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Abstract: The authors consider the control of an underactuated mechanical system: Pendubot, which has four
separated equilibrium points. A unified controller is proposed to stabilise the system at the four equilibrium
points. Moreover, the proposed unified control can bring the underactuated link to ideal homoclinic orbits,
which cannot be achieved by existing approaches. Simulation results verify the effectiveness of the proposed
control.
1 Introduction
Pendubot is developed to be broadly used for education and
research in non-linear control theory [1]. It is an
underactuated mechanical system, and has four equilibrium
points: the stable bottom position (both links are down),
the unstable top position (both links are up) and two
middle positions (one link is up and the other is down).

The difficulty is to design controllers to bring the non-
actuated (outer) link into the vertical top position. To the best
of our knowledge, there exists no continuous controller to
achieve this control objective. The switching strategy has been
used in [2], where two controllers are used sequentially. The
first controller is called swing up control, which is based on
partial feedback linearisation [2], or passivity-based control [3,
4]. The second controller is called the balancing and stabilising
controller, which is typically based on linear quadratic regulator
(LQR) and pole placement technique. The objective of the
swing up control is to bring the outer link of Pendubot to a
specific homoclinic orbit. The existing approach does not
achieve, this objective, but it can bring the non-actuated link
within a domain of attraction of the second controller.

The control problems at other equilibrium points were
studied to obtain the periodic motion of the outer link of
Pendubot using the virtual holonomic constraints approach
developed in [5–7]. In [8], the convergence rate is
improved by combining the virtual holonomic constraints
approach with a high-gain observer design technique [9].
The existence of stable periodic motions depends on
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dimension-reduced zero dynamics. Moreover, the approach
proposed in [8] cannot solve the primary problem discussed
above since there does not exist a stable periodic motion
around the unstable equilibrium point at which both links
are in the top position.

In this paper, we present a unified controller to stabilise
Pendubot at different equilibrium points. The manifold that
involves absolute value functions is used to design the unified
controller. The proposed controllers can decrease input efforts
especially when the system is about to be stable. Also, the
proposed controller can achieve ideal homoclinic orbits to
swing the outer link up. On comparing to existing results, the
proposed controller brings the outer link of Pendubot to
the ideal homoclinic orbit, which cannot be achieved by all
the other existing control. Moreover, unified control has the
same form (with different parameters) for all equilibrium
points and it may facilitate controller implementation.

The rest of the paper is organised as follows. In Section 2,
the dynamics of Pendubot and the control problem is stated.
The main results are presented in Section 3. The simulation
results are shown in Section 4. Finally, we conclude with brief
remarks in Section 5.

2 System dynamics and problem
statement
Consider the two-link underactuated planar robot in Fig. 1,
called Pendubot. Friction will not be considered, which is a
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standard assumption on Pendubot. There are two links: Link
1 and Link 2 in Pendubot. The masses of Link 1 and Link 2
are m1 and m2, and their lengths are l1 and l2, respectively.
The angle of Link 1 to the horizontal axis is denoted by q1

and the relative angle of Link 2 to Link 1 is denoted by q2.
We denote lc1 as the distance of the mass centre of Link 1
and lc2 as the distance of the mass centre of Link
2. Moreover, I1 and I2 are the moments of inertia of Link
1 and Link 2, respectively.

By Euler–Lagrange formulation, the motion of Pendubot
can be described as follows

D(q)q̈ + C(q, q̇)q̇ + g(q) = t (1)

where q = [q1 q2]T is the vector of generalised coordinates

and t = [t1 0]T is the control input. The inertial matrix
D(q) is positive definite with

d11 = u1 + u2 + 2u3 cos(q2)

d12 = d21 = u2 + u3 cos(q2)

d22 = u2

(2)

The elements of the Coriolis and centrifugal matrix C(q, q̇)
are

c11 = −u3 sin(q2)q̇2

c12 = −u3 sin(q2)(q̇1 + q̇2)

c21 = u3 sin(q2)q̇1

c22 = 0

(3)

and the elements of the gravity matrix g(q) are

g1 = u4g cos(q1) + u5g cos(q1 + q2)

g2 = u5g cos(q1 + q2)
(4)

Figure 1 Schematic diagram of Pendubot
6
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where

u1 = m1l 2
c1 + m2l 2

1 + I1

u2 = m2l 2
c2 + I2

u3 = m2l1lc2

u4 = m1lc1 + m2l1

u5 = m2lc2

(5)

From the inertial matrix (2) and the Coriolis and centrifugal
matrix (3), we calculate that

Ḋ(q) − 2C(q, q̇) = u3 sin q2(2q̇1 + q̇2)
0 1
−1 0

[ ]
(6)

Note that the right-hand side of (6) shows that the matrix
Ḋ(q) − 2C(q, q̇) is skew-symmetric. In fact, this property
is from obtaining the model by Newton’s second law
or Euler–Lagrange formulation. The details can be seen
in [10].

