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Abstract— We consider the tracking control of a nonholonomic
mobile robot with parameter uncertainty and unknown dynam-
ics. A new robust adaptive controller is proposed with the aid
of adaptive backstepping and robust control techniques. The
proposed controller guarantees that the tracking error converges
to a small ball containing the origin. The ball’s radius can
be adjusted by control parameters. Uncertainties in both of
kinematics and dynamics of mobile robots are considered of
the first time in the frame of robust and adaptive control in
this paper. Simulation results show effectiveness of the proposed
controller.

I. INTRODUCTION

There has been a growing interest in the design of feedback
control laws for mechanical systems with nonholonomic
constraints in recent years. A well-known fact is that a
nonholonomic system cannot be asymptotically stabilized to a
rest configuration by continuous pure-state feedback laws due
to Brockett’s necessary condition for the asymptotic feedback
stabilization [1]. To overcome the limitation imposed by the
Brocket’s necessary condition, a number of approaches have
been proposed in the last decade. Among these results, on the
stabilization problem of the nonholonomic kinematic systems
without uncertainty, there are time-varying feedback laws,
discontinuous feedback laws, hybrid feedback laws, etc. For
details, refer to [12] and the references therein.

Besides the stabilization problem of the nonholonomic
systems, the tracking control problem is more interesting in
practice. Based on whether the system is described by a
kinematic model or a dynamic model, the tracking control
problem of the system is classified as either a kinematic or
a dynamic tracking control problem. The kinematic tracking
control problem has been widely studied in recent years.
With the aid of the linearization technique, a local tracking
controller was proposed in [11] for a nonholonomic wheeled
mobile robot. In [18], Walsh et al. proposed a continuous lin-
ear local exponential controller with the aid of the linearized
model. In [6], local controllers were also proposed with the
aid of the linearization technique. Based on the dynamic
feedback linearization and the differential flatness concept,
the dynamic controllers with singular points were proposed
in [3][7]. In [9], global tracking controllers were proposed
for nonholonomic wheeled mobile robots. With the aid of the
backstepping technique, semi-global tracking controllers were
proposed in [10] for a more general nonholonomic system in
chained form.

The dynamic tracking control problem of the nonholo-
nomic system has received more attention in recent years.
One of the reasons is that most of practical nonholonomic
mechanical systems are dynamic systems. The dynamics
of the systems usually cannot be neglected in the control
when high performance of the closed system is required. In
addition, control laws using velocities based on kinematic
models only cannot be directly applied to practical dynamic
systems which require forces as inputs. Usually, the control
laws of the nonholonomic dynamic systems are obtained
by simply integrating the control laws of the nonholonomic
kinematic systems. However, simple integration requires exact
dynamics of the systems which is hard to obtain. Considering
practical applications of nonholonomic systems, the difficulty
in modeling practical systems exactly, and the unavoidable
disturbances in control, effective tracking control design of
uncertain nonholonomic systems needs be studied. In [16],
Su and Stepanenko studied the tracking control problem of
the dynamic nonholonomic systems with unknown inertia
parameters, and an adaptive controller was proposed. Chen et
al. discussed the dynamic tracking problem of the uncertain
nonholonomic systems in [2], and a robust H∞ controller
was proposed. However, the proposed controllers in [16][2]
can only guarantee partial states of the system to track the
desired states. In [6][8], the dynamic tracking problem of a
wheeled mobile robot was studied, and a neural network based
controller was proposed. In [4][5][17], the dynamic tracking
problem of the nonholonomic systems with uncertainty in
the dynamics was discussed. Robust and adaptive controllers
were proposed with the aid of suitably defined errors and the
Barbalat’s lemma.

