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Abstract— Atomic scale engines have received increasing
research interests due to recent advances in nano-particle
manipulation techniques. We study the model of an artificial
atomic scale engine proposed by [1], and show numerically
that the model exhibits directed motion under asymmetric
particle coupling. We then conduct stability analysis of a 3-
particle engine and prove that stable and unstable equilibrium
points arise in an alternating sequence thus step motion can be
deduced. Our analytic understanding of the complex nonlinear
dynamics may guide future design of such an envisioned engine
at the atomic scale.

I. INTRODUCTION

Since the significant advances in experimental techniques

in nanoscale characteristics and manipulation, there has been

a growing interest in atomic scale engines during the past

two decades. Among molecule transportation devices, the

ratchet systems introduced in Feynman’s Lectures of Physics

[2] consists of a ratchet with asymmetric “teeth” and a

pawl which allows the shaft to turn only one way. The

mechanism could transform the incidental oscillations of the

vane into a uniform circular motion of the ratchet and pawl.

Theoretical aspects of the ratchet system were discussed

in many references including [3], [4]. The molecule motor

and biological motors discussed in [5], [6], [7], [8], [9],

[10] are inspired by the behaviors in the biological realm

where chemical energy is converted into mechanical energy.

More recently, a primitive nanovehicle that rolls on a surface

is developed in [11], [12], which converts energy-inputs

from heat or electrical fields into controlled motion and

transports nanocargo on the surface. Suo and his group

[13], [14] demonstrated that molecules placed on a dielectric

substrate surface can be programmed for patterning and can

move in a desired trajectory, which uses the principle that

a nonuniform electric field can direct the motion of the

molecule. Suo also envisions a molecule highway in a MIT

seminar that uses chemical gradient to drive the car in each

track and uses electrodes to switch the car from one track to

another [15]. Although some of the ideas in this area are not

implementable immediately, theoretical research along this

direction will provide guidances for future engine design at

this scale.

A model based on one-dimensional particles sliding on a

surface was proposed in [16], [1], [17], and its basic princi-

ples of functioning was explained therein as that the dynamic

competition between the intrinsic lengths of the moving

object and the supporting carrier is transformed to directed
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Fig. 1. A general model of coupled particles on a surface.

motion. The model is based on computer simulations without

rigorous theoretical justification and experimental support. It

was later reported that the concept works at different scale

levels experimentally [18]. It is possible to implement it

by manipulation of the motion of molecules, nanoparticles

on profiled solid surfaces with periodic perturbations of the

desired frequency and amplitude [18].

In this paper, we study the stability property of the engine

model that was proposed in [1]. This explains the step

motion of the engine analytically, and provides theoretically

the possible locations where the engine stops. The model

presents a nonlinear interconnected system, we study local

stability of the equilibrium points using matrix and linear

system theory. Existing results on the model are limited in

numerical simulations and there is no analytic understanding

of the complex dynamic behavior of the model. Our results

explains the nonlinear dynamics analytically using control

theoretical methods, which may guide the design of such

a nanoscale engine in the future. Our analytic results are

verified by Matlab simulations.

The rest of the paper is organized as follows. We first

present in Section II the general model of the atomic scale

engine, and numerical simulation results are shown for dif-

ferent engine capabilities including step motion, continuous

moving, and cargo load carrying. We then conduct analytic

stability analysis for a typical three-particle engine in Section

III, and control theoretical results are presented to explain the

step motion of the engine. Simulation results are also shown

to support the stability claim. We will finally conclude in

Section IV.

II. MODEL OF ATOMIC SCALE ENGINE AND DIRECTED

MOTION

We consider a model of a chain of N identical particles

moving on an isotropic surface [1]. Each particle i has a

mass m and is located at coordinate φi. We restrict of

the translational motion in one-dimension. Fig. 1 shows the

model for N = 3. The basic equation of motion is derived

from the Newton’s laws of motion

mφ̈i + ηφ̇i +
∂U(φi)

∂φi

+
∑

j=i±1

∂W (φi − φj)

∂φj

= 0,(1)
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where i = 1, . . . , N , U(xi) and W (xi − xj) are the

periodic potential applied by the substrate and the inter-

particle interaction potential, respectively, γ is the positive

linear friction coefficient.

