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Abstract— We study robotic tracking of dynamic plume
front modeled by the advection-diffusion equation in this
paper. Different from existing work purely relying on gra-
dient measurement, the transport model of pollution source
is explicitly considered in tracking control design. We first
study the problem using a single robot and solve the problem
in an estimation and control framework. We then extend it
to the multi-robot case in a nearest-neighbor communication
structure, and have the robots take formation along the plume
front. The distributed control is scalable to a large number
of robots. Simulation results show satisfactory performances of
the proposed method.

I. INTRODUCTION

The recent deep water horizon oil spill has posed great
challenges to both robotics and ocean engineering communi-
ties. It took months to estimate the extent of the underwater
plume, and the accuracy of these estimates will likely be
debated for years to come. The challenges motivate us to
consider utilizing advanced robotic techniques to monitor
and track the propagation of oil plumes. In this paper, we
propose a model-based method to track the dynamic plume
front using multi-robot platforms.

Existing approaches related to plume tracking can be cate-
gorized into three classes: mapping based approach, behavior
based approach, and control based approach. In the mapping
based approach, a concentration map of the environment
is first built, and then plume tracking is conducted based
on the obtained map. Representative work includes [1],
where a grid map was created to represent the concentration
distribution based on data collected by a single robot. In [2]
a hidden Markov method (HMM) was employed to map the
environment. Similar strategies were applied in [3] to localize
a chemical plume source. In [4] the likelihood grid mapping
method was extended to map an environment with multiple
chemical sources. As it is necessary to scan the environment
for mapping, it introduces extra overhead of robot scanning
trajectory design, which often makes the map based method
time costly. On the contrary, the behavior based approach
combines certain elementary behaviors to track an emergent
plume. Li et al. in [5] developed bio-inspired chemical
plume tracing on an autonomous underwater vehicle us-
ing elementary behaviors such as finding plume, tracking-
in and tracking-out plume in a subsumption architecture.
Social potential fields were used in [6] to coordinate group
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behaviors, where experiments demonstrated a robotic swarm
was driven to find a spill and reach a perimeter formation.
In [7], the Braitenberg model was employed to map the
sensor reading of concentration to robot motor reaction in
environments with odor plumes, and the effectiveness was
validated by experimental results. Generally speaking, the
behavior based approach is often intuitive, and it usually
takes extensive simulations or experiments to validate the
method ( [5]–[7]). Due to the lack of rigorousness such as
convergency analysis, performances are difficult to guarantee
thus a working example may be difficult to extend to other
scenarios with different parameters.

The control based approach explicitly designs robot con-
trol laws with provable convergence. In [8], the plume
tracking problem was modeled by a finite automaton and the
hybrid control theory was employed in theoretical analysis.
In [9], the robotic manifold tracking of coherent structures in
flows was investigated. In [10], the authors used stochastic
methods to model plume spikes and developed bio-inspired
control laws for multi-robot plume tracking in turbulent
flows. In [11], a level curve tracking problem was solved
in two-dimensional space using multi-sensor platforms. A
Kalman filter was developed to incorporate historical sensor
reading into control laws that guide the robot movement. This
approach was later extended to solve the same problem with
control uncertainties in [12] and in three-dimensional space
in [13]. However, due to the lack of a fixed concentration
reference for the level curve tracking, this type of method is
subject to concentration drifting in the presence of noises in
sensor readings.

In this paper, we study dynamic plume tracking control
using multiple robots. The approach falls in the category of
control based method, and the plume tracking problem is
solved in an estimation and control framework. We first dis-
cuss the single robot case, where the plume front dynamics is
derived using the advection-diffusion equation governing the
plume propagation. Then an observer is designed to estimate
the dynamic movement of the plume front, and a feedback
control law is constructed to track the plume front. We then
extend the single robot case to a multi-robot scenario, where
an additional behavior of formation along the plume front is
added with robots’ control laws explicitly given for a multi-
robot team in a nearest-neighbor communication topology.
The algorithms designed in both the single and multiple
robot cases are tested in simulation, which show satisfactory
performances.

The contribution of this paper are twofold. First, the
proposed method utilizes the propagation model (i.e., the
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advection-diffusion model) of point-source pollution in ma-
rine environments, and incorporate the model into the con-
troller design. Second, the designed control is analytically
constructed with provable convergence, and numerical com-
putation of partial differential equations is avoided for rapid
response and real time control.