From a review of the literature, most of the results on the
dynamic tracking problem of the nonholonomic systems are
proposed based on the assumption that the kinematics of the
system is exactly known and there are only uncertainties in the
dynamics of the system. However, in practice, there is uncer-
tainty in the kinematics because some geometric parameters
may not be known exactly. In this paper, we will study the
tracking control problem of a wheeled robot with uncertainties
in both kinematics and dynamics. It is assumed that there are
parameter uncertainties in the kinematics and both parameter
and non-parameter uncertainties in the dynamics of the robot.
To solve the tracking control problem with parameter and non-
parameter uncertainties, adaptive backstepping, robust control
techniques and the passivity property of the system are used



to design the controller. The novelty of the results is that
a systematic controller design procedure is proposed for the
tracking control problem of the nonholonomic mobile robot
with uncertainties in both kinematics and dynamics. The
proposed controller design method can be applied to tracking
control of more general dynamic nonholonomic systems with
uncertainties.

II. PROBLEM STATEMENT

Consider a wheeled mobile robot moving on a horizontal
plane (Figure 1). The robot is constituted of a rigid body, two
fixed rear wheels and one steering wheel. Two torque motors
are equipped in the front wheel for driving and steering.
Given a differentiable simple curve (C) defined by one of
its point, the unitary tangent vector at this point, and its
curvature curv(s) with s being the curvilinear coordinate
along the curve, for a point Q in the curve (C), assume that
the curvilinear coordinate at Q is s. Let {Q, T (s), N(s)} be
the Frenet frame on the curve at point Q, assume curv(s)
is bounded and R be a maximum positive constant such that
|curv(s)| < 1/R(∀s) (choose R to be a very large constant
if curv(s) ≡ 0). If the distance between P and the curve
(C) is smaller than R, the position of P is parameterized by
(s, d), where d is the coordinate of P along N(s). The robot’s
configuration is parameterized by q = [q1, q2, q3, q4]T =
[s, d, θ, β]T , where θ is the angle between PF and T (s) and
β is the steering angle of the front wheel with respect to the
robot body. By the classic law of Mechanics and also the
results in [15], one has⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̇1 =
v1 cos q3

1 − curv(q1)q2
,

q̇2 = v1 sin q3,

q̇3 =
v1 tan q4

l
− v1curv(q1) cos q3

1 − curv(q1)q2
,

q̇4 = v2,

(1)

M(q)v̇ + C(q, q̇)v + G(q) = B(q)τ (2)

where l is the distance between the two points P and F ,
v1 is the velocity of the point P , v2 is the angular velocity
of the steering wheel, M(q) is a bounded positive definite
symmetric inertia matrix, C(q, q̇)q̇ is centripetal and Coriolis
torques, G(q) is the gravitational torque, B(q) is the input
matrix, τ is the control input, and the superscript T denotes
the transpose.

For (1)-(2), it is assumed that
1. In (1), l is not exactly known, i.e., l ∈ [lmin, lmax] where

lmax(> 0) and lmin(> 0) are known;
2. In (2), the matrices M(q), C(q, q̇), and G(q) are un-

known but are bounded by known functions fM (q), fC(q, q̇)
and fG(q), respectively, i.e.,

‖M(q)‖ ≤ fM (q), ‖C(q, q̇)‖ ≤ fC(q, q̇), ‖G(q)‖ ≤ fG(q).

3. In (2), the expression of B(q) is known. In fact, it can
be easily derived that

B(q) = diag[1/(r cos q4), 1]

Figure 1. Configuration of a wheeled mobile robot.

where r is radius of the driving wheel. In B(q), it is assumed
that r is not exactly known, i.e., r ∈ [rmin, rmax] where
rmin(> 0) and rmax(> 0) are known.

Control Problem: Given a desired simple curve (C) and
a desired velocity v∗1(t) of the robot, for (1)-(2), the control
problem in this paper is defined as finding a controller τ such
that

lim
t→∞ q2(t) = 0, lim

t→∞ q3(t) = 0, lim
t→∞(v1(t) − v∗1(t)) = 0.

Remark 1: Noting that the assumption |curv(q1)| < 1/R,
(1) is well-defined if |q2| < R and |q4| < π/2. In the
controller design, these conditions will be guaranteed if
|q2(0)| < R and |q4(0)| < π/2.

