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Recent applications call for distributed weighted average estimation over sensor networks, where sensor measurement
accuracy or environmental conditions need to be taken into consideration in the final consensused group decision. In this
paper, we propose new dynamic consensus filter design to distributed estimate weighted average of sensors’ inputs on
directed graphs. Based on recent advances in the filed, we modify the existing proportional-integral consensus filter protocol
to remove the requirement of bi-directional gain exchange between neighbouring sensors, so that the algorithm works
for directed graphs where bi-directional communications are not possible. To compensate for the asymmetric structure of
the system introduced by such a removal, sufficient gain conditions are obtained for the filter protocols to guarantee the
convergence. It is rigorously proved that the proposed filter protocol converges to the weighted average of constant inputs
asymptotically, and to the weighted average of time-varying inputs with a bounded error. Simulations verify the effectiveness
of the proposed protocols.

Keywords: distributed estimation; consensus filter; directed graphs; weighted average

1. Introduction

Distributed estimation is a fundamental problem in net-
worked systems, such as sensor networks (Akyildiz, Su,
Sankarasubramaniam, and Cayirci 2002), mobile robot net-
works (Cao, Fukunaga, and Kahng 1997; Wieland, Kim, and
Allgöwer 2011; Zhang, Wang, and Guo 2012), social net-
works (Scott 2000), and other process networked systems
(Zhang, Shi, and Mehr 2011, 2012; Zhang, Shi, and Liu
2013). Direct applications of conventional estimation meth-
ods often need all-to-all communications, which causes
large communication burdens. Much attention has been
paid recently to consensus or gossip algorithms to relax
the all-to-all communication requirements to neighbour-to-
neighbour communications. In this paper, we present new
distributed consensus filter algorithms for directed graphs.

Xiao, Boyd, and Lall (2005) directly applied average
consensus protocol for the distributed sensor fusion to reach
a final estimation with least mean square errors. This pro-
tocol does not have explicit input and cannot track the aver-
age of time-varying inputs, for which we refer to as ‘static
consensus estimation’. By treating the input signal as a
virtual leader, Ren (2007) proposed a proportional deriva-
tive like controller to track a common time-varying signal
distributively. This method requires an accurate knowledge
of the derivative of the states of neighbours, which may
not be realistic to implement in practice. To remove this
limitation, Cao, Ren, and Li (2009) presented a discrete
time protocol, which requires the state of one-step before
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from the neighbours. In more general cases of distributed
sensing, each agent has a different input and the goal is
to track the average of the set of inputs. Olfati-Saber and
Shamma (2005) introduced a distributed low-pass consen-
sus filter and a distributed high-pass consensus filter, which
are able to track the average of inputs from all sensors in
a network. In the case that the input of the sensors are
not identical, estimation error exists even for a set of con-
stant inputs. Olfati-Saber (2006, 2007) made progresses
to reduce the estimation error. Freeman, Yang, and Lynch
(2006) and Yang, Freeman, and Lynch (2008) proposed a
proportional-integral (PI) consensus filter, which is able to
converge accurately to the average of the inputs when the
inputs are time-invariant. Examining the PI filter (Freeman
et al. 2006; Yang et al. 2008) in frequency domain, the inte-
gral term introduces a zero zero, which cancels out the zero
pole introduced by the constant input. This idea is gener-
alised to ideally track the average of time-varying inputs by
exploiting the internal model principle (Bai, Freeman, and
Lynch 2010).

While the above-mentioned work study average consen-
sus filter, every sensor’s input is considered equal weight
in the final consensused group estimation. In real-world
applications, due to sensor measurement accuracy or other
environmental conditions, one may want to filter sensors’
inputs with some pre-defined or online adjusted weights.
One recent work by our group (Zhang et al. 2011) shows
that using desired weights for each sensor according to

C© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

Y
i G

uo
] 

at
 1

4:
03

 2
3 

Se
pt

em
be

r 
20

13
 

http://dx.doi.org/10.1080/00207721.2013.837541
mailto:lshuai@stevens.edu


2 S. Li and Y. Guo

different channel conditions in communication can increase
sensing efficiency in the application of distributed coop-
erative spectrum sensing for a radio network. However,
there are few literature studying weighted consensus es-
timation. Particularly for directed graphs, introducing de-
sired weights in the filtering protocol breaks the symmetric
structure and brings imbalance of information flow, which
makes the convergence analysis more challenging. While
our earlier work (Zhang et al. 2011) proposed weighted av-
erage consensus protocol for constant inputs, we focus on
dynamic estimation using consensus filter techniques for
time-varying inputs in the current paper.

We study weighted consensus filter on directed graphs.
We first define the problem as to distributively estimate the
direct average or weighted average of input signals, which
may be constant or time-varying, over a directed graph.
For the case of direct average (i.e., average with identical
weights of each sensor), based on recent advances on con-
sensus filters, we modify the PI consensus filter (Freeman
et al. 2006), and remove the requirement of bi-directional
exchange of neighbouring gains. Sufficient gain conditions
are obtained for the filter parameters to guarantee the con-
vergence of the proposed protocol. We then extend it to
the weighted average case, where similar gain conditions
on filter parameters are given. It is rigorously proved that
the proposed filter protocol converges to the weighted aver-
age of constant inputs asymptotically, and to the weighted
average of time-varying inputs with a bounded error.
Simulation results demonstrate the effectiveness of the
method.

This work extends existing results in two ways: (1) the
communication topology is extended to directed graphs
comparing to existing work (Olfati-Saber and Shamma
2005), and the bi-directional exchange of neighbouring
gains is removed comparing to the existing work by Free-
man et al. (2006) and (2) average consensus is extended to
weighted average consensus. The extension is not straight-
forward in comparison with existing average consensus fil-
ter design on undirected or balanced graphs, as the con-
vergence of weighted average consensus filters on directed
graphs does not hold unconditionally due to the imbal-
ance of corresponding Laplacian matrices. In this aspect,
sufficient gain conditions are obtained on filter parame-
ters to guarantee the convergence of the proposed filter
protocols.

The rest of the paper is organised as follows. In Sec-
tion 2, we briefly review graph theory preliminaries and
an existing PI average consensus filter protocol. Then in
Section 3, we present motivating examples and define two
problems to be solved in the paper. The main results are
presented in Sections 4 and 5, where distributed averag-
ing with identical weights and non-identical weights are
discussed, respectively. Simulation results are provided in
Section 6. Finally, the paper is concluded by brief remarks in
Section 7.

2. Preliminaries

2.1. Graph theory

A directed graph G(V, E, A) is denoted by (V, E, A), where
V is the set of nodes, E is the set of edges with E⊆V ×
V, and A = [aij] is the weighted adjacency matrix. The in-
degree and out-degree of a node in the directed graph is de-
fined as degin(vi) = ∑n

j=1 aji and degout(vi) = ∑n
j=1 aij ,

respectively. The directed graph G is said to be balanced
if the in-degree equals to the out-degree for each node in
the graph. A special case of balanced graphs is undirected
graph, which bears the property of aji = aij for all i, j. A
directed graph G is called strongly connected if there al-
ways exist a sequence of consecutive edges starting from a
given node i to another given node j, where node i and node
j could be any node in the graph only if i �= j. The degree
matrix � = [�ij] is a diagonal matrix with �ij = 0 for all
i �= j and �ii = degout(vi) for all i. The Laplacian matrix
L of the graph G is defined as L = � − A. For a strongly
connected graph, the rank of its Laplacian matrix is equal to
(n − 1) where n is the dimension of the Laplacian matrix L.

