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ABSTRACT

We consider the problem of trajectory generation of non-
holonomic mobile robots. We propose two trajectory gen-
eration algorithms, one uses a differential flatness based
method and the other uses a polynomial input based
method. Simulation results are shownfor the proposed tra-
jectory generation algorithms.
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1. INTRODUCTION

Trajectory generation of nonholonomic mobile robots has
been widely studied in the last decades [6][8][5]. Due
to the nonholonomic constraints, trajectory generation of
nonholonomic systems is not an easy task. Many well-
developed trajectory generation methods for holonomic sys-
tems cannot be directly used to plan the motion of nonholo-
nomic systems. New different methods have been proposed
for the trajectory generation problem of nonholonomic sys-
tems, which includes differential geometric and differential
algebra techniques, geometric phase, control input parame-
terization, and optimal control approach. The idea behind
differential geometric and differential algebra techniques is
to generate motions in the directions of iterated Lie brackets
by employing typical inputs [10]. Monaco and Normand-
Cyrot first proposed to use piece-wise constant inputs in
trajectory generation in [9]. In [10], sinusoids are used as
inputs in the trajectory generation. In [1 1][12], a trajectory
generation algorithm is proposed for nonholonomic systems
based on the concept of differential flatness. For differential
flat nonlinear systems, the trajectory generation problem is
equivalent to finding the output functions which satisfy the
boundary conditions posed on the initial and final states.
For nonholonomic Chaplygin systems, various techniques
based on the different geometric phase were proposed in
[1][3][7]. In the geometric phase approach, the trajectory
generation problem is reduced to find an appropriate base

space path to produce the desired geometric phase. In [2],
the optimal trajectory generation is discussed.
In this paper, we consider the trajectory generation prob-
lem ofmobile robots. We propose two trajectory generation
methods. The first one is based on the differential flatness
of nonholonomic mobile robots. We use polynomials as flat
outputs. A second order and a fifth order polynomials are
proposed for the two flat outputs. The second method is
based on the well-known chained form and the polynomial
input method. The control inputs are a constant and a sec-
ond order polynomial, respectively. By integrating control
inputs, the coefficients of the polynomials are determined
by boundary conditions.
This paper is organized as follows. In Section 2, the prob-
lem discussed in this paper is defined. In Sections 3 and 4, a
flatness based and a polynomial input based trajectory gen-
eration algorithms are proposed, respectively. In Section 5,
simulation results are presented to show the effectiveness
of the proposed algorithms. The last section concludes this
paper.

2. MOBILE ROBOT MODEL AND PROB-

LEM STATEMENT
Consider a car-like mobile robot shown in Figure 1. The
front wheels of the mobile robot are steering wheels and
the rear wheels are driving wheels with a fixed forward ori-
entation. The kinematic model of the mobile robot can be
written as

Cos 0 1
sin 0

tan /l1
0]i

pul + 0 U2 (1)

where q = [xI y, 9, I ]T is the system state, (x, y) repre-
sents the Cartesian coordinates of the middle point of the
rear wheel axle, 0 is the orientation of the robot body with
respect to the X-axis, X is the steering angle; 1 is the distance
between the front and rear wheel-axle centers, p is the ra-
dius of rear driving wheel; u1 is the angular velocity of the
driving wheels, and u2 is the steering velocity of the front
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wheels. q E (-7r/2, 7r/2) due to the structure constraint of
the robot.

v

0

Frait wheels

Next, we propose an algorithm to generate the trajectory of
system (1) from the initial state (xo. yo, 0o, 4o) at time t =
0 to the final state (xf, Yf, Of, 4f) at time t = T and such
that I1(t)I > E(> 0). For x, noting the boundary condition
(3), we choose

x = x((T - t)/T + xft/T + at(t - T) (6)
where a is a constant determined by

I(xf-xo)/T + a(2t-T)I > E(>0). VtE (0, T). (7)

One pair of a and which satisfy (7) isx
x

Figure 1. A Car-Like Robot

This paper considers the trajectory generation problem of
the mobile robot from an initial point to a final point. Given
an initial state q(0) at time t = 0 and a final state q(T)
at time t = T, the problem discussed in this paper is as
follows.
Trajectory Generation: Generate a feasible trajectory for
the state q from the initial state q(O) at time t = 0 to the
final state q(T) at time t = T accounting for nonholonomic
kinematics.
In the following sections, we propose two trajectory gener-
ation methods with the aid of different techniques.