In (2), the following well-known property is satisfied [16].
Property 1: For a suitably defined C(q, q̇), (Ṁ − 2C) is

skew-symmetric.

III. BACKSTEPPING DESIGN PROCEDURE

To deal with parameter uncertainties and non-parameter un-
certainties in (1)-(2), the adaptive backstepping technique [13]
and the robust techniques are used to design the controller.

Assume |q2(0)| < R, |q3(0)| < π/2, |q4(0)| < π/2, let

b = 1/l, u1 = v1 cos q3/(1 − curv(q1)q2),
u2 = v2, g2 = [0, 0, 0, 1]T ,
g1 = [1, (1 − curv(q1)q2) tan q3,−curv(q1), 0]T ,
g3 = [0, 0, (1 − curv(q1)q2) tan q4/cos q3, 0]T ,

(1)-(2) can be written as

q̇ = g1u1 + g2u2 + bg3u1, (3)

M1(q)u̇ + C1(q, q̇)u + G1(q) = B1(q)τ (4)

where

M1(q) = ΨT (q)M(q)Ψ(q),
C1(q, q̇) = ΨT (q)(M(q)Ψ̇(q) + C(p, ṗ)Ψ(q)),
G1(q) = ΨT (q)G(q),
B1(q) = diag[(1 − curv(q1)q2)/(r cos q3 cos q4), 1],
Ψ(q) = diag[(1 − curv(q1)q2)/ cos q3, 1].

Step 1: Introducing ũ1 = u1 − v∗1 , if u1 were the actual
control input, one had ũ1 ≡ 0 and u1 ≡ v∗1 . Let

z2 = h(q2)



where h(q2) is a smooth monotonic function which maps
(−R, R) onto (−∞, +∞) with the first derivative (with
respect to q2) strictly larger than a positive real number and
such that h(0) = 0, then

ż2 = v∗1Lg1z2 + u2Lg2z2 + bv∗1Lg3z2 = v∗1Lg1z2, (5)

where Lgizj is Lie derivative of zj along gi. Hereafter L
means Lie derivative in this paper.

Introducing
z3 = Lg1z2 − α3,

if Lg1z2 were the actual control input, one had z3 ≡ 0 and
Lg1z2 ≡ α3. Let Lyapunov function

V2 =
1
2
z2
2 ,

to make
V̇2 = −k2z

2
2v

∗
1 ,

we choose
α3 = −k2z2, (6)

where constant k2(> 0) is a design parameter.
Since Lg1z2 is not the control, z3 �≡ 0. So

V̇2 = −k2z
2
2v∗1 + z2z3v

∗
1 .

The second term z2z3v
∗
1 will be cancelled at the next step.

The closed-loop system (5) with (6) is

ż2 = −k2z2v
∗
1 + z3v

∗
1 . (7)

And

ż3 = v∗1L2
g1

z2 − k2
2z2v

∗
1 + k2z3v

∗
1 + bv∗1Lg3Lg1z2. (8)

Step 2: Introducing z4 = L2
g1

z2−α4, let Lyapunov function

V3 =
1
2
(z2

2 + z2
3) +

1
2
γ−1
1 (̂b − b)2,

where constant γ1(> 0) is a design parameter, then

V̇3 = −k2z
2
2v

∗
1 + z3(z4 + z2 − k2

2z2 + k2z3 + b̂Lg3Lg1z2

+α4)v∗1 + γ−1
1 (̂b − b)(˙̂b − γ1v

∗
1z3Lg3Lg1z2).

If L2
g1

z2 were the actual control input, one had z4 ≡ 0. To
make

V̇3 = −k2z
2
2v∗1 − k3z

2
3v∗1 ,

we would choose
˙̂
b = ζ1,

α4 = −(k2 + k3)z3 − (1 − k2
2)z2 − b̂Lg3Lg1z2, (9)

where
ζ1 = γ1v

∗
1z3Lg3Lg1z2,

constant k3(> 0) is a design parameter.
Since L2

g1
z2 is not the control, z4 �≡ 0 and we do not use

˙̂
b = ζ1 as an update law in the control. Then

V̇3 = −k2z
2
2v

∗
1 − k3z

2
3v∗1 + z3z4v

∗
1 + γ−1

1 (̂b − b)(˙̂b − ζ1).

