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Abstract— We discuss single particle stability in a sliding
nanocluster system represented by the Frenkel-Kontorova
model. Both open-loop and closed-loop stability is studied
using Lyapunov theory based methods. The systems are used
to describe the frictional dynamics of a one-dimensional
particle array sliding on a surface, which is subject to two
potentials, namely, the substrate-particle and the inter-particle
potentials. Average control can be applied to the system to
control frictional properties in a desired way. We reveal that
single particles are locally stable in the open-loop system
without external forces. We also derive sufficient conditions
so that the system under the average control law can be
asymptotically stabilized. Simulation results are shown to
verify the theoretical claims.

I. I NTRODUCTION

Many low-dimensional nonlinear physics can be modeled
using the Frenkel-Kontorova (FK) model, which describes
a chain of classical particles coupled to their neighbors
and subject to a periodic on-site potential, see Figure 1
([1]). The model characterizes the fundamental physics
in problems such as sliding of nano-particle array, DNA
dynamics, charge-density waves, magnetic spirals, and ab-
sorbed monolayers [4]. Particularly, it is one of the best
known of simple models to characterize the microscopic
mechanisms of friction ([5]). The study of friction is impor-
tant from a practical point of view as it finds huge applica-
tions including those in micro-electro-mechanical systems
(MEMS) and biological systems (such as the lubrication
in joints). Recent advances have substantially improved the
understanding of frictional phenomena, particularly on the
inherently nonlinear nature of friction [14]. In controlling
frictional properties in a desired way, it is traditionally
achieved by chemical means, supplementing base lubricants
by so-called friction modifier additives ([7], [16]). It is until
recently that a different approach has attracted considerable
interest, which is to control the system mechanically by
applying small perturbations to accessible elements of the
system [2], [6], [8].

While the FK model has been studied in physics for
application purposes (see [4] and references therein), we
have recently studied its dynamics and control using control
theory based methods in [11], [12]. We presented tracking
control algorithms so that the average velocity (the velocity
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of the center of mass) of the one-dimensional nanoarray
tracks a constant targeted velocity. We used Lyapunov
stability theory based method in the tracking control design,
and open-loop stability of the interconnected particle system
is mentioned without a rigorous proof. The control therein
is for the average system, and single particles in the closed-
loop system are not necessarily stable (and are actually un-
stable in many cases) though the average system is stable. In
this paper, we focus on the single particle dynamic in both
the open-loop and closed-loop systems, and derive sufficient
conditions to achieve single particle stability under average
controls. Rigorous proof will be provided using Lyapunov
theory based methods.

The rest of the paper is organized as follows. Section II
will present the FK model and its sliding control. In Section
III, we prove the open-loop stability of local equilibrium
points. Then, we discuss in Section IV the stability of single
particles in the closed-loop system under average controls.
Sufficient conditions will be given using Laypunov theory
based methods. Simulation results are shown in Section V.
Finally, we will conclude in Section VI.

II. T HE FRENKEL-KONTOROVA MODEL AND SLIDING

CONTROL

The basic equations for the driven dynamics of a one
dimensional particle array ofN identical particles moving
on a surface are given by a set of coupled nonlinear
equations in [2], [11]. Upon the assumption of a sinusoidal
substrate potential, the simplified equation of the Frenkel-
Kontorova model is shown as:

φ̈i + γφ̇i + sin(φi) = f + Fi (1)

whereφi is the dimensionless phase variable,φi = 2πxi,
andFi is the nearest-neighbor interaction force. A specific
example often considered forFi is the linearized Morse-
type interaction ([2], [3]):

Fi = κ (φi+1 − 2φi + φi−1) (2)

whereκ andβ are positive constants. The free-end boundary
conditions are:

F1 = κ(φ2 − φ1), FN = κ(φN−1 − φN ). (3)

Control can be applied to the particle array , so that the
frictional dynamics of a small array of particles is controlled
towards preassigned values of the average sliding velocity.
Let the external force,f , be a feedback control, denoted by
u(t). Rewrite the system model (1) as follows ([2]):

φ̈i + γφ̇i + sin(φi) = Fi + u(t) (4)



Fig. 1. The Frenkel-Kontorova model is a harmonic chain (mimic a layer of nano-particles) in a spatially periodic potential (mimic the substrate). The
chain is driven by a constant force which is damped by a velocity-proportional damping.

