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Performance-Based Rough Terrain Navigation for
Nonholonomic Mobile Robots

Yi Guo , Lynne E. Parker , David Jung and Zhaoyang Dong

Abstract— This paper addresses path planning and control of
mobile robots in rough terrain environments. Previous research
separates path planning and control into two different problems
and addresses them in different contexts. Instead, we formulate
these issues in connected modules with performance requirement
considerations in each module. We advocate the idea that by
incorporating criterion-optimizing design in each module and
organizing them in a behavior-based architecture, performance
issues (e.g., robot safety, or geometric, time-based, and physics-
based criteria) are adequately addressed. A feedback control
strategy is used for trajectory tracking, and closed-loop stability
of error dynamics is granted. Simulation results show that the
trajectory controller is robust with respect to initial conditions
and model uncertainties.

I. INTRODUCTION

There are considerable research efforts towards solving the
mobile robot navigation problem in different applications in
indoor or outdoor environments (see [12] and the survey paper
[20]). For some navigation tasks, such as planetary exploration
([18]), robots are required to travel long distances within
constrained resources (energy, etc.), and a prior map exists
at certain degree of accuracy (see [10], [13]). In such cases,
effective path planning and motion control algorithms are
needed to achieve the goal while meeting certain performance
requirements, such as robot safety, or geometric, time-based,
and physics-based criteria. However, where uncertainties exist
(e.g., local map inaccuracy, robot sensor and perception er-
rors), theoretically optimal solutions may not be achievable.
How to adequately address the performance issue while main-
taining safe robot operations is not straightforward. Rather
than address all of the issues which arise in the complex
navigation problem, we focus on autonomous path planning
and control.

Although path planning and control are closely related in
the robot navigation problem, they are usually treated as two
separate problems in much of the existing literature. Planning
is the determination of the geometric path points for the
mobile robots to track, and control is the determination of the
physical input to the robot motion components. These issues
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are typically discussed using methods in different areas such
as those in artificial intelligence and control theory. Such a
separation makes it difficult to address robot performance in a
complete application, since the discrete geometric path points
planned in the first step may not be efficiently tracked in the
second step, thus losing the meaning of optimization in each
step. For example, in a typical steering arbiter method ([23]),
discrete steering commands are generated for goal acquisition
using the search method D∗. However, the discontinuity of
the control commands may not produce a satisfactory path
tracking result in practice, and will not be applicable to high
speed traveling. Also the feedforward control method ([9]) has
disadvantages from the robot motion point of view, as it needs
a relatively accurate model and is not robust to uncertainties. In
this paper, we use feedback control for robot motion, which
prevents the increase of trajectory errors from the reference
trajectory.

Planning and control with optimal distance or time strategies
are discussed in [2], [5]. Physics-based rough terrain navi-
gation is discussed in [4], where static model-based safety
evaluation is studied assuming the robot moves slowly and
dynamic effects are negligible. Although these kinds of anal-
yses are necessary for performance-based navigation in rough
terrain environments, they are limited in their application. For
example, in cases where high speed, long distance travel is
required, static stability evaluation ([4]) is not enough.

This paper presents algorithms for mobile robot path
planning and motion control. The approach comprises three
modules: path searching, trajectory generation, and trajectory
tracking. In each module, we explicitly address the perfor-
mance considerations, which are also uniform with the other
component modules. In implementation, deliberate planning
can be implemented before the robot moves, and locally
revised path re-planning can be achieved dynamically while
the robot runs. A feedback control scheme is applied, which
improves system robustness with respect to uncertainties,
and guarantees convergence of the closed-loop system to the
reference trajectory.

The rest of the paper is organized as follows. In Section
2, the navigation problem is defined with the description of
a nonholonomic model of a mobile robot, and performance
criteria are proposed. Then in Section 3, the performance-
based navigation algorithms are described in three partitioned
and connected modules. A software flowchart is presented in
Section 4, which was partly implemented in a behavior-based
vehicle planning and control simulation system. An example
path on a 3D Mars-like terrain is shown; also simulation
results of the trajectory controller are demonstrated with good
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robustness. Finally, the paper is concluded with brief remarks
in Section 5.

