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Abstract— This paper describes our efforts in building an
experimental platform to conduct research on cooperative
driving in Intelligent Transportation Systems (ITS). A minia-
ture vehicle is developed based on the COTS-BOTS robot and
an overhead vision system is used to localize the vehicles.
The single lane tracking control algorithm is described first.
To control multiple vehicles to drive through an intersection
without collision, a distributed cooperative driving algorithm
is developed, which is based on velocity planning using search
algorithms in the corresponding Coordination Diagram.
Experimental results verify our proposed approach and we
believe this platform can serve as a cost-effective testbed
to study vehicle-to-vehicle communication based cooperative
driving in Intelligent Transportation Systems.

Index Terms— Intelligent Transportation System, Cooper-
ative Driving, Vehicle-to-Vehicle Communication

I. INTRODUCTION

Automated vehicles are an important constituent of fu-
ture Intelligent Transportation Systems. Vehicle-to-vehicle
communication will certainly be indispensable to maintain
safe and efficient automated driving. Currently, major
research thrusts on automated highway systems and au-
tomated driving include the PATH program in California
[1]; the DARPA-supported Unmanned Ground Vehicle
(UGV) project in Carnegie Mellon University [2]; the
PROMETHEUS program in Europe [3] and Super Smart
Vehicle System (SSVS) project in Japan [4], etc. However,
it is still difficult for many researchers to access multiple
full-size, automated vehicles and the various equipment
necessary to conduct experiments. Thus it is hard to fully
investigate and quickly test various control algorithms
proposed. Pure simulation in software may help in the fast
evaluation of control algorithms, but may lack accuracy.
Therefore it is desirable to develop a cost effective ex-
perimental platform to study inter-vehicle communication
based cooperative driving, with a goal of improving the
safety and efficiency of automated driving.

Currently, vehicle-to-vehicle communication is mostly
used to extend the horizon of drivers and on-board devices
such as radar or sensors. In the field of ITS, collabo-
rative anti-collision of multiple vehicles have not been

thoroughly investigated. The anti-collision problem at an
intersection has received even less attention compared to
the rear-end collision [5], although the former account for
almost 30% of all crashes. Yang et al. [6] proposed a
vehicle-to-vehicle communication protocol for cooperative
collision warning. Their protocol consists of congestion
control policies, service differentiation mechanism and
method of emergency warning dissemination. The ma-
jor goal of their research is to achieve low-latency in
message delivery. However, only simulation is conducted
and no physical implementation is carried out. Gorman
[7] investigated the vehicle coordination problem at a 4-
way stop crossing (without traffic lights). He applied the
group communication to perform coordination functions.
However, the developed coordination protocols were not
implemented and verified in physical vehicles.

On the other hand, research in mobile robots, especially
in multiple mobile robots has resulted in meaningful
results [8] that can be extended to multi-vehicle collision
avoidance. Motion planning in a dynamic environment is
considered NP -hard [9]. Therefore the motion planning
problem is usually decoupled into path planning and
velocity planning problem. The work in this area includes
[10], [11], [12] etc. Guo and Parker [13] proposed a
distributed motion planning algorithm to coordinate mul-
tiple mobile robots that have independent goals so that
there is no collision and certain performance optimality
can be achieved. They divided the overall problem into
path planning and velocity planning. D∗ search algorithm
[14] is applied in both modules. However, their algorithm
assumes that the vehicle communication range is unlimited
and all vehicles can communicate with each other at
any time, which may not reflect the reality. Also the
search algorithm results in velocity profiles that require
the vehicles to stop within the intersection.

In this work, we develop an experimental platform,
an overall software architecture and a new distributed
motion control algorithm for multiple vehicle collision
avoidance. This paper is organized as follows. In Section
II, the system setup is introduced, which includes the
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Fig. 1. The miniature vehicle. The left picture shows the overall
vehicle and the right picture shows the RC car base with the Mica2
mote removed.

miniature vehicle and the overall platform. Section III
describes the approach to control a single vehicle to track
a lane. Multiple vehicle collision avoidance is presented
in Section IV. Section V gives the test results and Section
VI concludes this paper.

II. SYSTEM SETUP

A. Miniature vehicle

The miniature vehicle employed in this project is mod-
ified from the COTS-BOTS (Commercial Off-The-Shelf
Robots) developed by University of California Berkeley
[15]. The COTS-BOTS consists of the base of a com-
mercially available Mini-Z Racer radio-control car and a
Crossbow Mica2 mote which is a programmable wireless
sensor node [16] made by Crossbow Technology Inc. The
Mica2 can operate on a number of different frequency
bands and in this work the 916MHz band is used. It is
capable of radio communication at rates up to 38.4 kbps.
The COTS-BOTS robot has a motor board that controls
the steering motor and the driving motor. The motor board
communicates with the Mica2 through a 51-pin expansion
connector.