We assume that the substrate and inter-particle potentials

take the following form:

U(φi) = −Φ0 cos(
2πφi

b
) (2)

W (φi − φi+δi
) =

k

2
[|φi − φi+δi

| − Ai+δi
(t)]2 (3)

where δi = ±1 denoting the nearest neighboring particles,

Ai+δi
(t) = a[1 + α(qBi+δi

+ ωt)] (4)

Bi+δi
=

{

(i − 1)b if δi = −1,
ib if δi = 1,

α(s) =

{

c sin(πs/s0) for 0 ≤ s ≤ s0

0 else
(5)

and k, a, c, s0 are positive intrinsic parameters, q and ω
are the wavelength and frequency of external excitation,

respectively, and b is a positive constant denoting the step

length.

It was first demonstrated in [1] that the system (1) exhibits

directed motion under asymmetric particle coupling, that

is, Ai+1 �= Ai−1. In the following, we show numerical

simulations of different types of directed motion of the

system (1).

A. Step Motion of a 3-Particle Chain

Taking N = 3, denoting the state as xi1 = φi, xi2 = φ̇i,

we have the state-space representation as

ẋ11 = x12

ẋ12 = −(1/m){ηx12 +
2π

b
Φ0 sin(2πx11/b)

−k[|x21 − x11| − a(1 + α(qb + ωt))]}

ẋ21 = x22

ẋ22 = −(1/m){ηx22 +
2π

b
Φ0 sin(2πx21/b)

+k[|x21 − x11| − a(1 + α(qb + ωt))]

−k[|x31 − x21| − a(1 + α(2qb + ωt))]}

ẋ31 = x32

ẋ32 = −(1/m){ηx32 +
2π

b
Φ0 sin(2πx31/b)

+k[|x31 − x21| − a(1 + α(2qb + ωt))]} (6)

If we choose the parameters as [1]

b = 1, m = 1, Φ0 = 1, , η =
16π

10b

√

Φ0m,

ω =
π

25b

√

Φ0

m
, k =

(

2π

b

)2

Φ0,

c =
7

10
, s0 =

4

10
, a =

11

10
b, q =

1

5
b, (7)

we have a step motion of the particle chain as shown in Fig.

2.
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Fig. 2. Step motion of a three-particle engine.
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Fig. 3. Continuous motion of a three-particle motion.

B. Continuous Motion

If we change the function α(s) as in (5) to be periodical

α(s) =

{

c sin(π(s − l)/s0) for 0 ≤ (s − l) ≤ s0

0 for s0 ≤ (s − l) ≤ 1

(8)

where l = 0, 1, 2, . . . , the particle chain has a continuous

motion with an almost-constant velocity, which is shown in

Fig. 3.

C. Directed Motion with Cargo Load

The atomic scale engine model shown above is capable

of carrying cargo load. We add 3 cargo particles after a 6-

particle engine system, with a constant rest-length interac-

tions between cargo particles and between the cargo and the

engine. The state space model is written as

ẋ11 = x12 (9)

ẋ12 = −(1/m){ηx12 +
2π

b
Φ0 sin(2πx11/b)

−k(|x21 − x11| − a)} (10)

ẋ21 = x22 (11)
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Fig. 4. Directed motion with cargo.

ẋ22 = −(1/m){ηx22 +
2π

b
Φ0 sin(2πx21/b)

+k(|x21 − x11| − a)

−k(|x31 − x21| − a)} (12)

ẋ31 = x32 (13)

ẋ32 = −(1/m){ηx32 +
2π

b
Φ0 sin(2πx31/b)

+k(|x31 − x21| − a) − k(|x41 − x31| − a)}

ẋ41 = x42 (14)

ẋ42 = −(1/m){ηx42 +
2π

b
Φ0 sin(2πx41/b)

+k(|x41 − x31| − a)

−k[|x51 − x41| − a(1 + α(4qb + ωt))]} (15)

ẋi1 = xi2 (16)

ẋi2 = −(1/m){ηxi2 +
2π

b
Φ0 sin(2πxi1/b)

+k[|xi1 − xi−1,1| − a(1 + α((i − 1)qb + ωt))]

−k[|xi+1,1 − xi1| − a(1 + α(iqb + ωt))]} (17)

i = 5, . . . , 8,

ẋ91 = x92 (18)

ẋ92 = −(1/m){ηx92 +
2π

b
Φ0 sin(2πx91/b)

+k[|x91 − x81| − a(1 + α(8qb + ωt))]} (19)

where particles i = 1, 2, 3 are cargo particles, and i =
4, . . . , 10 are engine particles.

Fig. 4 shows the directed motion of the coupled particle

chain with cargo.