Due to physical accessibility, the feedback controlu(t) is a
function of three measurable quantities,vtarget, vc.m., and
φc.m., wherevtarget is the constant targeted velocity for
the center of mass,vc.m. is the average (center of mass)
velocity, i.e.,

vc.m. =
1

N

N
∑

i=1

φ̇i,

andφc.m. is the average (center of mass) position,i.e.,

φc.m. =
1

N

N
∑

i=1

φi.

The control objective for the sliding nanocluster system is
to design a feasible feedback control law

u(t) = u(vtarget, vc.m., φc.m.), (5)

such thatvc.m. tends tovtarget. The control law we pro-
posed in [11] has the following form:

u(t) = γvtarget + sin vtargett − k1(φc.m. − vtargett)

−k2(vc.m. − vtarget) (6)

wherek1, k2 are positive constants. We proved in [11] that
the average control law (6) renders the average closed-
loop system bounded. It is easy to see from simulations
that single particle dynamics are not necessarily stable. We
conduct further study in this paper on the single particle
stability under such an average control.

Remark 1: The feedback control law (6) takes the mea-
surable average quantitiesvc.m. andφc.m. as inputs, which
are the position and velocity of the center of mass.
The model (4) represents the quartz-crystal microbalance
(QCM) experiment for friction measurement where the ap-
plied force acts as an external variable that can be controlled
experimentally [2]. Therefore, the proposed control law is
implementable experimentally for friction control.

III. L OCAL STABILITY OF SINGLE PARTICLES

Before we discuss the single particle stability in the
closed-loop system, we first examine the open-loop stability
of single particles. The equilibrium points of the un-coupled
particles without external force (i.e., f = 0) are at

φi = lπ, φ̇i = 0, l = 0,±1,±2, . . . (7)

Express the dynamics in (1) without external forces in the
following state space form:

ẋi1 = xi2

ẋi2 = − sin xi1 − γxi2 + Fi (8)

where i = 1, 2 . . . , N , xi1 = φi, xi2 = φ̇i, and Fi is the
Morse-type particle interaction.

We consider the local stability of (8). Linearizing the
system around its fixed points(xi1, xi2) = (lπ, 0), and
stacking the state space equations fori = 1, 2, . . . , N , we
obtain

ẋ = Ax + BFx (9)

wherex = [x11 x12 x21 x22 . . . xN1 xN2]
T ,

A = IN ⊗ Ai, B = IN ⊗ Bi, F = Q ⊗
[

κ 0
]

,

and

Ai =

[

0 1
−1 −γ

]

, when l = 2kπ, k = 0,±1, . . .,

Ai =

[

0 1
1 −γ

]

, when l = (2k + 1)π,

Bi =

[

0
1

]

,

Q =















−1 1 0 . . . 0
1 −2 1 0 . . .

...
0 . . . 1 −2 1
0 . . . 0 1 −1















. (10)

Since

BF = (IN ⊗ Bi)(Q ⊗
[

κ 0
]

)

= (INQ) ⊗
(

Bi

[

κ 0
])

= Q ⊗
[

0 0
κ 0

]

,

the eigenvalues ofBF are all zero.
We have the following theorem:
Theorem 1: In the absence of external forces, the system

(1) with linear particle interaction (2) is asymptotically
stable at the local equilibrium points(2kπ, 0), and it is
unstable at((2k + 1)π, 0).
We need the following two Lemma to prove Theorem 1.

Lemma 1 ([9], page 171): If A is an n × n real sym-
metric matrix, then there are matricesL and D such that
LT L = LLT = I andLALT = D, whereD is the diagonal
matrix of eigenvalues ofA.



Lemma 2 ([15], Appendix A): Define the setW consist-
ing of all zero row sum matrices which have only nonpos-
itive off-diagonal elements. A matrixA ∈ W satisfies:

1) All eigenvalues ofA are nonnegative;
2) 0 is an eigenvalue ofA;
3) If A is irreducible, then0 is an eigenvalue of multi-

plicity 1.
Proof of Theorem 1:

First, we study stability of the linearized system (9) for
any positive constantsγ, κ and for anyN ≥ 2. We find a
transformation matrix to transform the system matrix into
a block triangular one.

SinceQ is a real symmetric matrix, according to Lemma
1, there exists a matrixT such thatT−1QT = D whereD

is a diagonal matrix of eigenvalues ofQ. Since−Q ∈ W

as defined in Lemma 2,Q have nonpositive eigenvalues
(i.e., one zero and all others negative). Therefore,D has
nonpositive diagonal elements.