The control software of the COTS-BOTS runs on
TinyOS [17], an open source operating system designed
for use in embedded sensor networks. It is extremely
lightweight and minimizes both resource usage and code
size to fit the restraints of embedded architectures. The
miniature vehicle is shown in Figure 1, which has four
poles to support the two-color top for visual identification
purpose. It has a dimension of 7 cm × 14cm.

B. Experimental platform

Figure 2 shows the overall experimental platform. It
consists of a) a desktop PC with a Pentium IV processor
and 512M bytes of memory, which runs on Fedora Core 2
and contains a Sensoray Model 611 PCI framegrabber; b)
a Hitachi KPD-20B camera; c) multiple miniature vehicles
running in a small arena, which has tracks set up on
a chalkboard; d) a Mica2 mote interfacing board and a
control-side mote, together serving as the communication
gateway between the PC and the miniature vehicles.

ActivMedia’s ACTS [18] (ActivMedia Color Tracking
System) software is employed to achieve the system’s

Fig. 2. The experimental platform.

Visual Information

Camera

Framegrabber

Serial Port

InterfaceBoard

Control-Side Mote

Motor Board

Steering Motor Driving Motor

Vehicle Motion

ACTS Server

Main Control
Application

TOSBase

TestMotorBoard

MotorBoardTop

Vehicle-Side Mote

Hardware Software

RS-232 Serial

Radio

Control Computer

Minature Vehicle
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visual feedback. The software uses color recognition to
identify “blobs” of a user-defined color in a visual frame.
It uses a client/server model to accomplish the task of
processing the information and distributing it to user
applications. The ACTS server must be trained via the
program’s interface to track the desired colors. The sen-
sitivity of the system to subtle lighting changes is highly
dependent on the quality of the training data provided.
The server can be programmed with up to 32 such ranges
of color (channels), and can track up to ten blobs on each
channel. When requested by a client, the server captures
an image frame and processes it using the training data. It
then makes available the resulting blob information packet,
which represents the position and size of each color blob
tracked.

The overall hardware and software diagram is shown
in Figure 3, with the left side representing the hardware
and the right side representing the corresponding software.
The ACTS server receives visual data from the camera
through driver software. Client programs, such as the main



control application, can connect to the server through a
TCP socket connection. When the main control application
requests a packet, the server processes an image frame
based on the training configuration data provided by the
user at server startup. This processed data then becomes
available as a color blob information packet for the main
control program to read. The program processes the blob
information to determine the instantaneous position and
heading of the vehicle. It uses this information, along
with previously defined track initialization information,
to quantify the vehicle’s position error and determine the
action that should be taken. This desired action is then
packaged into a TinyOS packet and sent to the serial port.
The control-side mote runs a piece of software called
TOSBase, which is provided in the TinyOS package.
The TOSBase software then transmits the packet at the
preprogrammed frequency of 916MHz. The vehicle-side
mote receives the radio packet. The Mica2 mote on
the miniature vehicle checks the identification and type
fields of the packet and sends appropriate commands
to the motorboard. These functions are performed by a
piece of software included with the COTS-BOTS package
called TestMotorBoard. The motorboard’s resident control
program, also provided in the COTS-BOTS package, is
called MotorBoardTop. The command packet it receives
from the mote contains three parameters: speed, forward
or reverse direction, and turn angle. The first two are used
in a simple way to control the driving motor. The last is
accomplished using a proportional-integral (PI) feedback
loop.

III. SINGLE VEHICLE LANE TRACKING

For the single vehicle lane tracking, it is assumed
that the vehicle’s speed remains constant throughout the
test. Thus the only control parameter that the application
must determine is the vehicle’s turn angle. We develop
an inverse proportional zone-targeting algorithm for the
lane tracking. Essentially, the control program attempts to
orient the vehicle to pass through a certain target zone,
the size of which is inversely proportional to the vehicle’s
position error to the the desired path.