Although numerical simulations clearly demonstrate that

the atomic scale engine model (1) is capable of transportation

functionalities, analytic understanding of the nonlinear model

and its complex dynamics is missing. This paper presents

results in explaining the dynamic behavior of the model

analytically using control theoretical methods. We focus on

the step motion shown in Section II-A in this paper.

III. STABILITY ANALYSIS OF A 3-PARTICLE CHAIN

In this section, we analyze the stability of the equilibrium

points of the 3-particle chain as shown in (6), and verify that

the equilibrium points shown in Fig. 2 are locally stable. For

this purpose, we neglect the sinusoidal term in the function

α(s) of (5) as it provides a temporary perturbation. Due

to physical constraints of the 3-particle system, we have

xi+1,1 > xi1 > xi−1,1. Equation (6) turns to

ẋ11 = x12

ẋ12 = −
η

m
x12 −

2πΦ0

mb
sin

2πx11

b

−
k

m
(x21 − x11 − a)

ẋ21 = x22

ẋ22 = −
η

m
x22 −

2πΦ0

mb
sin

2πx21

b

−
k

m
(x31 − 2x21 + x11)

ẋ31 = x32

ẋ32 = −
η

m
x32 −

2πΦ0

mb
sin

2πx31

b

+
k

m
(x31 + x21 − a) (20)

The equilibrium points of the couple particles are at

(x∗
i1, 0) where x∗

i1, i = 1, 2, 3, are solutions to the following

algebraic equations:

2πΦ0

mb
sin

2πx∗
11

b
+

k

m
(x∗

21 − x∗
11 − a) = 0,

2πΦ0

mb
sin

2πx∗
21

b
+

k

m
(x∗

31 − 2x∗
21 + x∗

11) = 0,

2πΦ0

mb
sin

2πx∗
31

b
−

k

m
(x∗

31 − x∗
21 − a) = 0.

(21)

Define new states as zi1 = xi1 − x∗
i1, zi2 = xi2, and

linearize it around its equilibrium. We obtain

żi1 = zi2

żi2 = −ρ cos

(

2π

b
x∗

i1

)

zi1 − γzi2

+κ(zi+1,1 − 2zi1 + zi−1,1)

−ε sinx∗
i1 + κ(x∗

i+1,1 − 2x∗
i1 + x∗

i−1,1)

= −ρ cos

(

2π

b
x∗

i1

)

zi1 − γzi2

+κ(zi+1,1 − 2zi1 + zi−1,1) (22)

where we denote ε = 2πΦ0

mb
, ρ = ε ∗ 2π/b, γ = η

m
, κ = k

m
.

Note that the last equal sign holds due to the equilibrium

equation (21). Note also that ρ = κ for the parameters chosen

in (7).

Stacking the state space equations for i = 1, 2, . . . , N , we

obtain

ż = Az + B Qz (23)

where z = [z11, z12, z21 z22, z31, z32]
T ,

A = I3 ⊗ A, B = I3 ⊗ B, Q = Q ⊗
[

1 0
]

,

(24)
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and

A =

[

0 1
0 −γ

]

, B =

[

0
1

]

, (25)

Q is represented in (26), and I3 is the identity matrix of

order 2. Here ⊗ denotes the Kronecker product.

To analyze the stability of the system (24), we need to

decouple the interactions between particle subsystems. To

achieve it, we define a similarity transformation z = Tζ
([19]). In the new coordinate, the system dynamics is

ζ̇ = Hζ. (27)

We show how to choose T and present H accordingly.

Since Q is a real symmetric matrix, according to Lemma

1 in the Appendix, there exists a unitary matrix T such that

T−1QT = D where D is a diagonal matrix of eigenvalues

of Q. Let

T = T ⊗ I2 (28)

where I2 is the 2 × 2 identity matrix. Then:

H = T
−1

(A + B Q)T

= T
−1 [

I3 ⊗ A + (I3 ⊗ B)(Q ⊗
[

1 0
]

)
]

T

= T
−1

(

I3 ⊗ A + Q ⊗

[

0 0
1 0

])

T

=
(

T−1I3T
)

⊗ A +
(

T−1QT
)

⊗

[

0 0
1 0

]

= I3 ⊗ A + D ⊗

[

0 0
1 0

]

(29)

We can see that H is block diagonal, and the block diagonal

element of H writes:

Hii =

[

0 1
βi −γ

]

, (30)

where βi, i = 1, 2, . . . , N are eigenvalues of Q. The stability

of the system depends on the sign of the real parts of β i, i =
1, 2, 3:

1) If βi, i = 1, 2, 3 have negative real parts, the eigen-

values of Hii, i = 1, 2, 3 have also negative real

parts, and so does the matrix H . This indicates that

the system is asymptotically stable at these points.

