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Abstract— Stochastic resonance (SR) is a phenomenon that
performance of the nonlinear system can be improved with
the addition of optimal amount of noise. Stochastic resonance
has been increasingly used for signal processing. The output
of the nonlinear bistable dynamic system with white Gaussian
noise input can be used to restore the weak input signal,
if the similarity between the input signal and the output
can be maximized. This paper will first use the optimization
theory to show that the normalized power norm describing
the similarity will reach a larger maximum when tuning both
system parameters and noise intensity, compared with that of
only adjusting noise intensity (classical stochastic resonance) or
only adjusting system parameters. Then, computer simulations
are performed to verify this proposal and demonstrate its
application in signal processing.

Index Terms— Optimization, Stochastic Resonance, Signal
Processing

I. INTRODUCTION

Noise is usually thought to be annoying and should be
removed from the system. In some nonlinear systems, how-
ever, the addition of some extra amount of noise has been
shown to be helpful. This phenomenon is called Stochastic
resonance (SR)[1][2], and only exists in certain nonlinear
systems. For these systems, the synchronization between
the input signal and the noise will happen when the noise
intensity is adjusted properly. In these cases, the system
performance, such as the output signal-to-noise ratio or
mutual information, will benefit from the noise. The im-
provement of the system performance can be maximized
if the noise intensity is adjusted to an optimal level. This
phenomenon was first revealed by Benzi in 1981 to explain
the periodically recurrent ice ages [3]. Since then, stochastic
resonance has been continuously attracting considerable at-
tention of researchers. Basically, the stochastic resonance in-
volves four elements: nonlinear system, information-carrying
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input signal, noise, and performance measure[8]. Many kinds
of nonlinear systems have been shown to yield stochastic
resonance phenomenon, such as the static systems[4] and
dynamic systems[1]. The input signal can be periodic[1]
or aperiodic[5]. The classical stochastic resonance requires
the input signal to be subthreshold signal[1]. Recently, it
was found that the input signals can be arbitrary and are
not limited to weak signals. This is characterized by the
suprathreshold stochastic resonance[6]. Not only the white
Gaussian noise[1], but also the colored[9] and non-Gaussian
noise[10], can generate a stochastic resonance effect. In
order to describe the stochastic resonance more exactly,
many quantifiers have been proposed as the performance
measures, such as signal-to-noise ratio[1], power norm[5],
and mutual information[7]. Stochastic resonance has found
applications in many different areas, such as noise en-
hanced tactile sensation[11], the application of suprathreshold
stochastic resonance to cochlear implant coding[12]. Another
important application is in signal processing. It has been
used for signal detection[13], signal transmission[15], sig-
nal estimation[17], and image processing[8]. The detector
based on stochastic resonance can improve the robustness
of the detector and its performance can compare with the
locally optimum detectors(LOD)[14]. When the information
is transmitted through a large parallel summing array, the
noise can enhance performance up to approximately half
the theoretical noiseless channel capacity[16]. The Bayesian
estimator using stochastic resonance technique will achieve
the minimum of the mean square estimation error when
estimating the frequency of a periodic signal corrupted by
a phase noise[17]. In order to make the noise useful, the
stochastic resonance effect should be realized. For the tradi-
tional stochastic resonance, the stochastic resonance is real-
ized by adjusting noise intensity[1]. Recently, the parameter-
tuning stochastic resonance shows that tuning system pa-
rameters is a better method to realize stochastic resonance
in some situations, especially when the initial input noise
intensity is already beyond the resonance region[18][19][20].
The chosen performance measure will reach a higher/lower
maximum/minimum, compared with that by adjusting noise
intensity. This paper will apply optimization theory to show
that the maximal normalized power norm of the bistable
double-well system can be further increased by tuning system
parameters and noise intensity at the same time, compared
with that of parameter-tuning stochastic resonance and that of
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classical stochastic resonance. The normalized power norm
is the performance measure describing the similarity between
the input signal and the output of this nonlinear system with
white Gaussian noise input. The increase of the similarity
between the input and the output by this scheme will benefit
the restoration of the weak input signal and has potential
applications in signal processing.