2.2. PI average consensus filter

Freeman et al. (2006) proposed an average consensus filter,
which reads as follows:

ẋi(t) = −γ xi(t) −
∑
j �=i

aij (t)(xi(t) − xj (t))

+
∑
j �=i

bji(t)(λi(t) − λj (t)) + γ ui(t),

λ̇i(t) = −
∑
j �=i

bij (t)(xi(t) − xj (t)), (1)

where ui(t) ∈ R is the input, xi(t) ∈ R is the decision vari-
able and λi(t) ∈ R is the co-state, γ ∈ R

+ is a constant
parameter, and aij(t) and bij(t) are piecewise continuous
time-varying gains.

The compact matrix form of this protocol writes

ẋ(t) = −LP (t)x(t) − γ (x(t) − u(t)) + LT
I (t)λ(t), (2a)

λ̇(t) = −LI (t)x(t), (2b)

where u(t) ∈ R
n, x(t) ∈ R

n, and λ(t) ∈ R
n are the input

vector, the decision variable vector, and the co-state variable
vector, respectively. LP(t) and LI(t) are Laplacian matrices
constructed by [aij(t)] and [bij(t)], respectively.

As proved by Freeman et al. (2006), the protocol (2)
converges to a consensus value that is the average of the
inputs under certain network conditions (characterised by
mathematical conditions on matrices LI(t) and LP(t)). Note
that both LI(t) and LT

I (t) appear on the right side of (2) as
coefficients (corresponding to the fact that both bij(t) and
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International Journal of Systems Science 3

bji(t) appear in (1)). This indicates that ‘weight information
must be communicated between agents in addition to the
estimator state values’ as claimed by Freeman et al. (2006).
In this paper, we modify the above consensus filter and
remove this requirement of bi-directional communication
between agents, so that the algorithm works for directed
graphs where bi-directional communication is not possible.

3. Problem formulation

In this paper, we focus on the dynamic estimation, where the
estimated quantity is a weighted average of sensor inputs
with different weights in a sensor network. Before stating
the problem, we first provide motivating examples.

3.1. Motivating examples

3.1.1. Motivating Example 1: maximum-likelihood
estimation

In a distributed network, say a sensor network, modelled by
a directed graph, there is a reading ui(t) of the true value
r(t) perturbed by a noise vi associated with the ith sensor:

ui(t) = r(t) + vi(t), (3)

where vi(t) is assumed to have a zero mean σ 2
i variance

Gaussian distribution, vi(t) and vj(t) for i �= j are assumed
to be independent. For the case σ i = σ j for all i and j, the
maximum-likelihood (ML) estimation of r(t) is the direct
average of ui(t) for all i, i.e.,

ûML =
∑n

i=1 ui(t)

n
. (4)

For the case with σ i �= σ j for i �= j, the ML estimation
of r(t), given the measurements u1(t), u2(t), . . . , un(t) with
known σ 1(t), σ 2(t), . . . , σ n(t), is the weighted average of
ui(t), i.e.,

ûML(t) =
∑n

i=1 βiui(t)∑n
i=1 βi

, (5)

where βi = 1
σ 2

i

> 0. Formulas (4) and (5) give ML estima-

tions of u fusing all measurements in the network in the
cases of identical and non-identical measurement accuracy,
respectively. Traditionally, the implementation of formu-
las (4) and (5) needs all data relayed to a fusion centre,
processed there, and then passed back to every sensors.
While this scheme is not scalable to large networks, we
focus on distributed solutions using consensus-based filter
techniques.

3.1.2. Motivating Example 2: distributed cooperative
sensing in a radio network

To demonstrate real-world applications of the weighted av-
erage estimation, here we mention distributed spectrum
sensing for a radio network. Spectrum sensing is a fun-
damental problem in cognitive radio networks, which aims
to improve spectrum utilisation by allowing unlicensed sec-
ondary users (such as smart phone users) to operate in the
‘white space’ of licensed spectrum bands without interfer-
ing licensed primary users (such as TV towers). Distributed
cooperative sensing enables the secondary users to detect
the presence of a primary user in the spectrum. Increasing
attention has recently been paid to distributed cooperative
sensing scheme (Yucek and Arslan 2009; Li, Yu, and Huang
2010), which uses the consensus algorithm to fuse sensor
data over the network and to cooperatively estimate a com-
mon sensed variable (which is usually the detected energy
level). However, due to imperfect channel conditions such
as practical multi-path fading and shadowing effects, the
equal gain combining (i.e., direct average) does not per-
form well as the algorithm considers equal weights for all
sensor measurements. If channel conditions are considered,
for example, the sinal-noise-ratio of the channel can be used
to indicate accuracy of the measurement, in which case a
weighted average consensus algorithm has shown improved
performances (Zhang et al. 2011).

In this paper, we particularly discuss weighted average
filtering algorithms, which lacks focused research attention
in the past.

3.2. Control problem statement

In light of the motivating examples described above, we
state our control problems in this subsection. We consider
both the distributed average with identical and non-identical
weights.

Problem 1 (distributed average estimation): In a dis-
tributed sensor network modelled by a direct balanced
graph, each sensor i has its measurement denoted as ui(t)
that may be time-varying, design a distributed filter protocol

to achieve ui(t) → uj (t) →
∑n

i=1 ui (t)
n

, ∀i, j , as t → ∞.

Problem 2 (distributed weighted average estimation): In
a distributed sensor network modelled by a directed graph,
each sensor i has its measurement ui(t) that may be time-
varying, design a distributed filter protocol to achieve

ui(t) → uj (t) →
∑n

i=1 βiui (t)∑n
i=1 βi

, ∀i, j , as t → ∞, where β i

is the pre-defined weight for the ith sensor.

Remark 3.1: In the above problem statement, Problem 2
extends Problems 1 in two aspects: (1) the identical weight
average is extended to non-identical pre-defined weights
and (2) the communication graph is extended from a
balanced graph to a general directed graph. Note that the
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4 S. Li and Y. Guo

extension from average dynamic estimation to weighted
average estimation is not trivial, as the generalisation
from Problem 1 defined on a balanced graph to weighted
averaging on a general directed graph defined in Problem 2
breaks the symmetric structure of the graph, which makes
the theoretical analysis more challenging.