Comparing to existing work [11], [13], we consider dy-
namic plume where the plume front propagates along time,
but the work in [11], [13] only considers static level curve
tracking. Also, we exploit the transport of pollution source in
water, and incorporate the advection-diffusion model into our
control design, while the work in [11], [13] mainly replies
on the gradient information (either implicitly or explicitly
obtained) for plume tracking. The dynamic nature of our
solution avoids the drifting problem that may occur during
the static level curve tracking due to uncertainties or sensor
noises. Also, we provide an analytic solution that does not
need numerically solving the complex plume dynamics as
done in [14] which is computational expensive.

II. PROBLEM STATEMENT

In this section, we present the plume model, assumptions
made on the robot and environments, and state the control
problems studied in the paper.

A. Plume Model

Chemicals introduced in the marine environment through
point-source pollution generally propagate through two trans-
port mechanisms: advection and diffusion. Advection is the
transport of the chemical due to the motion of the flow, and
diffusion is the motion from areas of higher concentration to
areas of lower concentration. The propagation of chemicals
is modeled by the following advection-diffusion equation:

∂c(x, t)

∂t
+ vT (x, t)∇c(x, t) = k∇2c(x, t) (1)

where c ≥ 0, c ∈ R is the chemical concentration, t denotes
time, v is the advection velocity, k > 0, k ∈ R is the diffu-
sion coefficient in a homogenous space, ∇c(x, t) = ∂c(x,t)

∂x is
the spatial gradient of c(x, t), ∇2c(x, t) = ∂2c(x,t)

∂x2
1

+ ∂2c(x,t)
∂x2

2

is the divergence of c(x, t) in two dimensional space, and
∂c(x,t)

∂t is the partial derivative of c(x, t) along the time axis.

B. Robot Model

In this paper, we consider plume front tracking using
surface vehicles with the following kinematic model [15]
in two-dimensional space,

ẋr =

[
cos θr − sin θr
sin θr cos θr

]
τ (2)

where xr = [xr1, xr2]
T represents the Cartesian coordinates

of the robot, τ = [τ1, τ2]
T are the surge and sway veloci-

ties respectively defined in the body-fixed frame, θr is the
heading angle of the vehicle. Note that the determinant of[

cos θr − sin θr
sin θr cos θr

]
is always 1 whatever the value of θ,

meaning that its inverse always exists. The inverse matrix can

Fig. 1. The assignment of boundary robots and follower robots in an eight
robot group, where the red disk and the blue square represent the boundary
robots and the follower robots respectively, the green dash-line represents
the directional communication links between neighboring robots.

be analytically solved as
[

cos θr sin θr
− sin θr cos θr

]
. Equation (2)

can be converted into a single integrator model by defining
a new control input metric u = [u1, u2]

T satisfying,

τ =

[
cos θr sin θr
− sin θr cos θr

]
u (3)

with which, the robot dynamics is reduced to a single
integrator model,

ẋr = u. (4)

C. Available Information

For the single robot plume tracking problem, we assume
that it has sensors to obtain local information, including
its position and heading, and the chemical concentration
information at its current position. For the multi-robot plume
tracking case, we assume in addition that each robot is
able to access information from its one-hop neighbors by
communication. We made the following assumptions.
Assumption 1: The robot’s onboard sensors obtain its
position xr, heading θr, and the following information at
its position: the chemical concentration cr, the gradient of
the concentration ∇cr, the divergence of the concentration
gradient ∇2cr, and the flow velocity vr.

Remark 1: Note that there may not exist sensors to di-
rectly measure the gradient and the divergence of the con-
centration. However, the values can be estimated either by
counting the historical data of a single sensor [16], or by
considering the readings from multiple spatially distributed
sensors on a single robot [17], [18].
Assumption 2: For multiple robot plume tracking, two
robots are assigned as boundary robots and all the other
robots are assigned as follower robots. As shown in Fig.
1 as an example, the two boundary robots do not access
information from other robots, and the follower robot, i.e.,
the ith robot (1 < i < n with n denoting the total number of
robots), only communicates with its one-hop neighbors on
the communication graph, i.e., the (i − 1)th robot and the
(i+ 1)th robot.