The rest of the paper is organized as follows. Section II
will describe the nonlinear bistable system and the related
performance measure. In Section III, we will show it is
possible to further enhance the stochastic resonance effect
with tuning system parameters and noise intensity by working
with a more general nonlinear bistable system. Section IV
will focus on the simulations and the application of this
scheme in signal processing. Finally, Section V concludes
the paper.

II. NONLINEAR BISTABLE DOUBLE-WELL STOCHASTIC

RESONANCE SYSTEM

The nonlinear bistable double-well system can be ex-
pressed in the following equation[5]

dx

dt
= −∂U

∂x
+ ξ(t), (1)

where U(x) is the potential function.
The symmetric potential function with a fluctuating barrier

is given by[5]

U(x) = −[A − S(t)]
x2

2
+

x4

4
, (2)

where A is positive and is taken as a tuning parameter in this
paper. S(t) is the input signal with zero-mean average. ξ(t)
is white Gaussian noise with zero mean and autocorrelation
of 〈ξ(t)ξ(s)〉 = 2Dδ(t− s). The angular brackets denote the
ensemble average.

In order to demonstrate the stochastic resonance effect, the
cross-correlation measures (power norm C0, and normalized
power norm C1) are taken as the performance measures

C0 = max{S(t)R(t + τ )}, (3)

C1 =
C0

[ S2(t) ]1/2{ [R(t) − R(t) ]2 }1/2
, (4)

where R(t) is used as the system response characterized by
mean transition rate of the system. The overbar denotes an
average over time. τ is a time lag.

The cross-correlation describes the similarity between the
input signal and the system output. Usually, it is hard to
find an explicit expression for the above cross-correlation.
If the input signal is both weak, i.e, S(t)2 � A2, and also
of Gaussian-distribution, the ensemble averaged power norm
〈C0〉 and the ensemble averaged normalized power norm
〈C1〉 can be approximated by[5]

〈C0〉 � Q0∆0 exp[−Θ0 + ∆2
0 S2(t)/2] S2(t), (5)

〈C1〉 � ∆0[ S2(t) ]1/2

(e(∆2
0 S2(t) ) − 1 + σ(D)Q−2

0 e(2Θ0−∆2
0 S2(t) ))1/2

, (6)

where:

σ(D)=K1〈R(t)〉, 〈R(t)〉 � Q0 exp[−Θ0 + ∆2
0 S2(t)/2 ],

Q0=K0A/
√

2π, Θ0 = A2/4D, ∆0 = A/2D.

〈R(t)〉 is the ensemble-averaged escape rate. Also, the
angular brackets denote an ensemble average.

It was revealed in [5] that this performance measure or
the similarity between input and output will be maximized
when an optimal amount of additional noise is added into the
system. This is termed aperiodic stochastic resonance (ASR).
Now, we will discuss the method in which the similarity can
be further enhanced so that the input signal can be better
restored from noise.

III. ENHANCEMENT OF STOCHASTIC RESONANCE EFFECT

Usually, the stochastic resonance effect is realized either
by adjusting noise intensity (classical stochastic resonance)
or by tuning system parameters (parameter-tuning stochastic
resonance), but not both. In some cases, the parameter-tuning
method is better than the classic method. Intuitively, the
stochastic resonance effect can be further enhanced if both
the system parameters and the noise intensity are adjusted
at the same time. This, however, is not always true, even
if the performance measure is affected by both the system
parameters and the noise intensity. In [21], the bit error rate
(BER) will be minimized if the noise intensity is not adjusted
and fixed at the initial level, while the system parameter
is tuned to the optimal value. In our recent paper[22],
we demonstrate that, for the bistable double-well dynamic
system with Gaussian-distributed input signal and fluctuating
barrier, it is possible to further increase the normalized power
norm 〈C1〉 by tuning system parameter and noise intensity
at the same time.