Expanding (1), the motions of Link 1 and Link 2 of
Pendubot are, respectively

q̈1 = 1

d11d22 − d 2
12

[d22t1 + F1(q, q̇)] (7)

where

F1(q, q̇) = (d12c21 − d22c11)q̇1 − d22c12q̇2

+ d12g2 − d22g1 (8)

and

q̈2 = 1

d11d22 − d 2
12

[−d12t1 + F2(q, q̇)] (9)

where

F2(q, q̇) = (d12c11 − d11c21)q̇1 + d12c12q̇2

+ d12g1 − d11g2 (10)

Pendubot (1) has four equilibrium points: p/2, 0, 0, 0
( )

,
−p/2, 0, 0, 0
( )

, −p/2, 0, p, 0
( )

and p/2, 0, −p, 0
( )

.
The equilibrium point p/2, 0, 0, 0

( )
is called the unstable

top position, −p/2, 0, 0, 0
( )

is called the stable bottom
position and the remaining two equilibrium points are
called unstable middle positions.

The total energy of Pendubot has the form

E = 1

2
q̇TD(q)q̇ + u4g sin(q1) + u5g sin(q1 + q2) (11)

The total energies at the four equilibrium positions are,
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respectively

Etop = E
p

2
, 0, 0, 0

( )
= (u4 + u5)g

Ebottom = E −p

2
, 0, 0, 0

( )
= (−u4 − u5)g

Emid1 = E −p

2
, 0, p, 0

( )
= (−u4 + u5)g

Emid2 = E
p

2
, 0, p, 0

( )
= (u4 − u5)g

From the viewpoint of energy, the problem of controlling
Pendubot is in general to control the total energy of
Pendubot to a specific amount that is equal to the total
energy at one of the equilibrium points. The difficulty of
the control is to bring the non-actuated link into the
unstable vertical top position. So far, there does not exist
any continuous controller to stabilise Link 2 at the top
position. A switching strategy has been used in [2] to solve
the problem. One controller called swing up control is used
to swing Link 2 up based on partial feedback linearisation
[2] or passivity-based control [3, 4]. The other controller
called the balancing and stabilising controller is switched to
stabilise Link 2 at the top position based on LQR and pole
placement technique once Link 2 enters the domain of its
attraction.

Firstly, we consider Link 1. If we assume that Link 1
reaches the bottom position or the top position with zero
velocity, the total energy is

E(q, q̇) = 1

2
u2q̇2

2 − u4g − u5g cos q2 (12)

and

E(q, q̇) = 1

2
u2q̇2

2 + u4g + u5g cos q2 (13)

respectively. Then, under these two cases we consider Link
2. If Link 2 also reaches the top position or the bottom
position with zero velocity, respectively, the total energy
(12) or (13) should be equal to the top energy
Etop = u4g + u5g or Emid1 = (−u4 + u5)g, respectively,
which yields

1

2
u2q̇2

2 = u5g(1 + cos q2) (14)

or

1

2
u2q̇2

2 = u5g(1 − cos q2) (15)

Both (14) and (15) define homoclinic orbits whose phase
portraits are shown in Figs. 2 and 3, respectively. It means
that Link 2 swings clockwise or counter-clockwise until it
reaches the equilibrium point (q2, q̇2) = (0, 0). Thus, swing
up control should be able to bring Link 2 of Pendubot to
T Control Theory Appl., 2011, Vol. 5, Iss. 1, pp. 155–163
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the homoclinic orbits (14) or (15). The existing approaches
do not achieve this objective; instead, they can bring Link
2 within the domain of attraction of the balancing
controller only. Moreover, the different types of controllers
are used for Pendubot to stabilise at the down position or
the up–down middle position and swing up for the top
position or the down–up middle position.