Remark 2: Assumption 2 significantly reduces the com-
munication complexity by restricting the robot communica-
tion along a line topology with a communication complexity
O(n), in contrast to an all-to-all communication with a
communication complexity O(n2) [19], [20].
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Fig. 2. The schematic of the proposed algorithm for single robot plume
front tracking. There are two steps in the algorithm: 1) the robot estimates
the plume front trajectory, 2) the robot tracks the estimated trajectory. The
robot achieves front tracking if both the estimated and tracking trajectories
converge.

D. Control Objective

At time t, we consider those points x(t) with the con-
centration c(x(t), t) = c0 (where c0 is the threshold con-
centration) to be the plume front. We denote the plume front
using the position set {x(t) ∈ R2, c(x(t), t) = c0}. The basic
control objective is to drive the robot to the plume front. To
monitor the whole perimeter of the plume front, we impose
the second objective for the single robot to patrol along the
plume front with a desired speed, while in the multi-robot
case, we want the robots distributed evenly along the plume
front. The control objectives are formally stated as follows.
Problem 1 (Single Robot Plume Front Tracking): For the
plume dynamics modeled by the advection-diffusion equa-
tion (1), design a control law under Assumption 1 to drive a
single robot, which is subject to the dynamic constraint (4),
to track the plume front {x(t) ∈ R2, c(x(t), t) = c0}, and
patrol along the plume front with a desired speed vd(t) ∈ R.
Problem 2 (Distributed Multi-robot Plume Front Track-
ing): For the plume modeled by the advection-diffusion
equation (1), design a control law under Assumptions 1
and 2 to drive a group of robots, which are subject to the
dynamic constraint (4), to track the plume front {x(t) ∈
R2, c(x(t), t) = c0}, and simultaneously reach an even
distribution around the plume front.

III. SINGLE ROBOT PLUME FRONT TRACKING

In this section, we solve Problem 1 for the single robot
plume tracking. The problem is modeled in an estimation
and control perspective. A state equation and a measurement
equation are constructed to design a nonlinear observer for
the position estimation of a reference point on the plume
front. Then, a control law is presented to steer the robot to
the estimated position.

A. Algorithm Overview

We partition the plume front tracking task into two parts:
the first part is the plume front estimation part, which
estimates the position of a reference point on the front;
the second part is the tracking control part, which drives
the robot to the estimated position. The estimation part and
the tracking control part run simultaneously to reach the

design objective. As illustrated in Fig. 2, the estimation part
maintains a variable x̂(t), which estimates the position of the
reference point x(t) on the plume front. The estimation part
is designed to enable the convergence of x̂(t) to x(t), i.e., the
convergence of the estimation error e(t) = x(t)−x̂(t) to zero
as time elapses. The tracking control part steers the robot
positioned at xr(t) to the estimated place x̂(t), to reduce the
control error e′(t) = x̂(t) − xr(t) along time. When both
the estimation error e(t) and the control error e′(t) converge
to zero, x(t) − xr(t) = e(t) + e′(t) will converge to zero
and the design objective of driving the robot to the reference
point is reached.

B. State Equation of the Plume Front Dynamics

In this subsection, we first derive the plume front dynamics
based on the partial differential equation (1), and then use
the plume front dynamics to construct the state equation of
the reference point, which describes the expected behavior
of the robot in Assumption 1.

1) Plume Front Dynamics: In this part, we derive the
plume front dynamics. Because the reference point describes
the expected behavior of the robot, it locates on the plume
front according to Assumption 1. Therefore, at time t, the
reference point x(t) satisfies,

c(x(t), t) = c0 (5)

Without introducing confusion, we drop the variable t in x(t)
hereafter. Computing time derivative on both sides of Eq. (5)
yields,

ċ(x, t) =
∂c

∂t
+∇T cẋ = 0 (6)

where ∂c
∂t = ∂c(x,t)

∂t is the time derivative of the concentra-
tion, ∇c = ∇c(x, t) = ∂c

∂x is the spatial derivative, i.e., the
gradient of the concentration. With Eq. (1) and Eq. (6), we
get

ẋT∇c = −vTx∇c− k∇2c (7)

where vx = v(x, t) and ∇2c = ∇2c(x, t).
2) Derivation of the State Equation based on Plume Front