4. Distributed averaging with identical weights on a
balanced graph

4.1. The protocol

In this section, we design a protocol to solve Problem 1. For
a given network, whose topology can be described by the
Laplacian matrix L constructed by the weight matrix [wij],
where wij > 0 if node i is connected to node j and wij = 0
otherwise, we propose the following protocol to solve the
problem of distributed averaging with identical weights:

ẋi(t) = −γ1

∑
j∈N(i)

wij (xi(t) − xj (t)) − γ2(xi(t) − ui(t))

+ γ3

∑
j∈N(i)

wij (λi(t) − λj (t)),

λ̇i(t) = −
∑

j∈N(i)

wij (xi(t) − xj (t)), (6)

where xi(t) is the local estimation maintained by the ith
sensor, λi(t) is a co-state of the ith sensor, ui(t) is the input
to the ith sensor, N(i) denotes the neighbour set of the ith
sensor, and γ 1, γ 2 and γ 3 are positive constants. Note that
the protocol (6) is distributed since the update of xi and λi

only needs information from the neighbouring sensors.
In a compact matrix form, the protocol writes

ẋ = −γ1Lx − γ2(x − u) + γ3Lλ, (7a)

λ̇ = −Lx, (7b)

where x is the vector of estimation variables, [xT, λT]T is
the state of the filter system, L is the Laplacian matrix
constructed by weights [wij], and γ 1 > 0, γ 2 > 0, γ 3 > 0
are coefficients.

Remark 4.1: Compared to the consensus filter (2) pro-
posed by Freeman et al. (2006), which has LT

I as a coeffi-
cient appearing in the dynamic equation, we replaced it with
γ 3L in (7), so the update of xi and λi requires information
from the neighbouring set N(i) only. But the trade-off is that
we need some gain conditions to guarantee the convergence
of the protocol, which is discussed next.

4.2. Convergence analysis

In this subsection, by conducting convergence analysis, we
prove that the protocol (6) provides a solution to Problem 1

defined in Section 3.1 under certain gain conditions. We
first perform a state transformation in order to decouple
the dynamic system (6) utilising graph properties of the
network.

4.2.1. State transformation

Left multiplicating 1T on the dynamic of λ(t) in the system
Equation (7) generates zero on the right-hand side, which
means 1T λ(t) is an invariant manifold in the evolution of the
dynamic system. Motivated by this one-dimensional invari-
ant property, we want to decouple the system dynamic into
two parts: one part corresponding to this one-dimensional
invariant manifold and the other corresponding to the rest
of the dynamics.

As the equilibrium point of protocol (7) is not the origin,
we first perform a translational transformation to shift the
equilibrium point to the origin. Define

x∗(t) = 11T u(t)

n
, (8)

λ∗(t) =
([

γ3L

1T

]T [
γ3L

1T

])−1 [
γ3L

1T

]T

×
[

γ2( 11T

n
− I )u(t)

λ01T

]
. (9)

As a matrix inverse appears in the expression of λ∗(t) above,
we first show that the inverse exists. This result can be easily
seen from the fact that L has rank n − 1 for a connected
balanced graph and 1T γ3L

T = 0 meaning that the rows in
γ 3L are orthogonal to 1T .

Now we define the following translational transforma-
tion,

e(t) =
[

e1(t)
e2(t)

]
=
[

x(t)
λ(t)

]
−
[

x∗(t)
λ∗(t)

]
. (10)

In the new coordinates, the dynamic of e is as follows:

ė(t) = Ae(t) −
[

ẋ∗(t)
λ̇∗(t)

]
, (11)

where

A =
[−γ1L − γ2I γ3L

−L 0

]
, (12)

ẋ∗(t) = 11T u̇(t)

n
, (13)

λ̇∗(t) =
([

γ3L

1T

]T [
γ3L

1T

])−1 [
γ3L

1T

]T

×
[

γ2( 11T

n
− I )u̇(t)

λ01T

]
. (14)
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International Journal of Systems Science 5

After the equilibrium point shifting, we are able to trans-
form the system into the decoupled space with an additional
similarity transformation. About this point, we have the fol-
lowing proposition.

Proposition 4.1: For a connected balanced graph, there
exists a similarity transformation, such that the average

consensus error e1(t) = x(t) − x∗(t) = x(t) − 11T u(t)
n

of the
system (6) with the input u(t) can be expressed as follows:

ż2(t) = Mz2(t) − Q1ẋ
∗(t) − Q2λ̇

∗(t),

e1(t) = QT
1 z2(t), (15)

where z2(t) ∈ R
2n−1, Q1 ∈ R

(2n−1)×n, Q2 ∈ R
(2n−1)×n, and

M ∈ R
(2n−1)×(2n−1). The eigenvalues of M are identical to

the non-zero eigenvalues of the (2n − 1) × (2n − 1) matrix
A defined in (12).

Proof: See Appendix A. �

Remark 4.2: For time-invariant input u(t) = u(0) for all
t > 0, the weighted average consensus error e1 has the
following expression:

ż2 = Mz2, e1 = QT
1 z2 (16)

as both ẋ∗ and λ̇∗ equal to zero in this case.

4.2.2. Convergence conditions

Next, we provide convergence conditions of (15). Note that
for the protocol (1), convergence is guaranteed for any posi-
tive gains under some mild conditions (Freeman et al. 2006).
However, in our case, we need extra conditions for (6) to
guarantee its convergence since the modification from (1)
to (6) breaks the symmetric property of the protocol (1).
On this point, we have the following proposition.

Proposition 4.2: For the system (6) running on a connected
balanced graph with time-varying input signal u(t), if all
non-zero eigenvalues of the matrix A defined in (12) locate
on the left-half-plane (LHP) strictly, the sensor state xi for

all i tracks the average of the input u(t), which is 11T u(t)
n

, with
a bounded tracking error. Particularly, for time-invariant
input signal u(t) = u(0) for t > 0, this condition guarantees
that the tracking error converges to zero for all sensors.

Proof: See Appendix B. �

To meet the condition that all non-zero eigenvalues of
the matrix A strictly locates on the LHP often results in
solving linear matrix inequalities, which is often computa-
tionally expensive especially for large sensor networks. To
avoid this difficulty, we give a sufficient gain condition as
stated in the following theorem.

Theorem 4.3: The protocol (6) solves Problem 1 defined on
a connected balanced graph with a bounded error provided
the following gain conditions hold,

γ3 > 0, (17a)

γ2 > max
{

max
i∈S

(
4γ3
(
b2

i − a2
i

))
, 0
}
, (17b)

γ1 > max

×
⎧⎨
⎩max

i∈S

⎛
⎝−a2

i γ2 + bi

√
4a4

i γ3 + 4a2
i b

2
i γ3 + b2

i γ
2
2

ai(a2
i + b2

i )

⎞
⎠, 0

⎫⎬
⎭,

(17c)

where ai, bi denote the real and imaginary part of the ith
eigenvalue of the matrix L and S = {2, 3, . . . , n}. That is,
the sensor state xi in (6) for all i tracks the average of

the time-varying input signal u(t), 11T u(t)
n

, with a bounded
tracking error. In addition, the tracking error converges to
zero for all sensors in the case of time-invariant input signal
u(t) = u(0) for t > 0.

Proof: Based on the conclusion drawn in Proposition 4.2,
we can prove the result by showing that the non-zero eigen-
values of the matrix A defined in (12) locate on LHP strictly.
To this end, we directly solve the eigenvalues of this matrix.
That is, we let

det

([−γ1L − γ2I − μI γ3L

−L −μI

])
= 0, (18)

where μ represents the eigenvalue. Noticing that the off-
diagonal blocks commute, we equivalently get

det(γ3L
2 + μ2I + μγ2I + μγ1L) = 0. (19)

We have L1 = 0 and 1T L = 0 for balanced graphs. The
characteristic Equation (19) is a polynomial of L, so we get
(γ 3η

2 + μ2I + μγ 2 + μγ 1η) = 0 with η denoting the
eigenvalue of L. Solving this equation yields

μi =
−(γ2 + γ1ηi) ±

√
(γ2 + γ1ηi)2 − 4γ3η

2
i

2
. (20)

Since η is the eigenvalue of the Laplacian matrix L, we
know η1 = 0 and Re(ηi) > 0 for i = 2, 3, . . . , n. According
to (20), we have μ1 = 0, which is in correspondence to
η1 = 0.