The third term z3z4v
∗
1 will be cancelled at the next step. The

closed-loop system (8) with (9) is

ż3 = −k3z3v
∗
1 + z4v

∗
1 − z2v

∗
1 + (b − b̂)v∗1Lg3Lg1z2.

And

ż4 = v∗1L3
g1

z2 + (k2 + k3)z4v
∗
1 − (k2k3 + k2

3 − 1

+k2
2)z3v

∗
1 − (2k2 − k3

2 + k3)z2v
∗
1 + ˙̂

bLg3Lg1z2

+b̂v∗1Lg1Lg3Lg1z2 + (k2 + k3)(b − b̂)v∗1Lg3Lg1z2

+b̂bv∗1L2
g3

Lg1z2 + bv∗1Lg3L
2
g1

z2 + b̂u2Lg2Lg3Lg1z2.

Step 3: Introducing ũ2 = u2 − α5, let Lyapunov function

V4 =
1
2
(z2

2 + z2
3 + z2

4) +
1
2
γ−1
1 (̂b − b)2,

then

V̇4 = −k2z
2
2v∗1 − k3z

2
3v∗1 + z4[z3v

∗
1 + v∗1L3

g1
z2 + (k2

+k3)z4v
∗
1 − (k2k3 + k2

3 − 1 + k2
2)z3v

∗
1 − (2k2

−k3
2 + k3)z2v

∗
1 + ˙̂

bLg3Lg1z2 + b̂v∗1Lg1Lg3Lg1z2

+b̂2v∗1L2
g3

Lg1z2 + b̂v∗1Lg3L
2
g1

z2 + b̂(ũ2

+α5)Lg2Lg3Lg1z2] + γ−1
1 (̂b − b)(˙̂b

−γ1(z3v
∗
1Lg3Lg1z2 + z4[(k2 + k3)v∗1Lg3Lg1z2

+b̂v∗1L2
g3

Lg1z2 + v∗1Lg3L
2
g1

z2])).

If u2 were the actual control input, one had ũ2 ≡ 0. The
update law of b̂ is chosen as

˙̂
b =

⎧⎪⎨
⎪⎩

ζ2 − δ1(̂b − b0),
if b̂ ∈ (bl, bu), or b̂ = bl, ζ2 ≥ 0,

or b̂ = bu, ζ2 ≤ 0;
−δ1(̂b − b0), if b̂ = bl, ζ2 < 0, or b̂ = bu, ζ2 > 0

(10)
where bl = 1/lmax and bu = 1/lmin, constants δ1(> 0) and
b0(∈ (bl, bu)) are design parameters, and ζ2 is defined by

ζ2 = ζ1+γ1z4v
∗
1 [(k2+k3)Lg3Lg1z2+b̂L2

g3
Lg1z2+Lg3L

2
g1

z2].

The virtual control α5 is chosen as

α5 = [−k4z4v
∗
1 − z3v

∗
1 − v∗1L3

g1
z2 − (k2 + k3)z4v

∗
1

+(k2k3 + k2
3 − 1 + k2

2)z3v
∗
1 + (2k2 − k3

2 + k3)z2v
∗
1

+Π − b̂v∗1Lg1Lg3Lg1z2 − b̂2v∗1L2
g3

Lg1z2

−b̂v∗1Lg3L
2
g1

z2]/(̂bLg2Lg3Lg1z2)

where

Π = −(
√

1 + ζ2
2 + δ1

√
1 + (̂b − b0)2)Lg3Lg1z2×

tanh(z4(
√

1 + ζ2
2 + δ1

√
1 + (̂b − b0)2)Lg3Lg1z2)/δ2),

constants k4(> 0) and δ2(> 0) are design parameters. α5 is
the third stabilizing function. Then