Dynamics: Because the robot is also expected to patrol with
speed vd = vd(t) along the plume front, the reference point,
which describes the ultimate behavior of the robot, is then
subject to the following constraint,

(A∇c)T

∥∇c∥
ẋ = vd (8)

where A =

[
0 −1
1 0

]
is the orthogonal matrix and A∇c

represents a vector along the tangent direction of the plume
front. Regarding Eq. (7) and Eq. (8) as linear equations
relative to ẋ, ẋ can be uniquely solved as follows,

ẋ = − (vTx ∇c+ k∇2c)∇c

∥∇c∥2
+

vdA∇c

∥∇c∥
(9)

69



C. Measurement Equation

For the robot positioned at xr, the concentration field can
be approximated by the first-order Taylor expansion as,

c(x, t) = ∇T cr(x− xr) + cr (10)

where xr denotes the position of the robot at time t, cr =
c(xr, t) is the concentration at position xr, and ∇cr =
∂c(x,t)

∂x |x=xr is the gradient at xr. Define y(x) = c(x, t)
as the output of the measurement at time t. Then, the above
approximation yields,

y(x) = ∇T cr(x− xr) + cr (11)

Note that the true value of y(x) is y(x) = c0 since the
reference point x locates on the front. In addition, the
measurement equals y(x̂) = c(x̂) = ∇T cr(x̂ − xr) at the
point x̂.

D. Observer Design

Until now, we have obtained the state equation (9) and the
measurement equation (11), which re-write as follows,

ẋ = − (vTx ∇c+ k∇2c)∇c

∥∇c∥2
+

vdA∇c

∥∇c∥
(12)

y(x) = ∇T cr(x− xr) + cr (13)

For the system described by (12) and (13), we use the
following extended Luenberger observer [21] for the state
estimation,

˙̂x = − (vTx̂∇cx̂ + k∇2cx̂)∇cx̂
∥∇cx̂∥2

+
vdA∇cx̂
∥∇cx̂∥

−k3∇cr
(
∇T cr(x̂− xr) + cr − c0

)
(14)

where k3 > 0 is a coefficient, vx̂ = vx̂(x̂, t), ∇cx̂ = ∇c(x̂),
∇2cx̂ = ∇2c(x̂).

Remarkably vx̂, ∇cx̂ and ∇2cx̂ are all quantities at
position x̂. For the robot at position xr, they are neither
measurable nor computable since the above quantities, as
functions of position x̂ and time t, is unknown. For remedy,
we simply replace them with the associated quantities at xr,
which are accessible by the robot according to Assumption
1. In this way, we have the following observer expression,

˙̂x = − (vTr ∇cr + k∇2cr)∇cr
∥∇cr∥2

+
vdA∇cr
∥∇cr∥

−k3∇cr
(
∇T cr(x̂− xr) + cr − c0

)
(15)

where vr = v(xr, t), ∇cr = ∇c(xr, t) and ∇2cr =
∇2c(xr, t).

Remark 3: The absolute value of
(
∇T cr(x̂− xr) + cr −

c0
)
∇cr in Eq. (15) goes small very fast when ∇T cr is

small. To gain a fast enough response towards the desired
reference point, it is necessary to tune k3 large in this case.
In contrast, when ∇T cr is large, the absolute value of this
term becomes large very fast and thus needs a small k3
as the gain. To adaptively adjust the gain k3, we can set
k3 = k2/∥

(
∇T cr(x̂−xr)+cr−c0

)
∇cr∥ in implementation

with k2 > 0 as a constant to improve the performance.

Fig. 3. Control block diagram for the single robot plume front tracking.

E. Estimation-based Tracking Control

For the robot model (4), we present the following control
law to reduce the control error e′ = x̂− xr,

u = − (vTr ∇cr + k∇2cr)∇cr
∥∇cr∥2

+
vdA∇cr
∥∇cr∥

− k3∇cr

·
(
∇T cr(x̂− xr) + cr − c0

)
− k6(xr − x̂) (16)

where k6 > 0 is a constant. As illustrated in Fig. 3, the
proposed control law consists of two parts (as shown in
the dashed rectangle in the figure): the observer part and
the controller part. The observer collects inputs from the
robot (i.e., xr and vr), and inputs from the environment (i.e.,
cr, ∇cr, and ∇2cr) and outputs x̂, which is the estimation
on the plume front trajectory. Together with the sensory
information xr, vr, cr, ∇cr, and ∇2cr, the observer output
x̂ is feeded into the controller, which yields the control input
u to the robot. The diagram illustrates the interplay between
the robot, the environment and the control law.