Let

T = T ⊗ I2 (11)

whereI2 is a 2 × 2 identity matrix. Then:

T
−1

(A + BF )T

=
(

T−1INT
)

⊗ Ai +
(

T−1QT
)

⊗
[

0 0
κ 0

]

= IN ⊗ Ai + D ⊗
[

0 0
κ 0

]

def
= H (12)

We can see thatH is block diagonal.
At the equilibrium points(2kπ, 0), the diagonal element

is:

Hii =

[

0 1
−1 + αiκ −γ

]

, (13)

whereαi, i = 1, 2, . . . , N are eigenvalues ofQ. Sinceαi

are nonpositive, the eigenvalues ofHii have negative real
parts.

At the equilibrium points((2k + 1)π, 0), the diagonal
element is:

Hii =

[

0 1
1 + αiκ −γ

]

. (14)

Its eigenvalues are

−γ ±
√

γ2 + 4(1 + αiκ)

2
.

Since0 is a eigenvalue of matrixQ, i.e., one ofαi is zero,
Hii has at least one positive eigenvalues.

Define a similarity transformationx = Tz. In the new
coordinate, the system dynamics are

ż = Hz. (15)

At the equilibrium points(2kπ, 0), the system (15) is
asymptotically stable sinceH is block diagonal and the

diagonal elements have negative eigenvalues. At the equi-
librium points((2k + 1)π, 0), it is unstable. Therefore, the
same stability result for the original systeṁx = (A +
BF )x can be obtained due to the similarity transformation.
Furthermore, local stability of the original nonlinear system
(1) can be obtained by the stability of its linearized system
(9) ([13], Theorem 3.1). We conclude that the system (1)
is asymptotically stable at(2kπ, 0), and unstable at other
equilibrium points.

IV. SINGLE PARTICLE STABILITY IN THE SLIDING

CONTROL SYSTEM

To consider single particle stability in the closed-loop
system, we define the following tracking error states:

ei1 = φi − vtargett, ei2 = φ̇i − vtarget. (16)

The corresponding error dynamics for single particles are
given as:

ėi1 = ei2

ėi2 = − sin(ei1 + vtargett) − γ(ei2 + vtarget)

+Fi + u(t) (17)

RepresentingFi using the error states, we have:

Fi = κ (ei+1,1 − 2ei1 + ei−1,1) . (18)

Under the average control (6), we write the state space
model of the closed-loop system in the following form:

ėi1 = ei2

ėi2 = −γei2 + Fi − k̄1

(

N
∑

i=1

ei1

)

− k̄2

(

N
∑

i=1

ei2

)

+ [sin(vtargett) − sin(ei1 + vtargett)] (19)

wherek̄1 = k1

N
, k̄2 = k2

N
.

We re-present the system model in the following form:

Ė = GE + f(e, t) (20)

whereE = [e11 e12 e21 e22 . . . eN1 eN2]
T ,

G = IN ⊗
[

0 1
0 −γ

]

+

(

IN ⊗
[

0
1

])

(

Q ⊗
[

κ 0
])

+

(

IN ⊗
[

0
1

])

(

Θ ⊗
[

−k̄1 −k̄2

])

= IN ⊗
[

0 1
0 −γ

]

+ Q ⊗
[

0 0
κ 0

]

+Θ ⊗
[

0 0
−k̄1 −k̄2

]

,



f(e, t) =























0
sin(vtargett) − sin(e11 + vtargett)

0
sin(vtargett) − sin(e21 + vtargett)

...
0

sin(vtargett) − sin(eN1 + vtargett)























,

Q is defined in (10), andΘ is theN by N matrix of ones.
We have the following lemma on the linear part of the

system (20).
Lemma 3: There exists a similarity transformation such

that the matrixG in (20) can be transformed to a block
diagonal one.
Proof: Notice that the matrix(−Q) is a real symmetric
matrix with row sum zero, and it is irreducible. From
Lemma 1 and 2,(−Q) has eigenvalues

µ1 ≥ µ2 ≥ . . . ≥ µN−1 > µN = 0.