II. PROBLEM STATEMENT

We consider a nonholonomic mobile robot A driven by two
differential wheels, whose kinematics is governed by:

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = ω (1)

where vector q = (x, y, θ) ∈ �2 × S is a configuration
specifying the horizontal position and heading of the robot
in the global frame; v and ω are the translational and angular
velocities respectively. The relationship between (v, ω) and the
left and right wheel velocities (ωleft, ωright) is described by:

v =
rw

2
(ωright + ωleft)

ω =
rw

dw
(ωright − ωleft) (2)

where rw is the radius of the wheels, and dw is the azimuth
length between the wheels.

The robot has the following dynamic limitations on veloc-
ities and accelerations:

|v| ≤ vmax |ω| ≤ ωmax

|v̇| ≤ amax |ω̇| ≤ γmax (3)

where a, γ are translational and angular accelerations respec-
tively.

The robot operates in a rough terrain, which is described by
surface patches defined from an elevation map in z associated
with a regular grid in (x, y). We assume the robot knows
its initial configuration qinit and goal configuration qgoal.
The navigation problem is to decide wheel velocity inputs
(ωleft, ωright) within constraint (3), so that the robot achieves
qgoal starting from qinit according to certain performance
criteria.

We define performance as:

• Safety: The robot should avoid any dangerous terrain
which causes static instability of the robot by certain
margins;

• Geometry-based criteria: criteria that relate to the geom-
etry, such as shortest distance;

• Time-based criteria: criteria that are a function of time,
such as shortest time;

• Physics-based criteria: criteria depending on the physical
configuration of the robot, such as optimal fuel or energy.

We define two concepts which will be used later:

• Path: A path is a sequence of geometric points (x, y)
which the robot is to pass through;

• Trajectory: A trajectory is a set of valid robot configura-
tions qr and velocity profiles (vr, ωr) depending on time
t.

III. PERFORMANCE-BASED NAVIGATION ALGORITHMS

The navigation algorithm comprises three modules:

• Path searching: To search for a practical path according to
the existing map and given performance measurements;

• Trajectory generation: To determine a reference trajectory
which is a function of time;

• Trajectory tracking: To calculate current wheel velocity
inputs (ωleft, ωright) according to the reference trajectory
generated in the previous step, and form the feedback
control loop which takes current measurements of the
robot configuration (xc, yc, θc) as feedback variables.

In the next subsection, we discuss each module in detail.

A. Path Searching

Assume robot A moves on a planar workspace W ⊂ �2,
and the prohibited space is Wprohibit ⊂ �2. The prohibited
space defines regions in which the robot should not travel
due to mission constrains (e.g., minefields) or undetectable
navigation challenges (e.g., quicksand). We define a safety
margin by a positive constant ε, and Wε

prohibit is the space
that is within ε distance of Wprohibit. Denote the valid search
space to be Wε

free = W \Wε
prohibit. The path searching task

is to find a sequence of geometric points from the start to the
goal in Wε

free according to the existing elevation map defined
on the regular grid.

A∗ is a widely used search algorithm to find a path
through the terrain grid from the start position to the goal.
Its efficiency is highly determined by the cost function ([16]).
The performance issue in this module is reflected by carefully
choosing the cost function.

We first define the following parameters:
Terrain roughness: At each grid (x, y), terrain roughness

φ is defined as the variance of elevation z of all points on a
circular domain centered at (x, y) with a radius R related to
the size of the robot, that is,

φ(x, y) = var
√

z(R).

Terrain slope: Terrain slope k from the grid point (x1, y1)
to (x2, y2) is defined to be

k12 =
z2 − z1√

(x2 − x1)2 + (y2 − y1)2

where z1 and z2 are the elevations at (x1, y1) and (x2, y2)
respectively.

To decide which node is to be expanded first in A∗, the
following elements are taken into consideration for choosing
the cost function:

• Distinguishing between challenging and benign terrain:
A primary requirement for static stability of the robot
is the need for ground contact support on the path. The
distinction between challenging and benign terrain can be
defined through parameters terrain roughness φ and slope
k. The solution depends on the physical configuration of
the robot.

• Cost to travel over current patch: Power consumption is
related to the motor torques and the tractive forces. It is a
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function of the parameters terrain roughness φ and terrain
slope k, denoted by P (φ, k), which also depends on the
physical configuration of the robot.