Remark 4: In the control law (16), the term −k6(xr − x̂)
forms a negative feedback on the control error. The rest terms
is identical to ˙̂x according to the observer (14) and it is a
velocity compensation term to regulate the tracking error.

It can be shown that the proposed control strategy is lo-
cally stable. The robot dynamic (4) becomes ẋr = −k6(xr−
x̂) + ˙̂x by substituting the control law (16) and the observer
(14) inside). The control error e′(t) = x̂(t) − xr(t) then
turns to ė′ = −k6e

′, which converges to zero, implying
that x̂ → xr when t → ∞. When time goes to infinity,
the observer (15) reduces to equation (14). The convergence
of the observer guarantees the convergence of the whole
estimation based control system.

Remark 5: In practice, the mismatch between the real and
the nominal models, the measurement error, etc., may result
in additive noises. Although the above results are derived
without considering noises, it is expected that the plume
front tracking error is bounded for bounded additive noises,
i.e., the robot tracks the plume front approximately and the
bounded tracking error depends on the amplitude of the
noises. We will provide formal analysis in our future work.

IV. MULTI-ROBOT PLUME FRONT ESTIMATION AND
TRACKING

In this section, we propose a solution for the distributed
multi-robot plume tracking (i.e., Problem 2) based on the
results on the single robot plume tracking. A group of robots
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is deployed and distributed evenly on the plume front. Like
before, we use the two-step procedure to complete the task:
the estimation step and the tracking control step. In the
estimation step, we define n (the number of robots in the
group) moving reference points on the plume front with the
desired spatial distribution, and define an observer to estimate
the position of reference points recursively. In the tracking
control step, we drive the robots to the estimated reference
point.

For the task considered in this section, as sketched in Fig.
1, we assign two robots as boundary robots and all the other
robots as follower robots. We present the control laws for
both of them as given next.

1) Boundary Robots: For the boundary robots, i.e., robot
i = 1 and robot i = n, we take the same control law as (16)
based on a similar observer as (15), which writes,

ui = − (vTri∇cri + k∇2cri)∇cri
∥∇cri∥2

+
k4iA∇cri
∥∇cri∥

− k3∇cri

·
(
∇T cri(x̂i − xri) + cri − c0

)
− k6(xri − x̂i)(17a)

˙̂xi = − (vTri∇cri + k∇2cri)∇cri
∥∇cri∥2

+
k4iA∇cri
∥∇cri∥

− k3∇cri

·
(
∇T cri(x̂i − xri) + cri − c0

)
(17b)

for i = 1, n

where x̂i, xri are the estimated position of the ith reference
point and the position of the ith robot, respectively, vri =
v(xri), cri = c(xri), ∇cri = ∇c(xri) and ∇2cri =
∇2c(xri) are the flow velocity at the ith robot position xri,
the concentration at xri, the gradient of the concentration at
xri, and the divergence of the concentration gradient at xri,
respectively, k4i = k4i(t) represents the desired speed along
the tangent direction of the plume front.

The boundary robot control law (17) has a design param-
eter k4i for i = 1, and i = n, which assigns a desired
patrolling speed to the robot. By choosing k41 > 0 and
k4n < 0, the boundary robots 1 and n patrol in the counter-
clockwise and clockwise directions, respectively. This gen-
erates a patrolling behavior for each of the boundary robots
but with an opposite direction. Combining with the follower
robots whose controllers are presented below, the group of
robots spread out to cover the whole plume front. As the
two boundary robots moves in an opposite direction along
the plume front, they will meet on sometime and then the
parameter k4i is switched to the following one allowing them
to stop patrolling and stay together:

k4i = k7∥x̂i−x̂n+1−i∥sign
(
(x̂i−x̂n+1−i)

TA∇c(x̂i)
)

(18)

where k7 > 0 is a positive constant, i = 1, n.
2) Follower Robots: We derive the follower control law

based on the results for single robot plume front tracking.
The parameter k4i = k4i(t) in (15), which represents
the desired speed along the tangent direction, gives us an
additional design freedom. This freedom is exploited in this
part to design a distributed formation behavior. To this end,
the gain vd in (15) is replaced with an adaptive one relying on
the distance difference between the two neighbors to form