Our objective in this paper is to design a unified controller
for the Pendubot system so that only the equilibrium
point in the unified controller is needed to be replaced to
stabilise Pendubot at equilibrium points, −p/2, 0, 0, 0

( )
and p/2, 0,

(
−p, 0), or swing up at equilibrium points,

p/2, 0, 0, 0
( )

and −p/2, 0, p, 0
( )

, such that the motion of
Link 2 reaches the homoclinic orbits defined in (14) or (15).

3 Unified control of Pendubot at
different equilibrium points
Let qie, i = 1, 2, be one of the equilibrium points described
in the previous section. After using the following

Figure 3 Phase portrait of homoclinic orbits as q1 ¼ p/2
and q̇i = 0

Figure 2 Phase portrait of homoclinic orbits as q1 ¼ 2p/2
and q̇i = 0
157
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transformation

x1 = q1 − q1e

x2 = q̇1

x3 = q2 − q2e

x4 = q̇2

(16)

Pendubot (1) can be transformed into the following error
model

ẋ1 = x2

ẋ2 = 1

d11d22 − d 2
12

(d22t1 + F1(q, q̇))

ẋ3 = x4

ẋ4 = 1

d11d22 − d 2
12

(−d12t1 + F2(q, q̇))

(17)

Since Pendubot is underactuated, which means that the
number of control is less than the degree of freedom, it is
very hard to control it. Most control approaches for
underactuated systems are trying to use some constraints
[11–13] to reduce the number of degrees of freedom on
purpose. These approaches can be thought of as a variation
of partial feedback linearisation. However, how to choose
the constraint for the control design is a difficult problem.
Backstepping control [14] is an effective method to control
an underactuated system. Unfortunately, it only works
for systems with a special structure. For Pendubot,
backstepping does not work for swing up control. In [15],
sliding mode control was used for a class of underactuated
systems. The difficulty of this method is how to choose a
stable manifold. In this section, we try to eliminate these
problems. A manifold described by the absolute value
function is used to swing up Link 2 and to bring Link 1 to
the desired position simultaneously.

Let

S(x) = w1|s1x1 + x2| + w2|x2 + s2x4| + w3|x2|

+ w4|x2 + x3 + s2x4| +
1

2
k1x2

1 +
1

2
k2x2

3 (18)

where wi . 0, i = 1, 2, 3, 4, are weighting coefficients and
si . 0, ki . 0, i = 1, 2, are positive constants. If there
exists a controller to squeeze system (17) to the manifold
S = 0, from (18) we can obtain that x1 and x2 converge
simultaneously. The problem is how to find such a
controller to push a system to this manifold S = 0. We use
sliding mode control to design such a controller.
8
The Institution of Engineering and Technology 2011
Theorem 1: For system (17), if non-zero weighting
coefficients wi . 0, i = 1, 2, 3, 4, satisfy

w1 = w3

w2 = w4

(19)

0 , s2 ,
u2

u2 + u3

(20)

min{w1, w3, |w1 − w3|, |w1 + w3|}
max{w2, w4, |w2 − w4|, |w2 + w4|}

. max 1 − u3

u2

( )
s2 − 1

∣∣∣∣
∣∣∣∣, 1 + u3

u2

( )
s2 − 1

∣∣∣∣
∣∣∣∣

{ }
(21)

the solution of the closed-loop system with the following
control law

t1 =
0 if r1 = r2 = r3 = r4 = 0

M(x)

N (x)
elsewhere

⎧⎨
⎩ (22)

where r1 = sign(s1x1 + x2), r3 = sign(x2), r2 = sign(x2 +
s2x4) and r4 = sign(x2 + x3 + s2x4) in which sign(x) is
signum function of a real number x defined as follows

sign(x) =
−1 if x , 0
0 if x = 0
1 if x . 0

⎧⎨
⎩ (23)

and

M(x) = −(rS + k1x1x2 + k2x3x4 + w1r1s1x2 + w4r4x4)

× (d11d22 − d 2
12) − (w1r1 + w3r3 + w2r2 + w4r4)F1

− (s2w2r2 + s2w4r4)F2 (24)

N (x) = (w1r1 + w3r3 + w2r2 + w4r4)d22

− (s2w2r2 + s2w4r4)d12 (25)

converges to a point or an invariant set M, which is given by
homoclinic orbits (14) or (15).