Up to now, we have find the expressions of μi and also
find the zero eigenvalue μ1 = 0. Hereafter, we prove that
the rest eigenvalues μ2, μ3,. . . , μn as given in (20), locate
on LHP, i.e., Re(μi) < 0 for i = 2, 3, . . . , n.
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6 S. Li and Y. Guo

Let ai = Re(ηi) and bi = Im(ηi), then ηi = ai +
bi

√−1. For notational convenience, we define ci and di

as follows:

ci
�= Re

(
(γ2 + γ1ηi)

2 − 4γ3η
2
i

) = (γ2 + γ1ai)
2

− γ 2
1 b2

i − 4γ3a
2
i + 4γ3b

2
i , (21a)

di
�= Im

(
(γ2 + γ1ηi)

2 − 4γ3η
2
i

) = 2γ1bi(γ2 + γ1ai)

− 8aibiγ3. (21b)

With these notations, we have cos(θi) = ci√
c2
i +d2

i

, where

θ i denoting the argument of the complex number (γ2 +
γ1ηi)2 − 4γ3η

2
i . Also we have Re(

√
(γ2+γ1ηi)2−4γ3η

2
i ) =

±
√

c2
i +d2

i cos θi

2 =±
√

c2
i + d2

i

√
cos(θi )+1

2 = ±
√

ci+
√

c2
i +d2

i

2 .

To prove Re(μi) < 0 for i = 2, 3, . . . , n, the following
reasoning is used:

Re(μi) < 0 ⇐ Re(γ2 + γ1ηi) >

√√√√ci +
√

c2
i + d2

i

2

⇐ 2(γ2 + γ1ai)
2 > ci +

√
c2
i + d2

i

⇐ 2(γ2 + γ1ai)
2 − ci >

√
c2
i + d2

i

⇐
{(

2(γ2 + γ1ai)2 − ci

)2 − c2
i − d2

i > 0
2(γ2 + γ1ai)2 − ci ≥ 0

.

(22)

To prove
(
2(γ2 + γ1ai)2 − ci

)2 − c2
i − d2

i > 0 (the first
line in (22)), we have the following by substituting the
expression of ci and di inside:

(
2(γ2 + γ1ai)

2 − ci

)2 − c2
i − d2

i > 0

⇐ a4
i γ

2
1 γ3 + 2a3

i γ1γ2γ3 + a2
i b

2
i γ

2
1 γ3

− 4a2
i b

2
i γ

2
3 + a2

i γ
2
2 γ3 − b2

i γ
2
2 γ3 > 0. (23)

The left-hand side of the above inequality can be regarded
as a function of γ 1 and the function f (γ1) = a4

i γ
2
1 γ3 +

2a3
i γ1γ2γ3 + a2

i b
2
i γ

2
1 γ3 − 4a2

i b
2
i γ

2
3 + a2

i γ
2
2 γ3 − b2

i γ
2
2 γ3 is

a convex quadratic form with respect to γ 1 and f (γ 1) =
0 always has solutions because the discriminant of f (γ 1) is
4a2

i b
2
i γ

2
3 (4a4

i γ3 + 4a2
i b

2
i γ3 + b2

i γ
2
2 ) ≥ 0. A sufficient con-

dition for f(γ 1) > 0 is to choose γ 1 greater than the larger
root of f (γ ∗

1 ) = 0, i.e.,

γ1 > γ ∗
1 =

−a2
i γ2 + bi

√
4a4

i γ3 + 4a2
i b

2
i γ3 + b2

i γ
2
2

ai(a2
i + b2

i )
.

(24)

This inequality holds true under the condition γ1 >

max
{
maxi∈S

(−a2
i γ2+bi

√
4a4

i γ3+4a2
i b

2
i γ3+b2

i γ
2
2

ai (a2
i +b2

i )

)
, 0
}
.

We prove 2(γ 2 + γ 1ai)2 − ci ≥ 0 (the second line in
(22)) by substituting the expression of ci into the inequality
as follows:

2(γ2 + γ1ai)
2 − ci ≥ 0 ⇐ (γ2 + γ1ai)

2 + γ 2
1 b2

i

+ 4γ3a
2
i − 4γ3b

2
i ≥ 0. (25)

With the condition γ2 > max
{
maxi∈S

(
4γ3(b2

i − a2
i )
)
, 0
} ≥

4γ3(b2
i − a2

i ) and the fact γ 2
1 a2

i + 2γ2γ1ai + γ 2
1 b2

i ≥ 0 for
γ 2 > 0 and γ 1 > 0, we conclude (γ 2

2 + 4γ3a
2
i − 4γ3b

2
i ) +

(γ 2
1 a2

i + 2γ2γ1ai + γ 2
1 b2

i ) ≥ 0 is true for i = 2, 3, . . . , n.
Up to now, we have proved the inequalities in (22) hold,

which suffices Re(μi) < 0 for i = 2, 3, . . . , n. According
to the reasoning at the beginning of this proof, Re(μi) < 0
for i = 2, 3, . . . , n, reaches the conclusion. This completes
the proof. �

Note that the gain condition in Theorem 4.3 is a suffi-
cient one for the convergence of the protocol (6).

Remark 4.3: To guarantee the convergence, the pa-
rameters γ 1, γ 2, and γ 3 in protocol (6) can be chosen
using the following procedure according to Theorem
4.3: step 1: assign γ 3 a positive constant; step 2: com-
pute the lower bound max{maxi∈S

(
4γ3(b2

i − a2
i )
)
, 0
}

for γ 2, and assign γ 2 a value greater than this lower
bound; step 3: compute the lower bound max{maxi∈S(−a2

i γ2+bi

√
4a4

i γ3+4a2
i b

2
i γ3+b2

i γ
2
2

ai (a2
i +b2

i )

)
, 0
}

for γ 1, and assign γ 1 a

value greater than this lower bound.

Remark 4.4: The gain condition in Theorem 4.3 requires
global information on the graph topology. For some large
scale networks, the eigenvalues often demonstrate certain
statistical properties (Goh, Kahng, and Kim 2001), which
can be employed for the design of the gains γ 1, γ 2, and
γ 3. Also, it can be derived that a conservative choice of the
gains with γ 2 > 1 and γ 1  γ 2  γ 3 > 0 suffices the gain
condition. Note that the recent work by Qin, Zheng, and
Gao (2011) and the work by Qin and Gao (2012) simplify
the gain conditions for the consensus problem with second-
order dynamics, which will be explored in our future work
for a possible simplification of the gain conditions.