Fig. 4. Control block diagram for a follower robot in the multi-robot plume
front tracking.

a cooperative observer for the reference points. Thus, we
propose the following observer based control law for the ith
(i = 2, 3, ..., n− 1) robot,

ui = − (vTri∇cri + k∇2cri)∇cri
∥∇cri∥2

+
k4iA∇cri
∥A∇cri∥

− k3∇cri

·
(
∇T cri(x̂i − xri) + cri − c0

)
− k6(xri − x̂i)(19a)

˙̂xi = − (vTri∇cri + k∇2cri)∇cri
∥∇cri∥2

+
k4iA∇cri
∥A∇cri∥

−k3
(
∇T cri(x̂i − xri) + cri − c0

)
∇cri (19b)

with,

k4i =
k5(x̂

T
i−1A∇cr,i−1 + x̂T

i+1A∇cr,i+1 − 2x̂T
i A∇cri)

∥A∇cri∥
for i = 2, 3, ..., n− 1 (19c)

where k5 > 0 is a constant.
The block diagram of the multi-robot cooperative plume

front tracking for a follower robot is illustrated in Fig. 4.
In addition to the information from the environment and the
ith robot itself, this control scheme also requires information
of x̂i−1 and x̂i+1, which are the observer outputs from the
(i− 1)th and the ith robot, respectively.

The convergence of the boundary robots to the plume front
follows the convergence results of the designed observer in
the single robot case. The proof idea includes three parts.
First, we construct a set of reference points with formation
interactions on the plume front and each of them is associated
with a robot in the group. Second, we prove the convergence
of the robots to the reference points. Third, we prove the
reference points converge to even distribution along the
plume front between the reference points associated with
the two boundary robots. We omit the rigorous proof of
convergence due to space limitation.

V. SIMULATIONS

In this section, we present Matlab numerical simulations
to validate the effectiveness of the proposed algorithms.

A. Simulation Environment

The simulation of the environment includes two part:
one is the simulator of a flow field and the other is the
simulator of the concentration field. The flow field is gen-
erated numerically by solving incompressible Navier-Stokes
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equations in a rectangular domain with prescribed velocities
along the boundary using the program presented in [22].
The concentration field is generated using finite difference
method to numerically solve the partial differential equation
(1) with a fixed value of the concentration at sources as
boundary conditions. The flow field is visualized in Fig. 5
(a), where the strength and direction of the flow at various
positions are shown. Both of the two chemical sources
locating at (13, 3) and (7, 7) has a fixed concentration 3.
The propagation of the chemical in the flow field results in
a time-varying concentration field.

B. Single Robot Plume Front Tracking

Here we validate Algorithm 1 that uses a single robot
to tack and patrol the plume front with concentration value
c0 = 0.3. The diffusion coefficient k is set as k = 0.5.
Due to the advection effect, the chemicals are blown along
the flow direction and form a non-symmetric contour in the
plume front. In the simulation, the patrolling speed is set
as k4 = 6, the gradient gain is set as k3 = 5, and the
estimated reference tracking gain is set as k6 = 5. The robot
is deployed to the field at time t = 2s after the sources starts
propagation at time t = 0s. As shown in Fig. 5 (b), due to the
chemical propagation, the plume front contour expands with
time. With the proposed method, the robot adaptively adjusts
its orbits to track the plume front. We denote the difference
between the plume front concentration c0 and the measured
concentration at the robot position cr as the plume front
tracking error. As shown in Fig. 5 (c), the error attenuates to
zero along time. Note that the lug in the error curve in Fig. 5
(c) around time t = 8.5s happens at the time when the robot
travels across the lower right tip of the plume front curve,
where the concentration changes sharply since the area is
mostly close to the source and locates in a place with the
flow direction adverse to the diffusion direction. Any small
variation in the robot trajectory in this area results in a large
error in the concentration values.