Due to the similarity transformation, the same stability

result holds for the original system ż = (A + B Q)z.

Furthermore, local stability of the original nonlinear

system (20) can be deduced from the stability analysis

of its linearized system (23) ([20], Theorem 3.1).

2) If βi has a positive real part for any i ∈ [1, 3],
eigenvalues of Hii, i = 1, 2, 3, also have positive real

parts. With the same arguments as above, the system

(20) is unstable at these points.

Checking the structure of matrix Q in (26), we have the

following cases:

• If cos
(

2π
b

x∗
i1

)

≥ 0 for all i with strict inequality for at

least one i, the matrix −Q is an M-matrix and βi < 0
for all i, according to Lemma 2. Therefore, Q is Hurwitz

and the system is asymptotically stable;

• If cos
(

2π
b

x∗
i1

)

= 0 for all i, Q has one (and only

one) eigenvalue 0 according to Lemma 3. The linear

system (23) is marginally stable and the stability of the

nonlinear system (20) could be either stable or unstable;

• If cos
(

2π
b

x∗
i1

)

≤ 0 for all i with strict inequal-

ity for at least one i, we can represent Q as in

(31). Since Φ in (31) is an irreducible and non-

negative matrix, it has a positive eigenvalue, r,

equal to the spectral radius of Φ, which is between

2k + min{− cos
(

2π
b

x∗
11

)

, . . . ,− cosx∗
N1} and 2k +

max{− cos
(

2π
b

x∗
11

)

, . . . ,− cosx∗
N1} ([21], page 537).

Therefore, Q has at least one positive eigenvalue. The

system is unstable;

• If cos
(

2π
b

x∗
i1

)

, i = 1, 2, 3, have mixed signs, the

system could be either stable or unstable and numerical

calculations is necessary to determine the sign of the

real parts of the eigenvalues of Q.

We have the following theorem whose proof follows

directly from the above analysis due to similarity transfor-

mation defined in (28). (One can also refer to the proof of

Theorem 1 in [19] for a similar idea.)

Theorem 1: The equilibrium point (x∗
11, 0, x∗

21, 0, x∗
31, 0)

of the system (20) is locally asymptotically stable if

cos
(

2π
b

x∗
i1

)

≥ 0 for all i = 1, 2, 3 with strict inequality

for at least one i, and it is unstable if cos
(

2π
b

x∗
i1

)

≤ 0 for

all i = 1, 2, 3 with strict inequality for at least one i.
From the above theorem, we have the following corollary.

Corollary 1: For the set of parameters chosen in (7), the

equilibrium point (x∗
11, 0, x∗

21, 0, x∗
31, 0) of the system (20)

with x∗
i1, i = 1, 2, 3, represented in the following:

x∗
11 = (l − 1)b − d,

x∗
21 = lb,

x∗
31 = (l + 1)b + d, (32)

where l = 0,±1,±2, . . . , and 0 < d < b, are locally

asymptotically stable; and the equilibrium point represented

by

x∗
11 = (l − 1)b +

b

2
− d,

x∗
21 = lb +

b

2
,

x∗
31 = (l + 1)b +

b

2
+ d, (33)

where l = 0,±1,±2, . . . , and 0 < d < b
2

, are unstable.

Proof: For the set of equilibrium points (32) and (33), we

can see that both of them satisfy the equilibrium equation

(21). For the set of parameters chosen in (7), we have further

calculated that d = 0.0504 for both the equilibrium points

represented in (32) and (33). We can then apply Theorem 1

to obtain the stability. We have the following two cases:

• For the equilibrium point represented in (32), we have

cos

(

2π

b
x∗

11

)

= cos

(

2π((l − 1)b − d)

b

)

= cos(2π ∗ 0.0504) > 0
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Q =





−κ − ρ cos
(

2π
b

x∗
11

)

κ 0
κ −2κ − ρ cos

(

2π
b

x∗
21

)

κ
0 κ −κ − ρ cos

(

2π
b

x∗
31

)



 . (26)

Q =





κ − ρ cos
(

2π
b

x∗
11

)

κ 0
κ −ρ cos

(

2π
b

x∗
21

)

κ
0 κ κ − ρ cos

(

2π
b

x∗
31

)