V̇4 ≤ −k2z
2
2v

∗
1 − k3z

2
3v

∗
1 − k4z

2
4v

∗
1 − γ−1

1 δ1

2
(̂b − b)2

−γ−1
1 δ1

2
(̂b − b0)2 +

γ−1
1 δ1

2
(b − b0)2 + ρδ2,

where ρ satisfies ρ = e−(ρ+1)(i.e., ρ = 0.2785) [14].
Remark 2: By the relation between z and q, boundedness

of z2, z3 and z4 guarantees that q2 ∈ (−R, R), q3 ∈



(−π/2, π/2) and q4 ∈ (−π/2, π/2). The update law (10)
guarantees b̂ ∈ [bl, bu] all the time. Therefore, α5 is well-
defined.

Since u2 is not the control input, ũ2 �≡ 0. However, we
will choose (10) as the final update law of b̂ in the control.
Then

V̇4 ≤ −k2z
2
2v∗1 − k3z

2
3v

∗
1 − k4z

2
4v

∗
1 + z4b̂Lg2Lg3Lg1z2ũ2

−γ−1
1 δ1

2 (̂b − b)2 − γ−1
1 δ1

2 (̂b − b0)2 + γ−1
1 δ1

2 (b − b0)2 + ρδ2.

And

ż4 = −k4z4v
∗
1 − z3v

∗
1 + ũ2b̂Lg2Lg3Lg1z2

+Lg3Lg1z2
˙̂
b + Π1 + (b − b̂)[̂bL2

g3
Lg1z2

+Lg3L
2
g1

z2 + (k2 + k3)Lg3Lg1z2]v∗1 .

Step 4: Since u1 is not the control input, ũ1 �≡ 0. Let
ũ = [ũ1, ũ2]T and

η = [v∗1 , α5]T , (11)

then

M1
˙̃u = B1τ − C1ũ − (M1η̇ + C1η + G1). (12)

In (12), M1, C1 and G1 are unknown but are bounded by
known functions, i.e.,

‖M1(q)‖ ≤ fM (q)‖Ψ(q)‖2,

‖C1(q, q̇)‖ ≤ (fC(q) + fM (q)‖Ψ̇(q)‖)‖Ψ(q)‖2,
‖G1(q)‖ ≤ fG(q)‖|Ψ(q)‖.

Also in B1, r is unknown.
Define c = 1/r, let ĉ be the estimates of c, we choose the

control law
τ = B̂−1

1 [−Kpũ + ∆ + Λ] (13)

where Kp is a positive definite matrix, and B̂1 is the value
of B1 corresponding to the estimate ĉ, i.e.,

B̂1 = diag[ĉ(1 − curv(q1)q2)/ cos q3 cos q4, 1].

Λ and ∆ will be determined next. Then

M1
˙̃u = −Kpũ − C1ũ + ∆ − (M1η̇ + C1η + G1)

+Λ + (B1 − B̂1)τ.

Let

V5 = 1
2 [z2

2 + z2
3 + z2

4 + ũT M1ũ + γ−1
1 (̂b − b)2

+γ−1
2 (ĉ − c)2],

then

V̇5 = −k2z
2
2v

∗
1 − k3z

2
3v

∗
1 − k4z

2
4v∗1 + z4Lg3Lg1z2

˙̂
b + z4Π

+γ−1
1 (̂b − b)[ḃ − z3u1Lg3Lg1z2 − z4u1(̂bL2

g3
Lg1z2

+Lg3L
2
g1

z2 + (k2 + k3)Lg3Lg1z2)] − ũT Kpũ + [ũT Λ
−(k2z

2
2 + k3z

2
3 + k4z

2
4)ũ1 + z4(̂bLg2Lg3Lg1z2

+Lg2L
2
g1

z2)ũ2] + γ−1
2 (ĉ − c)(˙̂c − γ2ũ1τ1(1−curv(q1)q2)

cos q3 cos q4
)

+ũ(∆ − (M1η̇ + C1η + G1))

where τ1 is the first element of τ .