In [22], we require that two additional parameters should
be introduced into the system, in order to make this mech-
anism possible for different weak input signals. These two
new system parameters in [22], however, do not have direct
physical meaning. This makes the mechanism of tuning sys-
tem parameters and noise intensity a little hard to understand.
Now, we will change to a new system model in which these
system parameters will have direct physical meaning. Based
on this model, we will also prove that this mechanism is true
not only for the Gaussian-distributed input signals, but also
for the general weak input signals.

The new potential function of this nonlinear system is
modified as

U(x) = −[A − S(t)]
x2

2
+

x4

4X2
b

, (7)

where Xb is one of the two new system parameters.
By introducing another new system parameter τa, the

nonlinear dynamic system is now described by the following



equation

τaẋ(t) = [A − S(t)]x(t) − x3(t)

X2
b

+ ξ(t), (8)

where the definitions of S(t) and ξ(t) are same as (1).
In this nonlinear system, the system parameters are τa, Xb

and A. Parameter τa will affect the system response time and
parameter Xb will affect the barrier height of the potential
function of this system. Parameter A is used to shift the input
signal. All these three system parameters have direct physical
meaning and their influences on the the system performance
measure 〈C1〉 are easier to understand, compared with the
one used in [22].

From [5], we know the ensemble-averaged escape rate can
be expressed as follow, if the parameter τa = 1

〈R(t)〉� 1

2π

q
U ′′(xmin)|U ′′(xmax)|e(

U(xmin)−U(xmax)
D

), (9)

where U is the potential function, xmin is one of the local
minimizers and xmax is the local maximizer.

The new nonlinear system equation and the new potential
function will affect the 〈R(t)〉. The method to derive the
approximation of 〈C1〉 is similar to the one to derive (6).
Also, for the general weak input signal case, we can derive
the final approximation of normalized power norm 〈C1〉, if
the condition ∆2S(t)2 � 1 is met

〈C1〉 � ∆s

(∆2s2 + ∆4s4

2
+ K1

Q
(1 − ∆2s2

2
+ ∆4s4

8
)ecτaQ∆)1/2

, (10)

where:

Q =
K0A√
2 τaπ

, Θ =
τaX2

b A2

4D
= cτa∆Q, ∆ =

τaX2
b A

2D
, s =

q
S(t)2.

In order to investigate whether the stochastic resonance
effect of the above nonlinear system can be further enhanced
by tuning system parameters and noise intensity at the same
time, we need to check whether the following constrained
optimization problem has global maximizer

max〈C1〉, (11)
subject to: A > 0, s2 � A2, ∆2s2 � 1, D0 ≤ D ≤ D1

The constrain of S(t)2 � A2 comes from the requirement
on weak input signal. Parameter A is positive and [ A−S(t) ]
is also positive. In addition, ∆2s2 � 1 should be satisfied
in order to make (10) valid. According to [5], the theoretic
expression 〈C1〉 can still predict its real shape, even if the
noise intensity is beyond the range of its validity. Also, we
assume here that the noise cannot be removed. So, the only
requirements on the noise intensity are that it cannot be less
than its initial value D0, and it can not be arbitrarily large.

For this optimization problem, we will take parameters A
and D as the optimal parameters, while parameter τa and
Xb will be taken as the supporting parameters which are
used to ensure the optimization problem (11) has solution,
as shown later. In order to simplify the calculation, the direct
optimal parameters of (11) are ∆ and Q, which are in turn
the functions of A and D.

We now prove that (11) has one and only one global
maximizer. Here, we will first define the corresponding
unconstrained optimization problem as

max〈C1〉. (12)

Proposition 1: The unconstrained optimization problem
(12) has one and only one pair of parameters (Q∗, ∆∗)
satisfying the first-order necessary condition for a local
maximizer.