3. TRAJECTORY GENERATION BASED

ON DIFFERENTIAL FLATNESS

a= rrIxf o = tl X(I2T2 I 2T

Therefore, the trajectory generated for x is

x = xo(T - t) + XfT + T- XoI t(t - T).
T T 2T2

(8)

(9)

For y, noting the boundary conditions (4) on the initial
point, we choose

y= Y(+c taii 0()t+ 2 tan ( t2+bj t3 +b2t4 +b3t5 (10)

where

ce
= 2(Xf - xo) - Ixf -xoI Ixf - Xlo

I1 2T .a2
b = [b, b2. b3]T is a constant vector determined by the
boundary conditions. By (5), we have

The concept ofdifferential flatness was introduced by Fliess
et al. in [4]. An important property of flat systems is that we
can find a set of outputs such that all states and inputs can
be expressed in terms of these outputs and their derivatives.
Differential flatness has been widely used in trajectory gen-
eration, controller design and other areas. In this section, we
use the differential flatness concept to our trajectory gener-
ation.
From (1), we have

dy
d = tanG,dx

d2y tan4
dx2 - cos3 0 ' (2)

Therefore, 0 and X can be calculated from dy/dx and
d2y/dx2, which means that system (1) is differentially flat
[4]. For the flat outputs x and y, we have the following
boundary conditions

x(O) = x(, x(T) = Xf, (3)
dy d2y tan oY(O) =Yod t=o=tanG0 dx2t=O = lCOO:I , (4)

y(T) = tdy= tofd2 =anf(y(T j7It=T dx2It=T = co39(5)

45 ~~~~~~a2tan Oob1T+b2T4+b3T5 = y -yo-a1 tan 0oT- OT2,bi T~~~~~~~~~ ~21 cos3i T

3b, T2+4b2T3+5b:1T4 = a3 tan Of-a1 tanO0- a2 tan T,I COO3 Oo

6b,T + 12b2T3 + 20b3T3 - a2 tan of _ a2 tan (/
eCOS3Of o cos3 =0

where a:, = (2(xf - x0) + Ixf - xol)/(2T). Let

[TI T4
A = 3T2 4T:

[ 6T 12T2
5T4

201

a2tan 0T2
Yf - Yo -(1 tan 0oT 2 02

c= a3tailOf-a1 ta - ( T03 1~~~~~~cos3 0o
a2 tan of _ a2tan4(
lCos19Of l cos3 00

Since T $& 0, A is nonsingular. Therefore, b has a unique
solution, i.e.,

b= A-1c. (11)
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By (2), we have

tan- (2T2 tan00 + l2Zton 2+4b2t3ta
lo2O0( + 3b1t 4bt

+5b3t4)/(2T(xf - xo) - Tlxf- xol + 21xf - xolt)), (12)

q=tan- os2 00 + 6bLt + 12b2 + 20bt3) )(13)

Since

1(2T(xf-xo)-TJxf-xoI+21xf -xolt)I > E(Vt e [0, T]),

0 is well-defined. Up to now, the trajectory of state
(x, y, 0, Q) is generated from the initial state (x() y(, 0(, $o)
at time t = 0 to the final state (xf, Yf, Of, Of ) at time t = T.
In summary, we propose the following trajectory generation
algorithm.
Trajectory Generation Algorithm 1:
Step 1: Using boundary conditions, generate trajectory of
x according to (9);
Step 2: Calculate b and generate trajectory y according to
(10);
Step 3: Generate trajectories of 0 and 4 according to (12)
and (13), respectively.
From the planned motion, we can obtain ul and U2 over
interval [0. T] as follows.

ui(t = 2(xf - x0) - IXf - xo + $VO-XI Cos0
2Tp T /

+(a, tanO(0 + a2 tan l00t + 3b1t2 + 4b2t31 COS:30o+4bt
+5b3 t4) sin 0/p

U2 (t) =
(14)

(15)

where 0 and s are functions of time t. In order to make the
system robust to the initial state errors and disturbances dur-
ing the motion, closed-loop controller can be used. How-
ever, this paper will not discuss this problem.
Flatness based trajectory generation method has been pro-
posed in several papers [4][11][12][14][13]. However, our
trajectory generation is different from them. In our trajec-
tory generation, we assume the two flat outputs are all func-
tions of time t. While in the existing literature one output is
assumed to be a function of another. Since the outputs are
all polynomials of time, the orders of the polynomials with
respect to time are lower than those in [14][13].

4. TRAJECTORY GENERATION BASED

ON POLYNOMIAL INPUTS

In this section, we propose another method. In order to
make the trajectory generation problem of system (1) easier,

we convert (1) into the chained form. Let the state transfor-
mation

Zl = X Z2 = tacos30 = tan0, Z4 = y

and the input transformation

(16)

= uipCOS0v = u21 cos2 0+ 3 sin 0 sin2 Ov1v1 =V2 = 12cos50cos2Q (17)

system (1) is transformed into

z1= V1, Z2 = V2, Z3 = Z2Vl, Z4 = Z3V1- (18)

System (18) is the chained form which is introduced first in
[10]. Since system (1) is equivalent to system (18) when
0 E (-7r/2, 7r/2) and 0 e (-7r/2, 7r/2), the trajectory gen-
eration problem of system (1) is equivalent to that of system
(18). Therefore, we only consider the trajectory generation
problem of system (18). Noting the transformation in (16),
that system (1 ) moves from the initial state (xO, Yo,I0, Oo)
at time t = 0 to the final state (xf,yf,Of,0f) at time
t = T is equivalent to that system ( 18) moves from the ini-
tial state (zIO, Z20, Z30, Z40) at time t = 0 to the final state
(Zlf, Z2.f, Z3,f, z4f) at time t = T where

