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Abstract— We discuss single particle stability in a sliding of the center of mass) of the one-dimensional nanoarray
nanocluster system represented by the Frenkel-Kontorova tracks a constant targeted velocity. We used Lyapunov
model. Both open-loop and closed-loop stability is studied giapity theory based method in the tracking control desig
using Lyapunov theory based methods. The systems are used and onen-loon stability of the interconnected particld
to describe the frictional dynamics of a one-dimensional | p_ p > Yy ] p Qys .
particle array sliding on a surface, which is subject to two IS mentioned without a rigorous proof. The control therein
potentials, namely, the substrate-particle and the inteiparticle  is for the average system, and single particles in the closed
potentials. Average control can be applied to the system to |oop system are not necessarily stable (and are actually un-
control frictional properties in a desired way. We reveal that stable in many cases) though the average system is stable. In

single particles are locally stable in the open-loop system _ . . h -
without external forces. We also derive sufficient conditias this paper, we focus on the single particle dynamic in both

so that the system under the average control law can be the open-loop and closed-loop systems, and derive sufficien
asymptotically stabilized. Simulation results are shown @ conditions to achieve single particle stability under ager

verify the theoretical claims. controls. Rigorous proof will be provided using Lyapunov
theory based methods.
The rest of the paper is organized as follows. Section Il
Many low-dimensional nonlinear physics can be modelegill present the FK model and its sliding control. In Section
using the Frenkel-Kontorova (FK) model, which describegi|, we prove the open-loop stability of local equilibrium
a chain of classical particles coupled to their neighborgeints. Then, we discuss in Section IV the stability of sing|
and subject to a periodic on-site potential, see Figure garticles in the closed-loop system under average controls
([1]). The model characterizes the fundamental physicsufficient conditions will be given using Laypunov theory
in problems such as sliding of nano-particle array, DNfased methods. Simulation results are shown in Section V.

dynamics, charge-density waves, magnetic spirals, and gtinally, we will conclude in Section VI.
sorbed monolayers [4]. Particularly, it is one of the best

known of simple models to characterize the microscopic
mechanisms of friction ([5]). The study of friction is impor
tant from a practical point of view as it finds huge applica- The basic equations for the driven dynamics of a one
tions including those in micro-electro-mechanical systemdimensional particle array oV identical particles moving
(MEMS) and biological systems (such as the lubricatio®@n a surface are given by a set of coupled nonlinear
in joints). Recent advances have substantially improved tiequations in [2], [11]. Upon the assumption of a sinusoidal
understanding of frictional phenomena, particularly oa thsubstrate potential, the simplified equation of the Frenkel
inherently nonlinear nature of friction [14]. In contralfj Kontorova model is shown as:

frict?onal propertie_s in a desired way, it_ is traditiona_llly $i+7¢5i+sin(¢i) - [+ F 1)
achieved by chemical means, supplementing base lubricants

by so-called friction modifier additives ([7], [16]). It isxil ~ Where; is the dimensionless phase variable,= 27z,
recenﬂy that a different approach has attracted conditkera a.nd Fl iS the neal’est-neighbor interaction force. A SpeCifiC
interest, which is to control the system mechanically bgxample often considered fdr; is the linearized Morse-
applying small perturbations to accessible elements of tHgpPe interaction ([2], [3]):

system [2], [6], [8]. o 94, .

While the FK model has been studied in physics for f é.((bzﬂ 200+ di-1) @)
application purposes (see [4] and references therein), \,Wihergﬁ andg are positive constants. The free-end boundary
have recently studied its dynamics and control using contr§onditions are:
theory based methods in [11], [12]. We presented tracking Fi = k(2 — 1), Fy =k(én_1—on). (3)

control algorithms so that the average velocity (the véjoci i )
Control can be applied to the particle array , so that the
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|I. INTRODUCTION

II. THE FRENKEL-KONTOROVA MODEL AND SLIDING
CONTROL



m% W%m% — —p P P D — —

Fig. 1. The Frenkel-Kontorova model is a harmonic chain (imienlayer of nano-particles) in a spatially periodic poi@ngmimic the substrate). The
chain is driven by a constant force which is damped by a vglgmoportional damping.