5. Dynamic estimation of weighted average
on a directed graph

In this section, we design a protocol to solve Problem 2.
We first consider the weighted averaging on a balanced
graph in a distributed manner, and then extend the result
to general directed graphs. For a given balanced network,
we propose the following protocol to solve the distributed
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International Journal of Systems Science 7

dynamic estimation of the weighted average:

ẋi(t) = −γ1εi1

∑
j∈N(i)

wij (xi(t) − xj (t)) − γ2(xi(t)

−ui(t)) + γ3εi1

∑
j∈N(i)

wij (λi(t) − λj (t)),

λ̇i(t) = −εi1

∑
j∈N(i)

wij (xi(t) − xj (t)), (26)

where xi(t) is the local estimation ]maintained by the ith
sensor, λi(t) is a co-state of the ith sensor, ui is the input
to the ith sensor, εi1 = 1

βi
and β i is the pre-defined weight

of the ith sensor. N(i) denotes the neighbour set of the ith
sensor. γ 1, γ 2, and γ 3 are positive constants. Note that
the protocol (26) is distributed since the update of xi(t)
and λi(t) in the protocol only need information from the
neighbouring sensors.

In a compact matrix form, the protocol writes

ẋ(t) = −γ1
1Lx(t) − γ2(x(t) − u(t)) + γ3
1Lλ(t),

λ̇(t) = −
1Lx(t), (27)

where 
1 = diag([ε11, ε21, . . . , εn1]), γ 1 > 0, γ 2 > 0, γ 3

> 0 are constant coefficients.

Remark 5.1: Compared with Protocol (7), the desired
weight matrix 
1 shows up in (27) as the coefficient of
L. The convergence proof of (27) is not straightforward
due to the presence of 
1. Although a similar procedure
can be followed for the proof, the transformation matrices
used in the direct average case is not applicable to (27). In
the next, we present a different transformation and conduct
convergence analysis of the proposed protocol.

5.1. Convergence analysis

Protocol (26) provides a solution for Problem 2 defined on
a balanced graph. In this section, we give the following gain
condition guaranteeing the convergence of this protocol.

Theorem 5.1: Protocol (26) solves Problem 2 defined on a
connected balanced graph with a bounded error, provided
the following gain conditions hold

γ3 > 0, (28a)

γ2 > max
{
max
i∈S

(
4γ3
(
b2

i − a2
i

))
, 0
}
, (28b)

γ1 > max

×
⎧⎨
⎩max

i∈S

⎛
⎝−a2

i γ2 + bi

√
4a4

i γ3 + 4a2
i b

2
i γ3 + b2

i γ
2
2

ai(a2
i + b2

i )

⎞
⎠, 0

⎫⎬
⎭,

(28c)

where ai, bi denote the real and imaginary part of the ith
eigenvalue of the matrix 
1L and S = {2, 3, . . . , n}. That
is, the sensor state xi in (26) for all i tracks the weighted

average of the input, 1βT u(t)
βT 1 , with a bounded tracking error.

In addition, the tracking error converges to zero for all
sensors in the case of time-invariant input signal u(t) =
u(0) for t > 0.

Proof: See Appendix C. �

5.2. Special case: weighted averaging
on undirected graphs

For an undirected graph, we have L = LT, which means if
a sensor can receive information from another one, it must
be able to send information to that one. Due to the special
structure, system (26) in this case converges for all positive
γ 1, γ 2, and γ 3, as stated in the following corollary.

Corollary 5.2: For the system (6) with γ 1 > 0, γ 2 > 0,
γ 3 > 0 running on a connected undirected graph with
time-varying input signal u(t), the sensor state xi for all i

tracks the weighted average of the input u(t), 1βT u(t)
βT 1 , with

a bounded tracking error. Particularly in the case of time-
invariant input signal u(t) = u(0) for t > 0, the tracking
error converges to zero for all sensors.

Proof: See Appendix D. �

5.3. Extension: weighted averaging on general
directed graphs

A connected directed balanced graph is a special case of
directed graphs with strongly connected topology. In this
part, we extend the above results to general directed graphs
for weighted averaging.

The proposed protocol in this paper for solving
weighted averaging on general directed graphs is as fol-
lows:

ẋi(t) = −γ1εi2

∑
j∈N(i)

wij (xi(t) − xj (t)) − γ2(xi(t)

−ui(t)) + γ3εi2

∑
j∈N(i)

wij (λi(t) − λj (t)),

λ̇i(t) = −εi2

∑
j∈N(i)

wij (xi(t) − xj (t)), (29)

where xi(t) is the local estimation maintained by the ith
sensor, λi(t) is a co-state of the ith sensor, ui(t) is the input
to the ith sensor, εi2 = αi

βi
, with α = [α1, α2, . . . , αn]T

denotes the left zero eigenvalue of L, β i is the pre-defined
weigh constant for sensor i, γ 1, γ 2 and γ 3 are positive
constants.
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8 S. Li and Y. Guo

In a compact matrix form, the protocol writes

ẋ(t) = −γ1
2Lx(t) − γ2(x(t) − u(t)) + γ3
2Lλ,

λ̇(t) = −
2Lx(t), (30)

where 
2 = diag([ε12, ε22, . . . , εn2]) = diag(α)diag−1(β)
with εi = σ 2

i , γ 1 > 0, γ 2 > 0, γ 3 > 0 are constant co-
efficients.

Note that 
2L = diag(α)diag−1(β)L = diag−1

(β)diag(α)L and the matrix diag(α)L is a Laplan-
cian matrix with left zero eigenvector at 1 since
1T diag(α)L = αT L = 0. By regarding diag(α)L as a new
Laplacian matrix, protocol (30) reduce to the weighted
average protocol on a balanced graph.

We have the following theorem.

Theorem 5.3: The protocol (29) solves Problem 2 defined
on a strongly connected directed graph with a bounded
tracking error, provided the following gain conditions hold:

γ3 > 0, (31a)

γ2 > max
{

max
i∈S

(
4γ3(b2

i − a2
i )
)
, 0
}
, (31b)

γ1 > max

×
⎧⎨
⎩max

i∈S

⎛
⎝−a2

i γ2 + bi

√
4a4

i γ3 + 4a2
i b

2
i γ3 + b2

i γ
2
2

ai(a2
i + b2

i )

⎞
⎠, 0

⎫⎬
⎭,

(31c)

where ai, bi denote the real and imaginary part of the ith
eigenvalue of the matrix 
2L and S = {2, 3, . . . , n}. That
is, the sensor state xi(t) in (30) for all i tracks the weighted

average, 1βT u(t)
βT 1 , with a bounded tracking error. In addition,

the tracking error converges to zero for all sensors for time-
invariant input signal u(t) = u(0) for t > 0.

The proof of Theorem 5.3 is similar to that of Theo-
rem 5.1 and is omitted here.

Remark 5.2: Note that the requirement of strongly con-
nected graph is necessary to guarantee that diag(α)L is a
Laplacian matrix of a connected balanced graph, to which
Theorem 5.1 applies.

Remark 5.3: It is worth noting that gain conditions are ob-
tained to guarantee convergence for the proposed averaging
protocols to solve Problems 1 and 2. However, although the
Equations (17), (28) and (31) have the same form, the con-
ditions are different in the sense that ai and bi are defined
differently. Specifically, in (17), ai and bi are defined as the
real and imaginary parts of L; in (28), they are defined as the
real and imaginary parts of 
1L; in (31), they are defined
as the real and imaginary parts of 
2L.