Proof: According to the first-order necessary condition
of this optimization problem (12), we have

∂〈C1〉
∂∆

= 0 and
∂〈C1〉
∂Q

= 0. (13)

Then, we can derive cτa∆Q = 1, and

−s4∆3 + cτaeK1(1 + s2∆2/2 − 3s4∆4/8) = 0. (14)

Let
f(∆) = −s4∆3 + cτaeK1(1 + s2∆2/2 − 3s4∆4/8). (15)

Obviously, there is at least one solution (Q∗, ∆∗) satisfy-
ing this first-order necessary condition, because

f(0) = cτaeK1 > 0 and f(+∞) = −∞. (16)

Let
f1(∆) = −s4∆3, (17)

f2(∆) = cτaeK1(1 + s2∆2/2 − 3s4∆4/8). (18)

Function f1(∆) is a monotonically decreasing function.
Function f2(∆) will first increase with ∆ and then decrease
to −∞. From these facts, we can prove that the first-order
necessary condition can only have one positive solution.

Proposition 2: The system parameter τa can continuously
adjust (Q∗, ∆∗) satisfying the first-order necessary condi-
tion. ,

Proof: The system parameter τa affects f2(∆), but
not f1(∆). From the special characteristics of these two
functions, we can find out that the increase of τa will also
increase the value of ∆∗ satisfying (14). If τa is getting close
to zero, ∆∗ will also approach zero. From this, we complete
the proof of this proposition.

Proposition 3: The unconstrained optimization problem
(12) has one and only one local maximizer when the input
is small and the system parameters τa and Xb are chosen
properly.

Proof: From Proposition 1, we know the first-order
necessary condition only has one solution (Q∗, ∆∗). We now
prove this solution will also satisfy the second-order sufficient
condition for a local maximizer, that is the Hessian matrix is
negative definite at the point (Q∗, ∆∗).



According to Proposition 2, the system parameter τa can
be adjusted properly so that the requirement s2∆∗2 � 1 can
be satisfied. From this, we can get

−cτaeK1s
2∆∗2 + s2∆∗(−4 + 2s2∆∗2)

−cτaeK1s
2∆∗2(2 − 3s2∆∗2/4) < 0, (19)

and
−s4∆4/8 + (−1 + s2∆∗2/2) < 0. (20)

From (14), (19), and (20), it follows that ∂2〈C1〉
∂∆2 , ∂2〈C1〉

∂Q2 ,

and ∂2〈C1〉
∂∆∂Q are all negative at ∆ = ∆∗, and Q = Q∗.

The Hessian matrix is defined as(
∂2〈C1〉

∂∆2
∂2〈C1〉
∂∆∂Q

∂2〈C1〉
∂Q∂∆

∂2〈C1〉
∂Q2

)

To prove the Hessian matrix is negative definite, we need
to verify its determinant value is positive.

At ∆ = ∆∗ and Q = Q∗, the numerator of this Hessian
matrix determinant value can be simplified as:

s4∆∗3(2 − 2s2∆∗2) + cτaeK1s
4∆∗4(

14

8
− 9s2∆∗2

8
)

+(s4∆∗3 +
3cτaeK1s

4∆∗4

8
− cτaeK1s

2∆∗2

2
)

+
s8∆∗7

2
+

15cτaeK1s
8∆∗8

64
. (21)

Its numerator will be positive, if s2∆∗2 � 1. Also, its
denominator is positive. From the standard test on negative-
definiteness of a symmetric matrix, it follows the Hessian
matrix is negative definite. This completes the proof of
Proposition 3.

Proposition 4: The constrained optimization problem (11)
with small input has one and only one global maximizer, if
the system parameters τa and Xb are chosen properly.

Proof: According to Proposition 3, (12) has one and
only one local maximizer (Q∗, ∆∗). Also, from Proposition
2, ∆∗ can be continuously adjusted by the system parameter
τa such that s2∆∗2 � 1. In this case, the requirement for
s2 � A∗2 will also be satisfied and system parameter A∗

will be positive, because of A∗ = 2/∆∗.
The constraints on the noise intensity can also be satisfied

by tuning system parameters τa and Xb, because of D∗ =
τaX2

b /∆∗2. So, the constrained optimization problem (11)
has one and only one local maximizer.

It is obvious that the only local maximizer is also the
global maximizer of (11). This completes the proof of this
proposition.