It is always possible to choose the eigenvectors to be real,
normalized and mutually orthogonal. Denote the eigenvec-
tors corresponding to each of the eigenvalues:

vk = [v1k v2k . . . vNk], k = 1, 2, . . . , N − 1,

vN . (21)

Then V = [v1 v2 . . . vN ] is an orthogonal matrix,i.e.,
V V T = V T V = I, implying V T = V −1, and

n
∑

k=1

vkivkj =

n
∑

k=1

vikvjk = δij , (22)

whereδij = 1 for i = j andδij = 0 for i 6= j. Because of
V T QV = diag(µ1, µ2, . . . , µN ), we further have

(−Q)ij =

n
∑

k=1

µkvikvjk. (23)

Because the eigenvectorsvk, k = 1, 2, . . . , N − 1, are
orthogonal tovN , the following property holds:

N
∑

j=1

vjk = 0, k = 1, 2, . . . , N − 1,

vN =
1√
N

[1 1 . . . 1]T . (24)

Therefore, we have:

V −1QV = −DQ (25)

where DQ is a diagonal matrix with the diagonal entry
µi, i = 1, 2, . . . , N.

Due to property (24), the matrixV transforms the all 1’s
matrix Θ to a diagonal one as well:

V −1ΘV =
[

(V −1ΘV )ik

]

=









N
∑

j=1

vji









N
∑

j=1

vjk







 = DΘ (26)

where DΘ is a diagonal matrix with diagonal entry
(DΘ)ii = 0, i = 1, 2, . . . , N − 1, and (DΘ)NN = N .

Choose the transformation matrix asT = V ⊗ I2. We
have:

T−1GT = IN ⊗
[

0 1
0 −γ

]

− DQ ⊗
[

0 0
κ 0

]

+DΘ ⊗
[

0 0
−k̄1 −k̄2

]

= IN ⊗ Ci, (27)

where

Ci =















[

0 1
−µiκ −γ

]

, i = 1, 2, . . . , N − 1,
[

0 1
−k1 −k2 − γ

]

, i = N.

(28)

This completes the proof of the lemma.
From Lemma 3 and its proof, we see that the linear part

of the system (20) is stable since its similarity transforma-
tion shows a stable system. This property is important in
showing the stability of the nonlinear system (20).

We are now in the position to state the main theorem of
this section.

Theorem 2: For system parametersγ andκ that satisfy

κ >
1

mini≤N−1(µi)
,

γ >
1

√

mini≤N−1(µi)κ − 1
(29)

where µi, i = 1, . . . , N − 1 are the positive eigenvalues
of the matrix(−Q), the average control (6) asymptotically
stabilize the error system (20) ifk1 and k2 are chosen to
satisfy

k1 ≥ κ min
i≤N−1

(µi), k2 ≥ 0. (30)

Proof: We use the classic Lyapunov theory to prove the
stability of the error system (20). Define the matrix

Pi =

[

1

2
(εi + λ2

i )
1

2
λi

1

2
λi

1

2

]

, (31)

whereεi, λi are positive design parameters.
Then,

CT
i Pi + PiCi

=















[

−λiµiκ ∆i

∆i −(γ − λi)

]

, i = 1, 2, . . . , N − 1,
[

−λNk1 ∆N

∆N −(k2 + γ − λN )

]

,

(32)

where

∆i =
1

2
(εi + λ2

i − λiγ − µiκ), i = 1, 2, . . . , N − 1,

∆N =
1

2
[εi + λ2

i − λi(k2 + γ) − k1]. (33)



To make∆i, i = 1, . . . , N zero, we choose

λi < γ, (34)

εi = λi(γ − λi) + µiκ > 0; i = 1, 2, . . . , N − 1,

λN < γ + k2,

εN = λN (k2 + γ − λN ) + k1 > 0. (35)

Define the following Lyapunov function candidate:

W (t, e) = ET HE, (36)

where

H = TPT−1

= (V ⊗ I2)(IN ⊗ Pi)(V
−1 ⊗ I2) = IN ⊗ Pi

We can see thatW (t, e) can be re-written as:

W (t, e) =

N
∑

i=1

{

ε

2
e2

i1 +
1

2
(λiei1 + ei2)

2

}

. (37)

Take the time derivative ofW (t, e) along the closed-loop
dynamics (20). Denote

Ẇ (t, e) = W1 + W2 (38)

whereW1 is generated by the linear part of the dynamics,
andW2 is by the nonlinear part of the dynamics.

We have:

W1 = ET
(

GT TPT−1 + TPT−1G
)

E

= ET
[

T
(

T−1GT
)T

PT−1 + TP
(

T−1GT
)

T−1
]

E

Because of (27), we have

W1 = ET
[

T (IN ⊗ Ci)
T

PT−1 + TP (IN ⊗ Ci)T−1
]

E

= ET
[

IN ⊗
(

CT
i Pi + PiCi

)]

E (39)

We see that
[

IN ⊗
(

CT
i Pi + PiCi

)]

is a block diagonal
matrix with diagonal entries as shown in (32).