There are three different actions that represent the
entire output set of this algorithm: drive straight, turn
left, or turn right. The outcome depends on the point of
intersection between the desired path and the vehicle’s
actual heading. Figure 4 shows an example of two possible
vehicle positions relative to a straight path and the target
zones associated with their offsets. If a vehicle’s heading
would intersect the desired path beyond the target zone,
as with vehicle A, whose target zone is represented by
the red line/left dark line, it will be turned in toward the
desired path to compensate. The turn angle is proportional
to the deviation distance D. If the vehicle’s path intersects
the desired path within the target zone, as with vehicle B,
whose target zone is represented by the magenta line/right

Deviation
D

Position
Error E

Fig. 4. Two scenarios in the zone-targeting algorithm.

dark line, it will be ordered to drive straight ahead. If
the vehicle’s current path would intersect the desired path
before the target zone, it will be turned away from the line
to prevent overshoot. Figure 4 only shows two scenarios
of the vehicle position and heading with respect to the
desired path. Other scenarios can be dealt with similarly.

To this point, the algorithm has been described only for
straight path lines. However, the exact same rules apply
for curves. In those cases, the “straight” outcome is simply
replaced with the turn angle value of the curvature of the
path, and the right and left turns are made with an offset
relative to this angle.

IV. MULTIPLE VEHICLE COLLISION AVOIDANCE

This section describes the distributed control algorithm
for multiple vehicles to achieve collision avoidance capa-
bility. A typical intersection is shown in Figure 5, with
all the possible vehicle paths numbered, from 1 to 12.
Obviously, each vehicle has three choices to pass through
the intersection. Only a subset of the paths have potential
collisions, as marked by the collision point in Figure 5.

Figure 6 shows the software architecture for multiple
vehicle collision avoidance. The motion control algorithm
for each vehicle runs on the PC and is implemented in sep-
arate processes. The ACTS server implements the image
processing and returns the blob location information re-
quested by the ACTS client, which periodically sends the
location of the vehicles to a communication server. Each
vehicle control process runs independently and receives
the periodical location update from the communication
sever. Therefore, each vehicle control process knows the
location and velocity of the vehicle it represents. The
communication between the vehicles is enabled by the
communication server, which, based on the knowledge
of the global status of all the vehicles, simulates the
communication connectivity among the vehicles.
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The motion control algorithm is distributed, which im-
plies that there is no central authority that coordinates the
motion of all the vehicles. The algorithm is based on Guo
and Parker’s distributed motion planning algorithm [13].
However, we consider the limited communication range of
vehicles, which reflects the reality. Upon approaching the
intersection, if vehicle Ai is passing through the begin
point as shown in Figure 5, it starts broadcasting its
intended path Pi, as well as the current status Si =
(Li, Vi) to other vehicles, where Li is the vehicle location
and Vi is the vehicle velocity. Once it passes the end point,
it will stop broadcasting and will no longer participate in
collision avoidance. Upon receiving the broadcast (Pj , Sj)
from another vehicle Aj , Ai checks the collision situation
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Fig. 7. The distributed motion planning algorithm.

based on the path selections and partition all the involved
vehicles into Collision Groups (CGs), where a Collision
Group is the collection of vehicles whose path has at least
one intersection with any path selected by another member
in the same CG. If vehicle Ai is the only member in
the CG, which means that Ai’s selected path does not
intersect any other vehicle’s path, Ai keeps its original
velocity. Otherwise, vehicle Ai and its CG members will
coordinate their velocities such that they can pass through
the intersection without collision and also with minimum
time. The overall algorithm is shown in Figure 7.

The velocity coordination is done on a Coordination
Diagram [13], which is an N -dimensional space repre-
senting the coordination space of the N vehicles in the CG
which includes Ai. Each dimension of the Coordination
Diagram represents the length that each vehicle travels.
The obstacles in the Coordination Diagram represent the
area where two of the vehicles will have a collision. The
goal of the velocity coordination is to find a collision-
free path on the Coordination Diagram so that the start
and goal point are connected. Depending on the time
instant when the vehicles receive the latest broadcasting,
the start point varies on the Coordination Diagram. The
location of the start point on the Coordination Diagram
represents the location of the vehicles when they begin to
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Fig. 8. The average tracking error vs. vehicle velocity in single lane
tracking.

communicate with each other at the latest time. The goal
point represents that all the vehicles in the same CG arrive
at their end points. It should be pointed out that in the case
where multiple vehicles share the same end point, such as
the path 1, 5 and 9 in Figure 5, the goal point on the
Coordination Diagram is only a “virtual” point and does
not imply that the vehicles (1, 2 and 3) should arrive at
the end point at the same time. Instead, after passing the
intersection point, each vehicle will keep its final velocity
and no collision will happen.