C. Multi-robot Distributed Plume Front Tracking

We validate Algorithm 2 with 30 robots to cover the
dynamic plume front with concentration c0 = 0.1. The
diffusion coefficient k in (1) is set as k = 0.5. For the
boundary robots, the patrolling speed is set as k4i = 3 for
i = 1 and k4i = −3 for i = 30. For follower robots, the
gain k5 is set to be k5 = 5. For all robots, the gradient gain
is set as k3 = 5 and the estimated reference tracking gain
is set as k6 = 5. After the sources start propagation for 2
seconds, 30 robots are deployed as shown in Fig. 6, where the
follower robots are marked by a hollow square in blue and
the boundary robots are marked by a hollow circle in red. We
want the robots to distribute on the plume front evenly, move
with the plume propagation and expand the formation when
the plume front expands. For this purpose, starting from time
t = 6s, when the condition ∥x̂1 − x̂30∥ ≤ ldis with ldis = 2
is satisfied, k4i switches to the control law (17) with the
parameter k4i set as (18) for the boundary robots i = 1 and
i = 30, where the gain k7 is set to be 20 in the simulation.

Fig. 5. (a). The velocity field considered in the simulation, where the
pseudo-color and the yellow arrow indicate the strength and the direction
of the flow, respectively. (b). The robot trajectory for single robot plume
front tracking and patrolling, where S1 and S2 are the two sources, the
green curves and the red squares represent the plume front contour and the
robot positions, respectively; The black curve represents the robot trajectory.
(c). The plume front tracking error.

Fig. 6. The snapshots of the robot movements for a typical simulation
run with 30 robots for cooperative plume front tracking, where the pseudo-
color indicates the concentration distribution at each time step with the scale
shown in the color-bar aside, the black curve is the contour of the plume
front with a concentration value c0 = 0.01, the hollow square in blue and
the hollow circle in red represent the position of the follower robots and
the true position of the boundary robots, respectively, the positions marked
with S1 and S2 are the two sources starting propagating chemicals in the
flow field shown in Fig. 5 at time t = 0.

Fig. 6 shows the snapshots of the simulation results along
time. After the robots are deployed in the field, it rapidly
forms the desired even distribution and reach the plume front
as shown at time t = 4s. As time elapses, the robots move
around the plume front shown as the black contour, and
simultaneously follow the expansion movement of the plume
front as shown in the snapshot t = 6s. After this time, the
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Fig. 7. The robot trajectories, the time profile of the formation error, and
the plume front tracking error, where S1 and S2 represent the sources, ‘+’
represents the initial position of robots, the hollow squares and the hollow
circles represent the final positions of the follower robots and the boundary
robots, respectively.

boundary robot keep moving in an opposite direction to cover
the plume front until the distance between them is within
the value ldis, which is satisfied at time t = 10s. Finally, as
shown at t = 12s, the two boundary robots reach consensus
in their positions and the follower robots are successfully
deployed evenly covering the plume front.

To evaluate the performance, we define two indices, one
is the formation error and the other is the plume tracking
error. The formation error measures whether the formation
is achieved for the follower robots, i = 2, 3, ..., n − 1.
As the distance between any two neighboring robots is∣∣∥xri − xr,i+1∥ − ∥xri − xr,i−1∥

∣∣, we define the average
distance of the group of (n−2) robots as the group formation

error:
√∑n−1

i=2 (|∥xri−xr,i+1∥−∥xri−xr,i−1∥)2
n−2 . We define the

plume tracking error of the group to be
√∑n

i=1(c(xri)−c0)2

n ,
which is the average tracking error of each robot in the group.
The time histories of the formation error and the plume
tracking error are plotted in Fig. 7, where the trajectories
of the robots are also plotted. It can be seen that both the
formation error and the tracking error reduce rapidly to a
small value. It also shows that a small peak appears at around
t = 10s in the formation error subfigure, which is caused
by the switching of the boundary robots’ controllers from
spread-out to stay-close and stop-rotating. It can be observed
that the performance is overall satisfactory.

VI. CONCLUSION

In this paper, the dynamic plume tracking problem is
solved using a group of cooperating robots. The advection-
diffusion equation is used to model the pollution plume prop-
agation, and a model-based observer is built to estimate the
plume front trajectory. Solutions are then provided for single
robot tracking and multi-robot tracking with simultaneous
formation based on an estimation and control framework.
The multi-robot plume tracking is distributed and scalable
with a nearest-neighboring communication topology. Simu-
lations show the effectiveness of the proposed strategy. We
will conduct experimental validation and characterize noise

effects in the future work.
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