• Pre-set performance requirement: Geometry based crite-
ria such as shortest path are formulated in metrics: the
travel distance from grid point (x1, y1) to (x2, y2) is:

D12 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

The search algorithm finds a path with minimized cost
function, which is defined as:

fpp = α1

∑
P (φ, k) + α2

∑
D (4)

where
∑

P (φ, k) is the total cost to travel on the designated
path,

∑
D is the total distance to travel from the start position

to the goal position, and α1, α2 are weighting factors.
In the standard A∗ algorithm ([16]), there is one more step

to test when expanding a node during the search: if the node
to expand is within the challenging terrain, remove it from the
expanding list. More explicitly, if (x, y) is within τ (a positive
constant) distance of a challenging terrain, then remove node
(x, y) from the successors list. Here the positive constant τ is
a design parameter that reflects a safety margin.

B. Trajectory Generation

After a sequence of path points is generated in the previous
step, the task in this step is to smooth the path and generate
a reference trajectory (xr, yr, θr) and (vr, ωr) associated with
time t for the robot to track. It consists of the following two
sub-steps:

Generating a smooth curve: With the input (output of the
first step) of a sequence of path points, the first task is to use
interpolation to fit a smooth curve though the data points. In-
terpolation methods such as Lagrange interpolation or splines
are applicable. For long trajectories, it is possible to set
waypoints such that there are smooth curve connections with
simple continuous curvature between two adjacent waypoints.
Examples of smooth curve connections with simple curvature
are straight lines, arcs, clothoids, etc. (see [7], [15], [14], [21]
and references therein), which are easy for trajectory tracking
in the next step. The output of this sub-step is a piecewise
smooth curve with valid robot configurations (xr, yr, θr).

Generating reference velocity profiles: It has been proved
in [19] that time-optimal trajectories are bang-bang; that is,
the translational and angular accelerations are either zero or
maximum in absolute value. However, we have to consider the
following:

• In areas that are δ (a positive constant) distance from
Wε

prohibit, we expect the robot to keep a relatively slow
speed, that is,

|v| ≤ vI

when A is within δ distance from Wε
prohibit

where vI is a certain safe translational velocity value
which is dependent on the robot physics.

• On rough terrain, the robot may not be able to make
point turns due to high terrain-induced transversal forces.
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Fig. 1. Error posture qe = (xe, ye, θe): qr is the reference configuration,
qc is the current robot configuration.

Therefore, there should be robot turning constraints on
each terrain patch; that is,

|ω| ≤ ωI

when A is in terrain patch centered at (x, y)

where ωI is a certain safe angular velocity value, depen-
dent on the robot physics.

The output of this sub-step is a velocity profile (vr, ωr)
associated with time t, which are bounded by (3).

The generated trajectory data is stored in the following table
format for use at the next step:

segment number
segment type
segment parameters
ending waypoint (x, y, θ)
velocity (v, ω)

where segment type can be a straight line, a piece of an arc,
or a spline, with their parameters defined by the curvature or
other parameters uniformly describing the curve.

C. Trajectory Tracking

The task in this step is to construct the wheel velocities input
such that the robot tracks the reference trajectory generated in
the previous step.

First, we need to set up an error posture. Suppose the
reference posture is qr = (xr, yr, θr)T , and the current posture
of the robot is qc = (xc, yc, θc)T . The error posture qe =
(xe, ye, θe)T is a transformation of the reference posture qr

in a local coordinate system with an origin of (xc, yc) and an
X-axis in the direction of θc, which is defined as (see Figure
1): 


xe

ye

θe


 =




cos θc sin θc 0
− sin θc cos θc 0

0 0 1







xr − xc

yr − yc

θr − θc


 (5)

Differentiating both sides of (5), using (1), and after sim-
plifying, it turns to be (see [8]):




ẋe

ẏe

θ̇e


 =




ωye − v + vr cos θe

−ωxe + vr sin θe

ωr − ω


 (6)

where (v, ω) is the velocity vector to be designed.
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Equation (6) is called error dynamics. Now the trajectory
tracking is transferred to a conventional control problem,
which is to determine the control inputs v, ω as functions
of (xe, ye, θe, vr, ωr) such that the closed-loop system is
asymptotically stable; that is, the error configuration qe tends
to its equilibrium 0 eventually.