Due to physical accessibility, the feedback contr@) is a Express the dynamics in (1) without external forces in the
function of three measurable quantitieg,,g4et, ve.m., and  following state space form:
¢e.m., Wherev,,qer IS the constant targeted velocity for

the center of massy..,,. is the average (center of mass) f'm - x”.
velocity, i.e., Tig = —sinzp — YT+ F (8)
. wherei = 1,2...,N, i1 = ¢i,xi2 = &, and F} is the
Vem. = 737 Z i, Morse-type particle interaction.
- We consider the local stability of (8). Linearizing the
and ¢...,. is the average (center of mass) positioa, system around its fixed point&e;i,z;2) = (Im,0), and
stacking the state space equationsifefr 1,2,..., N, we
N .
1 obtain
P r = Ax+ BFx (9)

The control objective for the sliding nanocluster system iwherez = [z11 212 21 T22 ... N1 ZN2]T,
to design a feasible feedback control law AIy®A, BeIyoB, F=0Qg [ - } ’

u(t) - u(vtargetv Ve.m.y (bc.m.)v (5) and
such thatv..,,. tends tovis,qe:. The control law we pro- A; = 0 1 } ,whenl = 2kr, k=0,%+1,...,
posed in [11] has the following form: L -1 =
0 1
. A, = ,whenl = (2k + 1),
u(t) = YVtarget + sin Utargett - kl ((bcm - Utargett) L 1 - :| W ( + )ﬂ-
_kQ('Uc.m. - vtarget) (6) Bz _ [ g) :| ’
wherek;, ko are positive constants. We proved in [11] that
1 1 0 0
the average control law (6) renders the average closed- 1 -2 1 0
loop system bounded. It is easy to see from simulations '
that single particle dynamics are not necessarily stabk. W Q= : : (10)
conduct further study in this paper on the single particle o ... 1 -2 1
stability under such an average control. o ... 0 1 -1
Remark 1. The feedback control law (6) takes the meag;jnce
surable average quantities,,,. and ¢..,,,. as inputs, which
are the position and velocity of the center of mass. BF = (INn®B)(Q®[x 0])
The model (4) represents the quartz-crystal microbalance 0 0
(QCM) experiment for friction measurement where the ap- = (INQ)® (Bi [ k0 ]) =Q® k0|’

plied force acts as an external variable that can be coettoll
experimentally [2]. Therefore, the proposed control law i
implementable experimentally for friction control.

éhe eigenvalues oBF are all zero.

We have the following theorem:

Theorem 1: In the absence of external forces, the system
(1) with linear particle interaction (2) is asymptotically
stable at the local equilibrium point®kw,0), and it is

Before we discuss the single particle stability in theinstable a{(2k + 1),0).
closed-loop system, we first examine the open-loop stbilitVe need the following two Lemma to prove Theorem 1.
of single particles. The equilibrium points of the un-caegpl ~ Lemma 1 ([9], page 171): If A is ann x n real sym-
particles without external force.€, f = 0) are at metric matrix, then there are matricésand D such that

LTL=LL" = TandLAL™ = D, whereD is the diagonal
¢ =lm, ¢ =0, 1=0,+1,+2, ... (7) matrix of eigenvalues ofl.

IIl. L OCAL STABILITY OF SINGLE PARTICLES



Lemma 2 ([15], Appendix A): Define the setV consist-

diagonal elements have negative eigenvalues. At the equi-

ing of all zero row sum matrices which have only nonposlibrium points ((2k + 1), 0), it is unstable. Therefore, the

itive off-diagonal elements. A matrid € W satisfies:

1) All eigenvalues ofA are nonnegative;
2) 0 is an eigenvalue of4;
3) If A is irreducible, therD is an eigenvalue of multi-
plicity 1.
Proof of Theorem 1:

same stability result for the original systein = (A4 +
BF)z can be obtained due to the similarity transformation.
Furthermore, local stability of the original nonlinear ®ra

(1) can be obtained by the stability of its linearized system
(9) ([13], Theorem 3.1). We conclude that the system (1)
is asymptotically stable a2k, 0), and unstable at other

First, we study stability of the linearized system (9) foréquilibrium points.

any positive constants, x and for anyN > 2. We find a

transformation matrix to transform the system matrix into

a block triangular one.

IV. SINGLE PARTICLE STABILITY IN THE SLIDING
CONTROL SYSTEM

Since( is a real symmetric matrix, according to Lemma

1, there exists a matri¥ such thatl'—'QT = D whereD
is a diagonal matrix of eigenvalues ¢f. Since—Q € W

as defined in Lemma 2( have nonpositive eigenvalues

(i.e., one zero and all others negative). Therefaehas
nonpositive diagonal elements.