To reduce the overall time of intersection passing, the
shortest path on the Coordination Diagram should be
found. Various algorithms exist for collision-free path
searching, such as D∗ search [14]. Once the shortest
path is selected, it will be interpreted into velocity profile
Vi of each vehicle and the corresponding total time Ti

needed for all vehicles in the same CG to pass through the
intersection will be calculated. Then it will be broadcast
to all the other members in the same CG and the best
velocity profiles that result in the minimum Ti will be
selected as the final velocity profiles. The reason for this
mutual decision is that different vehicles may find different
shortest paths based on the algorithm they use. Another
reason is that a mutual decision will make sure that all
vehicles in the same CG will agree on the same velocity
profiles.

V. EXPERIMENTAL RESULTS

A. Single vehicle lane tracking

We implemented the single vehicle tracking algorithm
and tested its tracking performance. The data rate from the
ACTS server is 30Hz. The data rate from the PC to the
miniature vehicle is about 20 packets per second. First,
we evaluated the average tracking error with respect to
the velocity of the vehicle. At each fixed velocity, the
realtime tracking errors are recorded and used to calculate
the average tracking error. As shown in Figure 8, the
average tracking error increases as the vehicle velocity
increases. Second, we evaluated the average tracking error
with respect to the packet delay, which gets bigger as the
vehicle motion control algorithm gets more complicated.
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Fig. 9. The tracking error vs. packet delay in single lane tracking.
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Fig. 10. The Coordination Diagram and the shortest path for vehicle 1
and 2 when path 2 and 5 are selected.

The tested packet-to-packet time delay is from 50ms to
140ms. Figure 9 shows the average tracking error vs. the
packet delay time, where the velocity of the vehicle is
fixed at 14 cm/s. From this figure it is clear that the
tracking error increases in a roughly linear fashion as the
packet delay increases.

The existence of the noticeable tracking error partially
results from the limited servo control resolution and the
lack of encoder feedback on the rear wheels. However,
this tracking performance can still serve our purpose in
studying the multiple vehicle coordination algorithm.

B. Multiple vehicle collision avoidance

For simplicity, we used two vehicles to illustrate the dis-
tributed motion control algorithm. The width of each lane
is 14 cm. The communication range of each vehicle is set
at 35 cm. As shown in Figure 5, when two vehicles (1 and
2) are passing through the intersection via path 2 and path
5, the Coordination Diagram is shown in Figure 10. When
the same two vehicles are passing through the intersection
via path 1 and path 5, the Coordination Diagram is shown
in Figure 11. To achieve enough safety margin, we use
a square box with sufficient dimension to represent the
obstacle on the Coordination Diagram. To find a shortest
path that connects the start point with the goal point on the
Coordination Diagram, a Reduced Visibility Graph [19]
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Fig. 11. The Coordination Diagram and the shortest path for vehicle 1
and 2 when path 1 and 5 are selected.

is constructed that connects the start point with the goal
point. Then on the Reduced Visibility Graph, a shortest
path is searched using Dijkstra’s algorithm [20]. For the
case when path 2 and 5 are selected, the testing runs prove
that vehicle 1 speeds up while vehicle 2 slows down when
approaching the intersection. The two vehicles safely pass
through the intersection. The running steps are shown in
Figure 12.

(1) (2) (3)

(4) (5)

Vehicle 1Vehicle 2

Fig. 12. The two vehicles pass through the intersection.

VI. CONCLUSIONS

In this paper, an experimental platform for cooperative
driving using vehicle-to-vehicle communication is devel-
oped. The compact form factor and the flexibility of the
COTS-BOTS robot make it a suitable vehicle for this
platform. The vision module is employed to localize the
vehicles, which can be replaced by the GPS or other
localization units in real ITS environment. Single lane
tracking experiments verify that the tracking performance
is satisfying, although better servo motor and an encoder
velocity feedback will certainly improve the tracking per-
formance. A new algorithm for multiple vehicle collision
avoidance is proposed and validated using two vehicles.
This algorithm improves existing mobile robot motion

coordination algorithm so that it fits in our application.
This platform will certainly lead us to study and test more
collision avoidance algorithms using vehicle-to-vehicle
communication. In our future work, we will conduct ex-
periments for scenarios that involve more than 2 vehicles.
Also, another type of miniature vehicle that has much
more computational power than the current one is under
development. The goal is to shift the control processes
from the PC to the miniature vehicles so that they will be
fully autonomous and the experiments will be even closer
to the real vehicle scenarios.
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