It should be pointed out such a control system (6) cannot be
stabilized by continuously differentiable, time-invariant, state
feedback control laws. Complex-structured controllers have
been proposed in various literature (see [3], [6], [11] and the
references therein). We apply the following nonlinear feedback
control law:

v = ξ(ωr, vr)xe + vr cos θe

ω = ωr + ξ(ωr, vr)vr
sin θe

θe
ye + c2θe (7)

where ξ(ωr, vr) is a nonlinear function of (ωr, vr) as:

ξ(ωr, vr) = 2c1

√
ω2

r + c2v2
r ;

and c1, c2 are positive design constants.
Note that the velocity input (v, ω) should be bounded by

(3), which corresponds to a saturation effect on (7).
It has been proved in [1] that controller (7) asymptotically

stabilizes (6). That is, the closed-loop system of (6) with (v, ω)
taking the form of (7) is asymptotically stable.

From (2), it is straightforward to obtain the wheel velocities:

ωleft =
2v − dwω

2rw

ωright =
2v + dwω

2rw
(8)

Figure 2 shows the feedback control diagram governing
robot motion.

IV. IMPLEMENTATION

The proposed navigation algorithms have been partially
implemented in a vehicle planner and control simulation for
a cooperative autonomous mining system (CAMS). CAMS
is a behavior-based multi-robot control system that adopts
the ALLIANCE architecture ([17]) for multi-vehicle action
selection. The proposed navigation algorithm is denoted as the
path planner (PP) behavior. The diagram in Figure 3 shows the
software flow-chart of PP.

In Figure 3, the local path and trajectory replanning is
composed of local path re-searching and local trajectory
segment re-generating. D∗ ([22]) can be used as a dynamic
path planning method which is good at real time replanning of
the path. As the trajectory is defined by piecewise continuous
trajectory segments, unexpected obstacles detected by the
onboard sensors can immediately trigger the local path planner
to insert a stop segment at the current path location, and then
resume the move by generating a startup segment to continue
the robot along the revised path. Unlike [9], where feedforward
control is used for trajectory searching, feedback control is
used in the proposed method to track the previously generated
trajectory. The reason behind this is that vehicle dynamics
is more reliable these days, and feedback control improves
system robustness. Therefore, in the current implementation,

local path replanning deals with local incorrectness in the
existing map, and feedback control deals with uncertainties
arising from robot motion such as sensor noise.

An example terrain in the 3D simulator environment is
shown in Figure 4 with a path planned, which is typical
from applications such as site preparation in space-based robot
colonies. A shortest path is planned according to the elevation
map of the terrain. The generated trajectory data is shown
in Table I for a time optimal trajectory, where segment type
0=line, 1=arc, 2=spline; segment parameters for line are the
slope and displacement in the Cartesian coordinate, segment
parameters for spline are polynomial coefficients; and 1 is the
maximum acceleration scale in the simulator. Velocity (v, ω)
can be calculated by the supplied acceleration in the program
to produce a smooth ramp startup and a smooth ramp-down
stop on each trajectory segment.

V. CONCLUSIONS

In this paper, we have discussed the autonomous path plan-
ning and trajectory control problem. We partition the design
into three modules: path searching, trajectory generation, and
trajectory tracking. In each module, performance issues are
addressed in the context of robot safety considerations, which
are summarized as:

• In path searching, a geometry-based optimal criterion is
considered by choosing a terrain condition and robot
physics dependent cost function in the searching algo-
rithm;

• In trajectory generation, a time-based criterion is consid-
ered by optimally distributing reference velocities;

• In trajectory tracking, nonlinear feedback control laws
are applied so that the motion of the robot is robust with
respect to position or measurement uncertainties.

From the system point of view, the second module prepares
the smooth simple curvature curves to ease the third module
for robot tracking. This design is considered necessary for long
distance traveling of vehicle-like systems. Alternative discrete
representations such as the steering arbiter method ([23]) do
not allow this type of high speed, long-distance frame, due to
the discontinuity of control commands.

The algorithms can be implemented in a behavior-based
architecture, where the local replanning of the trajectory is
plugged in. A software flow-chart is presented, which was
partly implemented in a 3D simulator environment for CAMS.
We show in the simulation a typical Mars-like terrain with a
path planned on it. In future work, we plan to run the proposed
algorithms on our ATRV-mini all-terrain mobile robots in an
outdoor testing arena featuring challenging Mars-like terrain
such as hills, rocks and ditches. A coarse elevation map
will be produced before the navigation starts. The equipped
onboard GPS will return real-time robot location, and a laser
rangefinder will detect local obstacles.
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