Proposition 4 reveals that the results of [22] can be
extended to the more general weak input signal case, when
the nonlinear system model with more physical meaning
is adopted. This system’s maximal normalized power norm
〈C1〉 can be further increased with this scheme, compared

with that of either tuning system parameters or adjusting
noise intensity.

IV. ENHANCEMENT OF WEAK SIGNALS

The traditional method to restore the weak signal corrupted
by noise will try to remove noise from the signal. The method
based on stochastic resonance (SR), on the contrary, can
improve the performance measure, such as signal-to-noise
ratio, with the addition of an extra amount of noise. A critical
task in developing the SR-based signal processor is how to
realize stochastic resonance and how to enhance stochastic
resonance effect. In this paper, the output of the bistable
double-well dynamic system described by (8) is corrupted by
the white Gaussian noise. A SR-based method will be used
to restore the weak input signal from the system output. The
normalized power norm 〈C1〉 is adopted as the performance
measure. Obviously, a larger 〈C1〉 value means that the input
signal and the system output are more similar, or the system
output carries more information about the input signal. This,
in turn, means that the input signal can be better restored
from the output of this nonlinear system. In this case, the
mechanism to further improve the maximal 〈C1〉 by tuning
system parameters and nose intensity will have practical
usage. It can better restore the signal from noise than the
traditional SR methods.

In order to demonstrate this mechanism’s better enhance-
ment of weak signal compared with the traditional stochastic
resonance methods, simulations are performed. The first
simulation is to directly compare the maximal 〈C1〉 reached
by three different methods: (1) adjusting system parameters
and noise at the same time; (2) only adjusting system
parameters; (3) only adjusting noise intensity. The simulation
result is shown in Fig. 1. From this figure, it is obvious
that the mechanism proposed in this papers gives the best
performance, especially for the weak input signal case.

Now, we will directly deal with the system output x(t)
and compare their waveforms by changing system parameter
values and noise intensity.

Fig. 2 is the simulation model. In this model, A, a, and
b are the system parameters and a = 1/τa, b = 1/(τaX

2
b ).

The noise intensity D will affect the output of the White
Noise block. The Constant block with value ”shift” is used
to shift the average value of the input pulse to zero. The
User-Defined Functions block is used to generate x3.

Fig. 3 shows some of the system outputs under different
system parameter values and different noise intensity for the
same input signal with an amplitude of 0.005. From this
simulation, it is easy to notice that the similarity between
input and output, or the input signal information carried by
the system output, is greatly affected by the choices of the
system parameters and noise intensity. It will be maximized
for the properly chosen values. This can be even more
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Fig. 2. Simulation Model

obvious, if combined with other signal processing methods.
For the analog signals, the method introduced in [20] might
be adopted. For the binary signals, we might decide the
binary value using the detection methods.

This SR-based method with tuning system parameters and
noise intensity is useful when this nonlinear SR dynamic
system is a part of the whole system under investigation. In
this case, tuning the system parameters and noise intensity
to maximize the enhancement of the weak input signal will
benefit the rest of the system. For example, it will be easier
to process an input with higher signal-to-noise ratio.

In reality, the input signal S(t) and the noise ξ(t) are
usually mixed together. The S(t) and ξ(t) in the system
model (8) is in fact S(t) + ξ(t). In this case, the bistable
double-well dynamic system is acted as a nonlinear filter. Its
performance will also be affected by the choices of system
parameter values and noise intensity. Fig. 4 demonstrates
the system output under the noisy input signal. The overall
features of this new system need further investigation.
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V. CONCLUSION

This paper first reveals that the results of [22] can be
extended to a modified bistable double-well nonlinear dy-
namic system with more general weak input signals. In this
nonlinear system, the system parameters have more physi-
cal meaning and the tuning of these system parameters is
easier to understand. Then, the mechanism of tuning system
parameters and noise intensity at the same time is applied to
help the recovery of weak signal from the noisy output of
the bistable double-well dynamic system. The method based
on stochastic resonance plays a unique role in the nonlinear
enhancement of weak signals corrupted by noise, compared
with traditional denoising filters. Our future work will be
directed at extending this mechanism to other SR-based filters
and comparing the performance with other filters in different
applications.
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