded sensors on wrist-wor
wearable devices (i.e., smartwatches and fitness tradardje ex-
ploited to discriminate mm-level distances of the users-jnained
hand movements during key-entry activities, exposing ter to ; ] )
a serious security breach. We present a PIN-sequencenotere [11] F. Maggi and et al. A fast eavesdropping attack against
framework to recover the user’s secret key entries when see u touchscreens. IFEEE IAS pages 320-325, 2011.
accesses key-based security systems such as ATM keypads anfl2] P. Marquardt, A. Verma, H. Carter, and P. Traynor.

security:. http://nakedsecurity.sophos.com/2011/42/1
malicious-cloned-games-attack-google-android-mérket
[4] Wearable device shipments predicted to surge 173% this
year. http://www.cnet.com/news/shipments-of-wearable
device-to-surge-173-this-year/.
[5] Why wear a watch on the wrist where you're hand dominant.
http://www.reddit.com/r/Watches/comments/1wzub5/
question_why_wear_a_watch_on_the_wrist_where/.
D. Balzarotti, M. Cova, and G. Vigna. Clearshot:
Eavesdropping on keyboard input from videolBEE S&P,
pages 170-183, 2008.

[7] Y. Berger, A. Wool, and A. Yeredor. Dictionary attacksng
keyboard acoustic emanations. AGM CCS pages 245-254,
2006.

[8] J.Liu, Y. Wang, k. Kar, Y. Chen, J. Yang, and M. Gruteser.
Snooping keystrokes with mm-level audio ranging on a
single phone. IIRCM Mobicom 2015.

[9] L. Liu and et al. Toward detection of unsafe driving with
wearables. INCM WearSyspages 27-32, 2015.

[10] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang. When good
becomes evil: Keystroke inference with smartwatchAGM
CCS pages 1273-1285, 2015.

regular keyboards. The implemented system does not reamjre
training or contextual information, which makes it applitain
real world adversarial contexts. In particular, our sysexploits
the physics phenomenon and unique patterns of key entmjtasti
from the sensor data and develops distance estimation apd-s|

based moving direction derivation schemes to capture thal sm
hand movement between two consecutive keys. Our systehefurt

applies the Backward PIN-sequence Inference Algorithneveal
the user’s complete PIN sequence, leveraging both theas gl
temporal constraints of the key entry to achieve a high sscre.
Extensive experiments involving0 volunteers on three different

types of keypads overl months show that our system can achieve
80% accuracy in revealing the user’'s PIN sequences with one try,

[13]

[14]

[15]

and over #0% success rate within three tries, while recovering the [1g)

hand movement trajectory has a mean error as loénas:. Our
findings are an early and significant step to understand tbsilgle
security vulnerabilities of a wearable device's embeddstsers.
Future countermeasures may aim at camouflaging the senssti+
sor data transmitted from wearables to host devices. Fongbea
a wearable can inject a certain type of noise to the data $dhba

data cannot be used to derive fine-grained hand movemenis whi

still effective for fithess tracking purpose (i.e., actviecognition

or step counts). Moreover, in the two attack models we discus

more secure encryption schemes are necessary to proteit Ehe
communication, while accessing to sensor data should htategl
by the wearable or its host’s operating system to avoid lgaka
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