Now consideringW2, from (37), we obtain:

W2 =

N
∑

i=1

(λiei1 + ei2)[sin(vtargett) − sin(ei1 + vtargett)]

≤
N
∑

i=1

{

(

λi +
τi

2

)

e2
i1 +

1

2τi

e2
i2

}

= ET

(

IN ⊗
[

λi + τi

2
0

0 1

2τi

])

E (40)

where we bounded‖ sin(a)‖ by ‖a‖, and applied the
inequality2ab ≤ τa2 + 1

τ
b2 (for a, b ∈ ℜ), τi is a positive

constant.
Substitute (39) and (40) into (38), we obtain:

Ẇ (t, e) = ET (IN ⊗ Si)E (41)

where

Si =

[

−λiµiκ + λi + τi

2
0

0 −(γ − λi) + 1

2τi

]

, i ≤ N−1;

SN =

[

−λik1 + λi + τi

2
0

0 −(k2 + γ − λi) + 1

2τi

]

.

To makeSi negative definite, we checkSi for i ≤ N − 1
first. We need:

−λiµiκ + λi +
τi

2
< 0, (42)

−(γ − λi) +
1

2τi

< 0 (43)

Let µiκ > 1, from (42), we get

τi < 2[λi(µiκ − 1)]. (44)

From (43), we get

τi >
1

2(γ − λi)
. (45)

To make sure thatτi exist, we need

1

2(γ − λi)
< 2[λi(µiκ − 1)] (46)

which turns into a second-order inequality:

4(µiκ − 1)λ2
i − 4γ(µiκ − 1)λi + 1 < 0 (47)

Since0 < λi < γ, we need

[4γ(µiκ − 1)]2 > 4 · 4(µiκ − 1), (48)

which turns to

γ2 >
1

µiκ − 1
. (49)

Therefore, the sufficient conditions forSi(i ≤ N −1) to be
negative definite are:

κ >
1

mini≤N−1(µi)
,

γ >
1

√

mini≤N−1(µi)κ − 1
(50)

Choosing the control parameters:

k1 ≥ κ min
i≤N−1

(µi)

k2 ≥ 0, (51)

SN will be negative definite.
The proof of the theorem follows directly from Lyapunov

theory because of the positive definiteness ofW in (36) and
the negative definiteness oḟW in (41).

V. SIMULATION RESULTS

We have performed numerical simulations on arrays of
different sizes(3 ≤ N ≤ 256). First, we verified that the set
of fixed points of un-forced frictional dynamics,(φi, φ̇i) =
(lπ, 0) with l even numbers, are locally stable. This can be
seen from Fig. 2, where a 5-particle system is simulated.
The system parameters areγ = 0.1, κ = 0.26 ([2], [10]).
Random initial conditions are used in the simulations. Local
stability of individual particles in the five-particle system
can be observed in the figure.



We show the single particle dynamics in the closed-
loop system under the average control (6) in Fig. 3. The
system parameters used areγ = 4, κ = 1.5 for a three-
particle interconnected system. The control parameters are
chosen to bek1 = 5.8, k2 = 4. The targeted velocity is
vtarget = 1.5. Fig. 3 shows that the tracking error for each
individual particle tends to zero which indicates that the
velocity of each particle in the interconnected system tracks
the targeted value. This verifies the result in Theorem 4.

VI. CONCLUSIONS

We studied the single particle stability for a one-
dimensional particle array sliding on a surface subject
to friction. The well-known Frenkel-Kontorova model is
used to describe the dynamics, which is a nonlinear inter-
connected system. The feedback control uses the average
quantity of the system which are physically accessible.
It was revealed first that a set of equilibrium points of
the un-forced system is asymptotically stable. Then, we
derived sufficient conditions for the average control to
stabilize single particles in the interconnected trackingerror
system. The Lyapunov theory based method is utilized in the
stability analysis. Simulation results were shown to verify
the theoretical claim. The results of the paper can be applied
to other physical systems whose dynamics can be described
by the Frenkel-Kontorova model.
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Fig. 2. Local stability of single particles in the open-loopsystem: (a) the
phase variable, (b) the velocity variable.
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Fig. 3. Single particle dynamics in the closed-loop system for targeted
valuevtarget = 1.5: (a) the phase variables, (b) the velocity variables.