Proof: Firstly, we prove that if s2 and the weighting
coefficients wi, i = 1, 2, 3, 4, satisfy the conditions from
(19) to (21), then the following inequality holds

N (x) = 0, as (r1, r2, r3, r4) = 0 (26)

Substituting d12 and d22 into N (x) gives

N (x) = (w1r1 + w3r3 + (1 − s2)(w2r2 + w4r4))u2

− s2(w2r2 + w4r4)u3 cos(q2) (27)

Suppose that (r1, r2, r3, r4) = 0. There are two cases:
w2r2 + w4r4 = 0 and w2r2 + w4r4 = 0.

Case 1: w2r2 + w4r4 = 0. Since w2 = w4, w2r2 + w4r4 = 0
yields r2 = r4 = 0. Thus N (x) = w1r1 + w3r3. If N (x) = 0,
IET Control Theory Appl., 2011, Vol. 5, Iss. 1, pp. 155–163
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we have w1r1 + w3r3 = 0. Since w1 = w3, w1r1 + w3r3 = 0
yields r1 = r3 = 0. This is contradictory to the assumption
(r1, r2, r3, r4) = 0. So N (x) cannot be zero.

Case 2: w2r2 + w4r4 = 0. When r1 = r3 = 0, N (x) = (1 −
s2)(w2r2 + w4r4)u2 − s2(w2r2+ w4r4)u3 cos(q2). From (20)
and | cos(q2)| ≤ 1, we obtain N (x) = 0. Suppose that r1

and r3 are not equal to zero at the same time. If N (x) = 0,
we have cos(q2) = X + 1 − s2/s2 · u2/u3, where X =
w1r1 + w3r3/w2r2 + w4r4. Since | cos(x3)| ≤ 1 and
s2 . 0, X should be in the interval
(1 − (u3/u2))s2 − 1, (1 + (u3/u2))s2 − 1
[ ]

. However, (21)
yields

|X | . max 1 − u3

u2

( )
s2 − 1

∣∣∣∣
∣∣∣∣, 1 + u3

u2

( )
s2 − 1

∣∣∣∣
∣∣∣∣

{ }

when r1 and r3 are not equal to zero at the same time. This
shows that X is outside of the interval 1−([
(u3/u2))s2 − 1, (1 + (u3/u2))s2 − 1]. Thus, N (x) = 0.

Now we discuss the stability of the closed-loop systems.
We choose P = (1/2)S2 as a Lyapunov function candidate.
Taking the derivative of P along the solutions of (17) gives

Ṗ = SṠ

= S(w1r1(s1x2 + ẋ2) + w2r2(ẋ2 + s2ẋ4)

+ w3r3ẋ2 + w4r4(ẋ2 + x3 + s2ẋ4))

= S((w1r1 + w3r3 + w2r2 + w4r4)ẋ2

+ s2(w2r2 + w4r4)ẋ4

+ w1r1s1x2 + w4r4x4 + x1x2 + x3x4) (28)

Substituting (17) and (22) into (28) gives

Ṗ = −rS2 (29)

which guarantees that S goes to zero. From the definition of S
in (18), S = 0 if and only if x1 = x2 = x3 = x4 = 0. From
the Lyapunov theorem ([9] Theorem 4.1), the closed-loop
system (17) and (22) is stable. A

Remark 1: Note that the controller (22) is discontinuous
since the signum function is used. The magnitude of the
controller becomes small when the system is about to be
stable. Like any sliding mode control, chattering may occur.

Remark 2: The approach of designing the controller (22)
can be an effective method for general underactuated
control systems. This is because the manifold involves the
absolute value functions so that the multiple objectives can
be considered simultaneously. To construct a manifold that
involves absolute value functions is much easier than to
figure out the constraints needed in other methods such as
the virtual constraints method or the immersion and
invariance method [11, 13].
T Control Theory Appl., 2011, Vol. 5, Iss. 1, pp. 155–163
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Since the term |x2 + s2x4| in (18), a virtual constraint
between x2 and x4, which are velocity errors of Joints 1 and
2, is forced by the control (22) in Theorem 1 that would
affect the performance, especially for swing up control. For
a special case where u2 . u3, this constraint is not needed
any more. By setting a new manifold for the system (17)
with u2 . u3

S(x) = w1|s1x1 + x2| + w2|s2x3 + x4|

+ w3|x2| + w4|x4| +
1

2
k1x2

1 +
1

2
k2x2

3 (30)

we have the following theorem:

Theorem 2: For the system (17) with u2 . u3, if weighting
coefficients wi, i = 1, 2, 3, 4, satisfy

w1 = w3

w2 = w4

min{w1, w3, |w1 − w3|, |w1 + w3|}
max{w2, w4, |w2 − w4|, |w2 + w4|}

. max 1 − u3

u2

∣∣∣∣
∣∣∣∣, 1 + u3

u2

∣∣∣∣
∣∣∣∣

{ }
(31)

the solution of the closed-loop system with the following
control law converges to a point or an invariant set M,
which is given by homoclinic orbits (14) or (15).

u =
0 if r1 = r2 = r3 = r4 = 0

M(x)

N (x)
elsewhere

⎧⎨
⎩ (32)

where

M(x) = −(rS + k1x1x2 + k2x3x4 + w1r1s1x2 + w2r2s2x4)

× (d11d22 − d 2
12) − (w1r1 + w3r3)F1

− (w2r2 + w4r4)F2 (33)

N (x) = (w1r1 + w3r3)d22 − (w2r2 + w4r4)d12 (34)

and r1 = sign(s1x1 + x2), r3 = sign(x2), r2 = sign(s2x3 + x4)
and r4 = sign(x4).

Proof: Firstly, we prove that if the weighting coefficients wi,
i = 1, 2, 3, 4, satisfy the conditions in (31), then

N (x) = 0, as (r1, r2, r3, r4) = 0 (35)

Substituting d12 and d22 into N (x) gives

N (x) = (w1r1 + w3r3 − w2r2 − w4r4)u2

− (w2r2 + w4r4)u3 cos(q2) (36)

Suppose that (r1, r2, r3, r4) = 0. There are two cases:
w2r2 + w4r4 = 0 and w2r2 + w4r4 = 0.
159
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Case 1: w2r2 + w4r4 = 0. Since w2 = w4, w2r2 + w4r4 = 0
yields r2 = r4 = 0. Thus N (x) = w1r1 + w3r3. If N (x) = 0,
we have w1r1 + w3r3 = 0. Since w1 = w3, w1r1 + w3r3 = 0
yields r1 = r3 = 0. This is contradictory to the assumption
(r1, r2, r3, r4) = 0. So N (x) cannot be zero.

Case 2: w2r2 + w4r4 = 0. When r1 = r3 = 0, N (x) =
−(w2r2 + w4r4)u2 − (w2r2 + w4r4)u3 cos(q2). From u2 ,

u3 and | cos(q2)| ≤ 1, we obtain N (x) = 0. Suppose that r1

and r3 are not equal to zero at the same time. If N (x) = 0,
we have cos(q2) = (X − 1)(u2/u3), where X = w1r1+
w3r3/w2r2 + w4r4. Since | cos(q2)| ≤ 1, X should be
in the interval 1 − (u3/u2), 1 + (u3/u2)

[ ]
. However, (31)

yields

|X | . max 1 − u3

u2

∣∣∣∣
∣∣∣∣, 1 + u3

u2

∣∣∣∣
∣∣∣∣

{ }

when r1 and r3 are not equal to zero at the same time. This
shows that X is outside the interval
1 − (u3/u2), 1 + (u3/u2)
[ ]

. Thus, N (x) = 0. The rest of
the proof is similar to the proof of Theorem 1. A

Remark 3: Note that u2 . u3 if lc2 . l1, where lc2 is the
distance of the mass centre of Link 2 and l1 is the length
of Link 1.

4 Simulation
In order to simulate using Matlab Simulink, we choose the
system parameters u1 = 0.0308, u2 = 0.0106, u3 = 0.0095,
u4 = 0.2086 and u5 = 0.0630, which are used in
[3, 4]. Since u2 . u3, Theorem 1 can be used to design
controllers.

We choose w1 = 10, w2 = 1, w3 = 5, w4 = 2 and
k1 = 2, k2 = 10 as the weighting coefficients of S defined
by (30), which satisfy the conditions (31).