Remark 5.4: The gain condition (31) for general directed
graphs requires knowledge on the spectrum of the graph
Laplacian matrix, which is in contrast to the undirected
graph case without such a requirement (see Section 5.2).
This is because that a general directed graph does not have
a symmetric topological structure and the spectrum of the
matrix 
2L shows up as components in the eigenvalues of
the filter’s system matrix. Same as work by Ren and Atkins
(2007) and Ren (2008), prior knowledge on the graph topol-
ogy is needed. The results applies to applications where
fixed topologies are prior known such as in power grids
(Bai, Wei, Fujisawa, and Wang 2008) and in mobile robot
network with maintained connectivity (Michael, Zavlanos,
Kumar, and Pappas 2008).

6. Simulation examples

6.1. Simulation set-ups

We conduct simulations to compare the performances of
the proposed distributed filter algorithms on the Motivating
Example 1. We consider a small network (as shown in
Figure 1(a)) represented by the following Laplacian matrix:

LA =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 0 −1 0
−1 3 0 −1 0 −1
−1 −1 2 0 0 0

0 0 0 1 −1 0
−1 −1 0 0 3 −1

0 0 −1 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (32)

Clearly, this is a balanced graph since the in-degree equals
the out-degree for all nodes on the graph. By introducing an
extra link from node 5 to node 3, the balanced structure is
destroyed and the new graph, as shown in Figure 1(b), be-
comes unbalanced. The Laplacian matrix of the new graph
is as follows by assigning each existing link with an unit

Figure 1. Graph topologies used in the simulations: (a) a bal-
anced graph and (b) an imbalanced directed graph.
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International Journal of Systems Science 9

weight:

LB =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 0 −1 0
−1 3 0 −1 0 −1
−1 −1 3 0 −1 0

0 0 0 1 −1 0
−1 −1 0 0 3 −1

0 0 −1 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (33)

6.2. Simulation 1: distributed average estimation
on a balanced graph

In this section, we first show the simulation results with
the proposed protocol (6) to solve distributed average esti-
mation on a balanced graph. Then, the proposed protocol
is compared with existing protocols on solving the same
problem.

6.2.1. Performance of the proposed protocol

In this part, we show simulation results with the proposed
protocol (6) to solve distributed average estimation on
the balanced graph shown in Figure 1(a), which is as-
sociated with the Laplacian matrix LA in (32). Table 1
summarises some parameters used in the simulation. We
choose parameters of the filter according to Theorem 4.3.

Table 1. Parameters used in Simulation 1, where ai and bi are
the ith real part and the ith imaginary part of the graph Laplacian
matrix LA, respectively.

Node i 1 2 3 4 5 6

ai 0 1.382 2 3 3.6180 4
bi 0 0 0 0 0 0

According to (17), we first choose γ 3 = 1. Then, with the
value of γ 3, we get max

{
maxi∈S

(
4γ3
(
b2

i − a2
i

))
, 0
} = 0,

thus let γ 2 = 1. With both the values of γ 2 and γ 3,

we get max
{

maxi∈S

(−a2
i γ2+bi

√
4a4

i γ3+4a2
i b

2
i γ3+b2

i γ
2
2

ai (a2
i +b2

i )

)
, 0
} = 0

and the selection of γ 1 = 1 suffices the gain inequality
(17). For the time-invariant input case, we use the input
u =[1,2,3,4,5,6] in the simulation and initialise both x and
λ randomly. As shown in Figure 2(a), by running the pro-
tocol (6), the decision variable xi for all sensors converges
to the ideal average of the constant input. Note that xi ap-
proaches consensus as time elapses, while the co-state λi

converges to different values instead of a common value.
This observation is in consistent with the steady state ex-
pression of λ∗ in (8), which generally has different values
in its entries.

To test the effectiveness of the proposed protocol
for tracking the average of dynamic signals, we con-
sider the time-varying input u(t) = [10sin (0.8t + 0.3),

Figure 2. Averaging on a balanced graph with (a) constant inputs and (b) dynamic inputs. The red dashed line represents the ideal
average.
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10 S. Li and Y. Guo

5sin (1.6t + 0.6), 13sin (0.4t + 0.9), 14sin (0.8t + 1.2),
−9sin (1.6t + 1.5), 7sin (0.4t + 0.8)]. With γ 1 = γ 2 = 10,
γ 3 = 100, which satisfy the gain conditions (17) given in
Theorem 4.3, and the same set-up for other parameters as
in the constant input case, the proposed protocol tracks the
desired average of the time-varying input with a bounded
error as shown in Figure 2(b). For the co-state λ, it keeps
changing to track the λ∗(t) in (8), which varies with time as
u(t) is time-varying.

6.2.2. Comparison with existing methods

6.2.2.1. Comparison with the low-pass consensus filter by
Olfati-Saber and Shamma (2005). In this part, we compare
the proposed protocol (6) with the low-pass consensus fil-
ter proposed by Olfati-Saber and Shamma (2005) on the
estimation accuracy. As shown in Equation (7) in the pa-
per by Olfati-Saber and Shamma (2005), the filter writes
ẋ = −(I + � + L)x + (I + A)u in a compact form, where
I represents an identity matrix, A is the adjacency matrix,
L is the Laplacian matrix, � is the diagonal matrix con-
sisting of the diagonal elements of the Laplacian matrix.
The comparison is performed with L = LA for the low-pass
consensus filter. For the same constant input u = [1, 2, 3,
4, 5, 6] and the same initialisation on x, the output of the
low-pass consensus filter cannot reach a common value as
shown in Figure 3, which is in contrast to the convergence
results by the proposed method shown in Figure 2(a).

6.2.2.2. Comparison with the PI Consensus Filter by
Freeman et al. (2006). In addition, we compare the proposed
protocol (6) with the PI average consensus filter protocol
(1) proposed by Freeman et al. (2006) on the communica-
tion load expenses when conducting averaging task on the

Figure 3. Output of the low-pass consensus filter for averaging
on a balanced graph with constant inputs. The red dashed line
represents the ideal average.

graph shown in Figure 1(a). It is noteworthy that protocol
(1) fails if message routing is not allowed in the network
since the requirement of protocol (1) on bi-directional infor-
mation exchanges cannot be satisfied by the directed graph
shown in Figure 1(a). To make the comparison, we assume
that message routings are allowed for protocol (1) and the
shortest path is taken to route the message. We measure
the communication load by the number of one-hop com-
munications employed for the update of variables in each
step. For protocol (1), the update of x3, which is associated
with node 3, requires information on x1(t) from node 1 and
x2(t) from node 2 to account for the term

∑
j �= 3a3j(t)(x3(t)

− xj(t)) in (1) and also requires information on λ6(t) from
node 6 to account for the term

∑
j �= 3bj3(t)(λ3(t) − λj(t)).