ZJJ = X0, Zl.f = Xf

Z20 = tanc40 Z30 = tan So, Z40 = YO,

(19)

(20)
Z2f=tan bf

I 0o , Z3.f = tanOf, Z4,f j. (21)

We choose the inputs

vi = a(, v2 = b( + blt + b2t2, (22)

by (18), we have

zi (t) = z10+ aot,
1 2 1t3,Z2(t) = Z20 + bot + -bit + _b2

1 t2 +1z3 (t) z30 + aoz20t + -aobot± -aob1it2 6

±-1a0b2t412

(23)

(24)

(25)

z4(t) = Z40 + a(z30t + 1 2 t2 + -a2b(t12 4 1~2 6(
+ 2 a2bi t4 + 6 a2b2t5.

For z1, by the boundary conditions (19), we have

a( = (zl.f -Zo)/T.

(26)

(27)

For Z2, Z,3 and Z4, by the boundary conditions (21), we have

b = AI-d (28)
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where b = [bo, bl, b2]T,

M=

T T1 2
1 12 2 3 4

-aoT a(T -a T56 24 60(~~1i

Z2,f - Z2()

d = Z3,f - Z3( - aoz2(T
Z4,f-Z4-a0z30T - 2az2T

I'
Al is a nonsingular if ao $& 0 and T #& 0. Once ai and bi are
obtained, the steering control and the motion of the state are
determined. By the inverse transformations, we can obtain
the open-loop steering control and motions of the original
states which are omitted here for space limit. To sum up,
the trajectory generation algorithm is as follows.
Trajectory Generation Algorithm 2:
Step 1: Transfer system (1) into chained form (18) with the
transformation (16)-(17);
Step 2: Calculate ao and b according to (27) and (28), re-
spectively;
Step 3: Generate the trajectory z according to (23)-(26);
Step 4: Generate trajectory q by the inverse transformation
of(16)-(17).
It should be noted that the flatness based trajectory gener-
ation and the polynomial input based trajectory generation
are different. In the flatness based trajectory generation, the
flat outputs are polynomials, while in the polynomial input
based trajectory generation the steering control inputs are
polynomials.
In Algorithm 2 x is a linear function of t while x is a poly-
nomial function of t with second order in Algorithm 1. In
both algorithms, y is a polynomial with five order. In both
algorithms, the initial and final values of 0 and X should not
be 7r/2.

5. SIMULATION

To show effectiveness of the proposed trajectory genera-
tion methods, simulation results are presented in this sec-
tion. For the mobile robot, we assume I = lm and
p = 0.4m. Given the initial state (0, 0, 0, 0), the final state
(5, 5, 7r/4, 7r/6), and T = 5, we generate trajectory of sys-
tem (1) with the proposed methods.
With the given initial state and the final state, the trajectory
of system (1) can be generated by the proposed two algo-
rithms. Figure 2 shows the path of the robot in X-Y plane
generated by Algorithm 1. Figure 3 and Figure 4 show tra-
jectories H and 0 generated by Algorithm 1, respectively.
These figures show that the proposed Algorithm I is effec-
tive.

For the second trajectory generation method, Figures 5-7
show the path of x - y, 0, and ¢. The simulation results
show that Algorithm 2 is effective. Figure 8 shows the
pathes in Algorithms I and 2. From this figure, it can be
seen that the path with Algorithm I is shorter than that with
Algorithm 2.
For the initial state (0, 0, 0, 0) and the final state (5, 5, 0, 0),
Figures 9-15 show the simulation results with Algorithm I
and Algorithm 2. From these figures, the effectiveness of
the algorithms are also shown.

Figure 2. Path In X-Y Plane With Algorithm I

Figure 3. Trajectory 0 With Algorithm I

ir

F

tory (Wec)

Figure 4. Trajectory 0 With Algorithm 1
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Figure 5. Path In X-Y Plane With Algorithm 2
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Figure 6. Trajectory Of 0 With Algorithm 2

Figure 7. Trajectory Of X With Algorithm 2

Figure 8. Pathes With Algorithm 1 And Algorithm 2

Figure 10. Trajectory 0 With Algorithm 1
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Figure 11. Trajectory X With Algorithm 1

Figure 12. Path In X-Y Plane With Algorithm 2
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Figure 9. Path In X-Y Plane With Algorithm I



Figure 13. Trajectory Of 0 With Algorithm 2

Figure 14. Trajectory Of 0 With Algorithm 2

Figure 15. Pathes With Algorithm 1 And Algorithm 2

6. CONCLUSION
We considered the problem of trajectory generation of non-
holonomic mobile robots. Flatness based and polynomial
input based trajectory generation methods are proposed.
Simulation results show effectiveness of the proposed tra-
jectory generation methods.
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