If we choose the update law b̂ as in (10), the update law
of ĉ is

˙̂c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ2ũ1τ1(1 − curv(q1)q2)
cos q3 cos q4

− δ1(ĉ − c0),

if ĉ ∈ (cl, cu), or ĉ = cl,
ũ1τ1(1 − curv(q1)q2)

cos q3 cos q4
> 0, or ĉ = cu,

ũ1τ1(1 − curv(q1)q2)
cos q3 cos q4

< 0;

−δ1(ĉ − c0), if ĉ = cl,
ũ1τ1(1 − curv(q1)q2)

cos q3 cos q4

≤ 0, or ĉ = cu,
ũ1τ1(1 − curv(q1)q2)

cos q3 cos q4
≥ 0,

(14)

and

∆ = − χ2ũ

χ‖ũ‖ + δ2
,

χ = fM (q)‖Ψ(q)‖2‖η̇‖ + fG(q)‖|Ψ(q)‖
+(fC(q) + fM (q)‖Ψ̇(q)‖)‖Ψ(q)‖2‖η‖

Λ =
[

k2z
2
2 + k3z

2
3 + k4z

2
4

−z4b̂Lg2Lg3Lg1z2

]
,

where γ2(> 0) and c0(∈ (cl, cu)) are design parameters, cl =
1/rmax, and cu = 1/rmin, then

V̇5 ≤ −k2z
2
2v

∗
1 − k3z

2
3v

∗
1 − k4z

2
4v

∗
1 − γ−1

1 δ1

2
(̂b − b)2

−ũT Kpũ − γ−1
2

2
δ1(ĉ − c)2 +

γ−1
1 δ1

2
(b − b0)2

+
γ−1
2

2
δ1(c − c0)2 + (ρ + 1)δ2. (15)

IV. MAIN RESULTS AND DISCUSSIONS

A. Main Results

With the aid of the preceding design procedure, one has
the following result.

Theorem 1: With the controller (13) and the update laws of
b̂ and ĉ defined in (10) and (14), respectively, if v∗1(t) ≥ εv >
0, then zi(2 ≤ i ≤ 4), ũ, (̂b − b), and (ĉ − c) are uniformly
bounded and exponentially converge to a small ball containing
the origin. The radius of the ball can be adjusted by the design
parameters.

Proof: It can be proved that the modified projection
algorithm (10) guarantees that b̂ ∈ [bl, bu], therefore α5

is well-defined all the time. With the update law (14), it
can be proved that ĉ ∈ [cl, cu]. So the control law (13) is
well-defined. Therefore, all variables in the system are well-
defined. Differentiating V5 with respect to time along the
closed-loop system, one has (15). Therefore,

V̇5 ≤ −µ1V5 + µ2 (16)

where µ1 is a positive constant which depends on the control
parameters, and

µ2 = γ−1
1 δ1

2 (b − b0)2 + γ−1
2
2 δ1(c − c0)2 + (ρ + 1)δ2.

So
V5(t) ≤ (V5(0) − µ2

µ1
)e−µ1t +

µ2

µ1
.



zi(2 ≤ i ≤ 4), ũ, (̂b− b), and (ĉ− c) are uniformly bounded
and exponentially converge to a small ball. The radius of the
ball can be adjusted by the design parameters γi(1 ≤ i ≤ 2),
δ1, b0, c0, and δ2.

With the aid of the state transformation and Theorem 1,
one has the following result.

Theorem 2: With the controller (13) and the update laws
b̂ and ĉ defined in (10) and (14), respectively, if |q2(0)| <
R, |q3(0)| �= π/2, |q4(0)| �= π/2, and v∗1(t) ≥ εv > 0,
then qi(2 ≤ i ≤ 4), (v1 − v∗1), (̂b − b), and (ĉ − c) are
uniformly bounded and converge to a small ball containing
the origin. The radius of the ball can be adjusted by the design
parameters.