Note that a3j(t) is associated with the link from node 3 to
node j, and a31(t) and a32(t) are non-zero. bj3(t) is associated
with the link from node j to node 3 and b63(t) is non-zero.
Remarkably, there is no direct connection from node 6 to
node 3 and one of the shortest route available from node
6 to node 3 is from node 6 to node 2 and then to node 3
(totally two one-hop communications). Therefore, the min-
imum total number of one-hop communications required to
update x3(t) in each step is 4. The update of λ3(t) re-uses in-
formation on x1(t) and x2(t) to account for

∑
j �= 3b3j(t)(x3(t)

− xj(t)), thus does not add new expenses on the communi-
cation load. With a similar analysis, we can conclude that
for the small graph shown in Figure 2(a), at least totally
32 one-hop communications are required to update x(t) and
λ(t) for all nodes in each step by taking the shortest routing
path. In contrast, the communication topology for protocol
(6) coincides with the graph topology and requires totally
28 one-hop communications to update both x(t) and λ(t) in
(6). In this regard, the communication load is 32 for protocol
(1) vs. 28 for protocol (6), which demonstrates the advan-
tage of the proposed protocol in reducing communication
burdens.

6.3. Simulation 2: distributed weighted average
estimation on a balanced graph

In this part, we show simulation results with the proposed
protocol (26) to solve distributed weighted average estima-
tion on the balanced graph shown in Figure 1(a). It is as-
sumed in this simulation that each sensor has a standard de-
viation σ i and therefore has the desired weights βi = 1/σ 2

i .
The values of σ i and β i are summarised in Table 2. For
this set-up, the values of ai and bi, which are the ith real
part and the ith imaginary part of 
1LA = diag−1(β)LA,
are also shown in Table 2. We choose γ 1 = γ 2 = γ 3 = 1,
which satisfy the gain conditions (28) given in Theorem 5.1
for the constant input case. With the same set of static inputs
as in Section 6.2, the decision variable x in (26) converges
to the ideal average weighted by β as shown in Figure 4(a)
while the co-state λi converges to different values instead
of a common value. With the same time-varying input as
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International Journal of Systems Science 11

Table 2. Parameters used in Simulation 2, where σ i denotes the
standard deviation of the ith sensor; βi = 1/σ 2

i ; ai and bi are the ith
real part and the ith imaginary part of diag−1(β)LA, respectively.

Node i 1 2 3 4 5 6

σ i 1 1.5 2 2.5 3 3.5
β i 1.0000 0.4444 0.2500 0.1600 0.1111 0.0816
ai 0 35.9470 15.4843 5.0156 9.5332 9.5332
bi 0 0 0 0 0.3490 −0.3490

in Section 6.2, the time history of x and λ by running the
protocol (26) under γ 1 = γ 2 = 10, γ 3 = 100, which also
satisfy the gain conditions given in Theorem 5.1, is shown
in Figure 4(b). It can be observed that x tracks the desired
weighted average of the time-varying signal with a bounded
error while the co-state variable keeps changing to track the
desired time varying λ∗(t) in (8).

6.4. Simulation 3: distributed weighted average
estimation on a general directed graph

In this part, we show simulation results with the pro-
posed protocol (29) to solve distributed weighted average
estimation on a general directed graph as shown in Fig-
ure 1(b) with the Laplacian matrix LB in (33). For this
graph, the left zero eigenvector of its Laplacian matrix

Table 3. Parameters used in Simulation 3, where σ i denotes the
standard deviation of the ith sensor; βi = 1/σ 2

i ; ai and bi are the
ith real part and the ith imaginary part of diag(α)diag−1(β)LB ,
respectively.

Node i 1 2 3 4 5 6

αi 0.3932 0.3932 0.2808 0.3932 0.5055 0.4493
β i 1.0000 0.4444 0.2500 0.1600 0.1111 0.0816
ai 0 17.1925 7.9586 1.9831 3.5945 3.5945
bi 0 0 0 0 0.0567 −0.0567

can be computed as shown in Table 3. We use the same
desired weight β as in Section 6.3. For this set-up, ai

and bi, which are the ith real part and the ith imaginary
part of 
2LB = diag(α)diag−1(β)LB , are as summarised in
Table 3. It can be validated that γ 1 = γ 2 = γ 3 = 1 satisfy
the gain conditions (31) given in Theorem 5.3. With the
same set of constant inputs as in Section 6.2, the decision
variable of x in protocol (29) converges to the ideal aver-
age weighted by β as shown in Figure 5(a). The co-state
λ converges to different values as expected. With the same
time-varying input as in Section 6.2, the time history of x
and λ by running the protocol (29) using γ 1 = γ 2 = 10, γ 3

= 100, is shown in Figure 5(b). It can be observed that x
tracks the desired weighted average of the time-varying sig-
nal with a bounded error while the co-state variable keeps
changing to track the desired time varying λ∗(t) in (8).

Figure 4. Weighted averaging on a balanced graph with (a) constant inputs and (b) dynamic inputs. The red dashed line represents the
ideal weighted average.
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12 S. Li and Y. Guo

Figure 5. Weighted averaging on an imbalanced graph with (a) constant inputs and (b) dynamic inputs. The red dashed line represents
the ideal weighted average.

7. Conclusions

In this paper, we solved two problems on distributed esti-
mation: one is to estimate the direct average and the other
is to estimate the weighted average of sensors’ inputs over
a sensor network modelled by a directed graph. We pro-
posed new dynamic consensus filter design based on an
existing PI consensus filter protocol, and removed the con-
straint on requiring bi-directional gain exchange between
neighbouring sensors. Rigorous convergence analysis was
conducted and sufficient gain conditions were obtained on
the filter parameters to compensate for the asymmetry of
corresponding Laplacian matrices. Simulations were per-
formed in both cases of constant and time-varying inputs
to show the effectiveness of the method. The proposed con-
sensus filter design applies to real-world applications where
sensor measurement accuracy or environmental conditions
need to be taken into consideration in the final consensused
group decision, such as the distributed cooperative spec-
trum sensing problem for radio networks that is described
in the motivating example of the paper.
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Appendix A. Proof of Proposition 4.1
Consider A defined in (12). We have

A

[
0n

1n

]
= 02n, AT

[
0n

1n

]
= 02n, (A1)

where 0n, 1n, and 02n denote a n-dimensional zero vector, a
n-dimensional vector with all entries equal to 1, and a 2n-
dimensional zero vector, respectively. Without confusions, we
omit the subscripts in (A1) hereafter. Equation (A1) indicates

A has a zero eigenvalue at the vector
[

0
1

]
for both the left eigen-

vector and the right eigenvector. With this property, we are able
to partition the spectrum of A into two parts: the zero eigenvalue
part and the non-zero eigenvalue part. To perform the partition, we
define the similarity transformation matrix Q being an eigenvector
matrix of the symmetric matrix:

[
I (I − 11T

n
)

(I − 11T

n
) 0

]
. (A2)

Note that this matrix has the same left zero eigenvector and the
same right zero eigenvector as the matrix A, which is [ 0T 1T√

n
]

and
[ 0

1√
n

]
, respectively. According to the spectral theorem (Meyer

2001), there exists matrices Q1 ∈ R
(2n−1)×n and Q2 ∈ R

(2n−1)×n

such that Q and Q−1 have the following forms,

Q =
[

0 1T√
n

Q1 Q2

]
, Q−1 = QT =

[
0 QT

1
1√
n

QT
2

]
. (A3)

Note that Q−1 = QT holds since the matrix in (A2) is symmetric.
Introduce the new variable z based on the following similarity
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transformation,

z =
[

z1

z2

]
= Qe,

where z ∈ R
2n, z1 ∈ R, and z2 ∈ R

2n−1. The dynamic of z can be
obtained as follows:

ż = Q

[−γ1
L − γ2I γ3
L
−
L 0

]
Q−1z − Q

[
ẋ∗

λ̇∗

]

=
[

0 1T

n

Q1 Q2

] [−γ1L − γ2I γ3L
−L 0

] [
0 QT

1
1 QT

2

]
z − Q

[
ẋ∗

λ̇∗

]

=
[

0 0
0 M

]
z −

[
βT λ̇∗
1T 1

Q1ẋ
∗ + Q2λ̇

∗

]
, (A4)

where M ∈ R
(2n−1)×(2n−1) and M = −γ1Q1LQT

1 − γ2Q1Q
T
1 −

Q2LQT
1 + γ3Q1LQT

2 . Separately, we have

ż1 = −1T λ̇∗

n
, ż2 = Mz2 − Q1ẋ

∗ − Q2λ̇
∗.