 + (−2κ)I3

def
= Φ + (−2κ)I3. (31)

cos

(

2π

b
x∗

21

)

= cos

(

2π(lb)

b

)

= cos(2lπ) > 0

cos

(

2π

b
x∗

31

)

= cos

(

2π((l + 1)b + d)

b

)

= cos(2π ∗ 0.0504) > 0

Therefore, this equilibrium is asymptotically stable ac-

cording to Theorem 1;

• For the equilibrium point represented in (32), we have

cos

(

2π

b
x∗

11

)

= cos

(

2π((l − 1)b + b/2 − d)

b

)

= cos(π − 2π ∗ 0.0504) < 0

cos

(

2π

b
x∗

21

)

= cos

(

2π(lb + b/2)

b

)

= cos(2lπ + π) < 0

cos

(

2π

b
x∗

31

)

= cos

(

2π((l + 1)b + b/2 + d)

b

)

= cos(π + 2π ∗ 0.0504) < 0

Therefore, this equilibrium is unstable according to

Theorem 1.

Remark 1: From Corollary 1, the stability of the system

(20) is similar to that of the well-known pendulum system,

where stable and unstable equilibrium points arise in an

alternating sequence in the upward 2lπ and the downward

(2l + 1)π positions. Note that our system (20) has a period

of b, and the equilibrium points around lb are stable, while

(lb + b
2
) are not. Therefore, if the perturbation term α(·)

defined in (4) is big enough to move the system to the

neighborhood of the next stable equilibrium, the system will

stay there and generate a step motion. This explains what we

observe in Fig. 2, and we verify that the system moves from

the position [x11, x21, x31] = [1, 2, 3] to [x11, x21, x31] =
[1.9496, 3, 4.0504], since the latter is a stable equilibrium

satisfying (32) with l = 3.

Remark 2: The system may have other equilibrium points

besides those represented in (32) and (33). Stability of other

equilibrium points can be determined using Theorem 1.

To further verify the stability results claimed in Corollary

1, we performed more simulations in Matlab. Fig. 5 shows

that stability of (32) with l = 10 and l = −1. For the

unstable equilibrium (33), we show in Fig. 6 that the system

may move to the stable equilibrium either before or after the

current equilibrium, similar to the unstable (saddle) point at

the ((2l+1)π) position in the pendulum system. Note that the

initial conditions are chosen randomly around the interested

equilibrium in the simulations.
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Fig. 5. Local stability of equilibrium (32) with (a) l = 10, and (b) l = −1.

IV. CONCLUSIONS

In this paper, we first re-considered an atomic scale engine

model that is composed of a one-dimensional coupled parti-

cles [1]. We then showed numerically that the model exhibits

directed motions under asymmetric particle coupling, which

include a step motion, continuous moving, and carrying

cargo loads. In order to explain analytically why directed

motion happens, we studied the stability of the model with

3 coupled particles. Using control theoretical methods, we

proved that stable and unstable equilibrium points arise in

an alternating sequence thus step motion can be deduced

by perturbations. Matlab simulations verified our analytic

results. Future work includes further investigation of the

continuous motion and cargo carrying behaviors as well as

how to choose control parameters for different motion types.
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Fig. 6. Local unstability of equilibrium (33) with l = 2.
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APPENDIX

Lemma 1 ([22], page 171): Spectral Theorem for Sym-

metric Matrices: If A is an n × n real symmetric matrix,

then there always exist matrices L and D such that LT L =
LLT = I and LALT = D, where D is the diagonal matrix

of eigenvalues of A.

Lemma 2 ([21]): Let A = [aij ]
n
i,j=1 ∈ ℜn×n and assume

that aii > 0 for each i and aij ≤ 0 whenever i �= j. If A is

diagonally dominant, that is,

aii >

n
∑

j=1,j �=i

|aij |, i = 1, 2, . . . , n,

or, if A is irreducible and

aii ≥

n
∑

j=1,j �=i

|aij |, i = 1, 2, . . . , n,

with strict inequality for at least one i, then A is an M-matrix.

A symmetric M-matrix is positive definite.

Lemma 3 ([23], Appendix A): Define the set W consist-

ing of all zero row sum matrices which have only nonpositive

off-diagonal elements. A matrix A ∈ W satisfies:

1) All eigenvalues of A are nonnegative;

2) 0 is an eigenvalue of A;

3) 0 is an eigenvalue of multiplicity 1 if A is irreducible.
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