Proof: By Theorem 1, zi(2 ≤ i ≤ 4), ũ, (̂b − b), and
(ĉ−c) are uniformly bounded and exponentially converge to a
small ball. By calculation, it can be proved that qi(2 ≤ i ≤ 4)
and (v1−v∗1) are uniformly bounded and converge to a small
ball.

B. Discussions

If |q2(0)| < R, in order to make q2 ∈ (−R, R) all the
time, z2 = h(q2) is introduced in Step 1. With the condition
imposed on h(q2), if z2 is bounded, q2 ∈ (−R, R). Therefore,
the definition of point Q is unique and d is well defined in
the control. If R < ∞, one choice of h(q2) is

h(q2) =
2R

π
tan(

πq2

2R
).

Specially, if curv(s) = 0, one can choose h(q2) = q2. If
|q3(0)| < π/2 and |q4(0)| < π/2, the proposed controller will
make |q3| < π/2 and |q4| < π/2 all the time. If |q2(0)| ≥ R
or |q3(0)| = π/2 or |q4(0)| = π/2, one can first use an
open-loop control law to make the robot move into the region
that the proposed controller can be applied, then apply the
proposed controller.

Unknown parameters b(= 1/l) and c(= 1/r) are updated
by the adaptive laws (10) and (14), respectively. They guar-
antee that b̂ ∈ [bl, bu] and ĉ ∈ [cl, cu].

The control parameters are ki(2 ≤ i ≤ 4), Kp, γi(1 ≤ i ≤
2), δ1, δ2, b0, and c0. Large values of ki(2 ≤ i ≤ 4) and Kp

make qi(2 ≤ i ≤ 4) and (v1 − v∗1) converge quickly to the
small ball. Small values of γ−1

i δ1(1 ≤ i ≤ 2) and δ1 make
the radius of the ball small. Parameters b0 and also affect the
radius of the small ball. If b0 and c0 are close to b and c,
respectively, the tracking error will be small. Therefore, in
order to make qi(2 ≤ i ≤ 4) and (v1 − v∗1) converge quickly
to the origin, one can make ki(1 ≤ i ≤ 4), Kp, γi(1 ≤ i ≤ 2)
large and δ1 small.

V. SIMULATION

In order to verify the validity of the proposed controller,
Simulations were done with MATLAB. We assume the mobile
robot has the following real parameters: m = 1, I = 1, l =
1.3, r = 0.4 where m is the mass of the robot, I is the
inertia moment around point P. In the simulation, m, I , l and
r are not known. However, we know lmin = 0.8, lmax = 1.4,

rmin = 0.2 and rmax = 0.6. During the control, the given
path is assume to be a circle with radius 5m and v∗1 = 3m/s.
The initial conditions q(0) = [0, 1,−0.7328,−0.041]T and
v(0) = [0, 0]T . With the proposed control law, we choose
the control parameters as follows. k1 = 1, k2 = 1, k3 = 1,
k4 = 1, kp = diag[1, 1], δ1 = 0.1, δ2 = 0.1, γ1 = 1, γ2 = 1,
b0 = 0.91, c0 = 2, b̂(0) = 0.91 and ĉ(0) = 2. Figs. 2, 3
and 4 show the responses of d, θ and (v1 − v∗1). From the
results, it is shown that d, θ and (v1−v∗1) converge to a small
ball containing the origin. Figs. 5 and 6 show the responses
of b̂ and ĉ. It is shown that they are bounded. Especially, b̂
and ĉ do not go through zero. Fig. 7 show the desired path
and the real path in X-Y plane. The control inputs calculated
from the control law are bounded and not large. They can be
realized by typical mobile actuators. These simulation results
show that the proposed controller is effective.

VI. CONCLUSION

In this paper, the tracking control of a nonholonomic
wheeled robot with parameter uncertainty and non-parameter
uncertainty was considered. A robust adaptive controller was
proposed with the aid of adaptive backstepping and robust
control techniques. Simulation results demonstrated the ef-
fectiveness of the proposed controllers.
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