We consider Case 1: the equilibrium point is q1 = p/2 and
q2 = −p. We choose r = 1.4, s1 = .05 and s2 = 5. Initial
conditions are q1 = −p/2, q̇1 = 0 and q2 = 0, q̇2 = 0.
Figs. 4 and 5 show that the angles of Joints 1 and 2
converge to the equilibrium point q1 = p/2 and q2 = −p

although small oscillation occurs. The small figure in the
right-up corner of Fig. 5 shows the angles of Joint 2 in the
last 5 s, from which we can tell that the trend of the curve
is still going down. Our proposed controller (22) stabilises
Pendubot at the unstable equilibrium point q1 = p/2 and
q2 ¼ 2p. From Fig. 6 the control forces are reasonably
small. Fig. 7 shows that S approaches zero by applying
control (22).

Now, consider Case 2: the equilibrium point q1 = p/2 and
q2 = 0. From the description in Section 2, we know that
Pendubot will be involved in the homoclinic orbit
described by (15). In this case, we use our proposed
0
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Figure 5 Angle response of Joint 2 at unstable equilibrium
points q1 ¼ p/2 and q2 ¼ 2p with control parameter
r ¼ 1.4

Figure 6 Input force at unstable equilibrium points q1 ¼ p/2
and q2 ¼ 2p with control parameter r ¼ 1.4

Figure 4 Angle response of Joint 1 at unstable equilibrium
points q1 ¼ p/2 and q2 ¼ 2p with control parameter
r ¼ 1.4
IET Control Theory Appl., 2011, Vol. 5, Iss. 1, pp. 155–163
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controller (22) but with different control parameters r = 25,
s1 = 5 and s2 = 5. Figs. 8 and 9 show that the angle of Joint
1 converges to p/2 while the angle of Joint 2 becomes a
motion that gets close to the desired homoclinic orbit given
by (15) gradually. However, Fig. 10 shows that the desired

Figure 8 Angle response of Joint 1 at unstable equilibrium
points q1 ¼ p/2 and q2 ¼ 0 with control parameter r ¼ 2.8

Figure 7 Value of manifold S defined in (18)

Figure 9 Angle response of Joint 2 at unstable equilibrium
points q1 ¼ p/2 and q2 ¼ 0 with control parameter r ¼ 2.8
T Control Theory Appl., 2011, Vol. 5, Iss. 1, pp. 155–163
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homoclinic orbit is not stable. Once the motion of Joint 2
reaches the homoclinic orbit, the controller will repel the
motion of Link 2 away from the desired homoclinic orbit.
Fig. 11 shows the control forces.

Figure 10 Phase portrait of Joint 2 at unstable equilibrium
points q1 ¼ p/2 and q2 ¼ 0 with control parameter r ¼ 2.8

Figure 11 Input force at unstable equilibrium points
q1 ¼ p/2 and q2 ¼ 0 with control parameter r ¼ 2.8

Figure 12 Phase portrait of homoclinic orbits
161
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Figure 13 Angle response of Joint 1 at unstable equilibrium
points q1 ¼ 2p/2 and q2 ¼ p with control parameter
r ¼ 90

Figure 14 Angle response of Joint 2 at unstable equilibrium
points q1 ¼ 2p/2 and q2 ¼ p with control parameter
r ¼ 90

Figure 15 Phase portrait of Joint 2 at unstable equilibrium
points q1 ¼ 2p/2 and q2 ¼ p with control parameter
r ¼ 90
2
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The phase portrait of q2 and q̇2 using the approach
developed in [3, 4] is shown in Fig. 12. Comparing it to
Fig. 3, we can see that the swing control developed in [3,
4] does not bring the system to the desired homoclinic
orbit defined in (15).

Case 3: the equilibrium point q1 = −p/2 and q2 = 0. The
control parameter is chosen to be r = 190, s1 = 5 and
s2 = 5. Figs. 13 and 14 show that similar motion has been
obtained by our proposed controller and q1 goes to −p/2.
The homoclinic orbit described by (14) is achieved but not
stable in Fig. 15. Fig. 16 shows that the control forces
needed in Case 3 are much greater than that in Case 2.

5 Conclusion
In this paper, we consider the control of an underactuated
mechanical system: Pendubot, which has four separated
equilibrium points. A unified controller is proposed so that
only the known equilibrium point information is needed to
stabilise the Pendulum at the four different equilibrium
points. Moreover, our proposed unified control can bring
the underactuated link to ideal homoclinic orbits that
cannot be achieved by existing approaches. Simulation
results validate the effectiveness of the proposed approach.
The method proposed in this paper may be applied to
other underactuated control systems.
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