As to the consensus error measurement e1 = x − x∗, according
to the expression of Q−1 given in (A3), we have

e1 = QT
1 z2.

Note that in z-coordinates, the system is completely decoupled
into a one-dimensional invariant flow of z1 and the rest (2n −
1)-dimensional autonomous one in z2. The eigenvalues of M are
identical to the non-zero eigenvalues of the matrix A due to the
similarity transformation. This completes the proof.

Appendix B. Proof of Proposition 4.2
We prove the result by analysing the transformed system (15) given
in Proposition 4.1. For the case with the time-varying input u(t), it
is sufficient to prove that the system (15) with ẋ∗ and λ̇∗ as inputs
and e1 as output is bounded-input bounded-output. According to
the linear system theory (Chen 1998), this is equivalent to the
statement that the matrix M has all eigenvalues strictly on LHP
and the bound of the tracking error can be expressed as

‖e1(t)‖ ≤ 2μ2
max(P )‖QT

1 ‖‖[Q1, Q2]‖c0

μmin(P )

+ ‖QT
1 ‖‖e1(0)‖

√
μmax(P )

μmin(P )
, (B1)

where t ≥ 0, c0 represents the upper bound of the input, i.e.,
‖[ ẋ∗T λ̇∗T ]T ‖ ≤ c0, P is the solution of the Lyapunov equation
PM + MTP = −I, μmax (P) and μmin (P) denote the largest and
the smallest eigenvalues of P, respectively. Note that the second
term on the right side of (B1) accounts for the zero input response,
which attenuates to zero with time.

For the case with time-invariant input u(t) = u(0), it is also
sufficient to prove that the matrix M has all eigenvalues strictly on
LHP as both x∗ and λ∗ are zero in this situation as pointed out in
Remark 4.2.

In summary, for both the time-varying and the time-invariant
cases, the statement that the matrix M has all eigenvalues strictly
on LHP guarantees the conclusion. In addition, recalling the state-
ment in Proposition 4.1 that the eigenvalues of M are identical to
the non-zero eigenvalues of A defined in (12), we conclude the

result if this matrix has all non-zero eigenvalues strictly on LHP.
This completes the proof.

Appendix C. Proof of Theorem 5.1
The proof follows a similar procedure as the proof of
Theorem 4.3 with some differences on the selection of the trans-
formation matrix. We describe the procedure briefly as follows.

Step 1: Following a similar procedure in Section 4.2.1, the system
can be equivalently transformed into the following:

ė = Ae −
[

ẋ∗

λ̇∗

]
, (C1)

where

e =
[

x

λ

]
−
[

x∗

λ∗

]
, A =

[−γ1
1L − γ2I γ3
1L

−
1L 0

]
,(C2)

ẋ∗ = 1βT u̇

1T β
, λ̇∗ =

([
γ3
1L

1T 
−1
1

]T [
γ3
1L

1T 
−1
1

])−1

×
[

γ3
1L

1T 
−1
1

]T
[

γ2( 1βT

1T β
− I )u̇

1T 
−1
1 λ0

]
, (C3)

x∗ = 1βT u

1T β
, λ∗ =

([
γ3
1L

1T 
−1
1

]T [
γ3
1L

1T 
−1
1

])−1

×
[

γ3
1L

1T 
−1
1

]T
[

γ2( 1βT

1T β
− I )u

1T 
−1
1 λ0

]
. (C4)

Step 2: The eigenvalue, denoted as μ, of A satisfies

det

([−γ1
1L − γ2I − μI γ3
1L
−
1L −μI

])
= 0. (C5)

Noticing that the off-diagonal blocks commute, we equivalently
get

det(γ3L
2
0 + μ2I + μγ2I + μγ1L0) = 0, (C6)

where L0 = 
1L. Since 
1 is a diagonal matrix with all posi-
tive diagonal elements, the off-diagonal elements of L0 are not
greater than 0 and its diagonal elements are all positive. Also, we
have L01 = 
1L1 = 0 and βT L0 = βT diag−1(β)L0 = 1T L = 0,
which mean L0 is actually a Laplacian matrix with β being its left
zero eigenvector. The characteristic Equation (C6) is a polyno-
mial of L0, so we get (γ 3η

2 + μ2I + μγ 2 + μγ 1η) = 0 with η
denoting the eigenvalue of L0. Solving this equation yields

μi =
−(γ2 + γ1ηi) ±

√
(γ2 + γ1ηi)2 − 4γ3η

2
i

2
. (C7)

Clearly, for η1 = 0, μ1 = 0. Now, we only need to show that the rest
eigenvalues of A locate at LHP. By following the same argument
in the proof of Theorem 5.1, we can obtain that the statement in
this theorem indeed guarantees Re(μi) < 0 for i = 2, 3, . . . , n,
which completes the proof.
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Appendix D. Proof of Corollary 5.2
According to the proof in Theorem 5.1, we only need to prove
that all non-zero eigenvalues of the 2n × 2n matrix A defined in
(C2) locate strictly on LHP. To prove the result, we equivalently
show that the auxiliary linear autonomous system with A as the
system matrix has 2n − 1 dimensional asymptotically stable flows,
which correspond to the 2n − 1 eigenvalues on LHP and a single
critically stable flow, which corresponds to the zero eigenvalue.
The auxiliary linear system is constructed as follows:

ẏ = Ay, (D1)

where A is defined as

A =
[−γ1
1L − γ2I γ3
1L

−
1L 0

]
. (D2)

We construct a Lyapunov function V = yTPy with P =
diag(


−1
1
γ3

, 
−1
1 ). Then we have the following result by exploiting

the property L = LT for an undirected graph

V̇ = − yT

[
2
γ3

(γ1L + γ2

−1
1 ) 0

0 0

]
y ≤ 0. (D3)

Clearly, γ1L + γ2

−1
1 is positive definite as L = LT. We find the

largest invariant set is S1 = {y = [y1, y2, . . . , y2n]T ∈ R
2n, y1 =

y2 = · · · = y2n−1 = 0, y2n = k0,∀k0 ∈ R} by letting V̇ = 0 in
(D3). According to LaSalle’s invariance principle, we can con-
clude that this auxiliary system converges to the invariant set S1

with a single degree of freedom k0 ∈ R, which in turn validates
the result.
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