Let
T = T®L (11)
where s is a2 x 2 identity matrix. Then:
T '(A+ BF)T
_ -1 _ -1 0 0
= (T mﬂ®&+uﬂQﬂ®[ﬁo}

0 0
IN@AZ-_FD@{K 0]

We can see thal/ is block diagonal.
At the equilibrium points(2k, 0), the diagonal element
0 1

is:
14+ ok —v ] ’

wherea;,i = 1,2,..., N are eigenvalues of). Sinceq;
are nonpositive, the eigenvalues Hf; have negative real
parts.

At the equilibrium points((2k + 1)=,0), the diagonal

element is:
Its eigenvalues are
—v £ /72 +4(1 + k)
5 )

Since0 is a eigenvalue of matrig), i.e., one ofq; is zero,
H;; has at least one positive eigenvalues.

Define a similarity transformatiom = 7'z. In the new
coordinate, the system dynamics are

def

H (12)

Hy - [ (13)

0 1

1+a6 —v (14)

- |

Z = Hz. (15)
At the equilibrium points(2kw,0), the system (15) is

asymptotically stable sincé/ is block diagonal and the

To consider single particle stability in the closed-loop
system, we define the following tracking error states:
€i1 = ¢1 - 'Utargettv €2 = ¢z — Utarget- (16)
The corresponding error dynamics for single particles are
given as:

€1 = €
éi2 = - Sin(eil + Utargett) - 'Y(eiQ + Utarget)
+F; + u(t) a7
Representing; using the error states, we have:
Fi = k(eip110 —2ei1+ei—11)- (18)

Under the average control (6), we write the state space
model of the closed-loop system in the following form:
€1 €i2
N N

et B (Z ) 3 (Z )

i=1 i=1
+ [Sin(vtargett) - Sin(eil + Utargett)] (19)

€42

wherek; = & &y = 22,
We re-present the system model in the following form:

E = GE+ f(et) (20)

whereFE = [611 €12 €21 €22 ... EN1 eNg]T,

0
G IN®[O

0
+<IN®[1
0
1

+(ve |

0 1 0
_IN®[O—’}/ +Q®[Ii0]
0 0

+®®[—/€1 _kQ],



[ ) O ] where Dg is a diagonal matrix with diagonal entry
Sin(Veargett) — sin(e1r + Viargert) (De)ii =0,i=1,2,...,N —1, and (De)xn = N.
) 0 Choose the transformation matrix 8=V ® I,. We
fle,t) = Sin(Veargert) — sin(ea1 + Vtargert) | have:
0 TlGT_IN®{8 _17]—1)@@[28]
L Sin(vtargett) — Sin(eNl + 'Utargett) 1 0 0
Q is defined in (10), an® is the N by N matrix of ones. +De ® [ k1 —ks ]
We have the following lemma on the linear part of the = IN®C;, 27)

system (20).

Lemma 3: There exists a similarity transformation suchwhere
that the matrixG in (20) can be transformed to a block 0 1
diagonal one.

Proof: Notice that the matrix(—Q) is a real symmetric C; = _SW” _71
matrix with row sum zero, and it is irreducible. From kg
Lemma 1 and 2(—Q) has eigenvalues ! 27

},¢=1,2,...,N—1,
(28)
],i_N.

This completes the proof of the lemma.

From Lemma 3 and its proof, we see that the linear part
It is always possible to choose the eigenvectors to be reaff the system (20) is stable since its similarity transforma
normalized and mutually orthogonal. Denote the eigenvegon shows a stable system. This property is important in

M1 2 p2 == pN—1 > pny = 0.

tors corresponding to each of the eigenvalues: showing the stability of the nonlinear system (20).
. . B We are now in the position to state the main theorem of
Ve = [vlk U2k .- ka],k— 1,2,...,N 1, thiS SeCtiOﬂ.
UN- (21 Theorem 2: For system parametersand « that satisfy
ThenV = [v; va ... vy] is an orthogonal matrixi.e., 1
VVT =VTV =1, implying VT =V~1!, and kK > ——,
mlnng—l(Mz)
n n 1
;’L}kzvkj ;vzkvjk 0ijs (22) Y \/miniSNfl(,ui)’f — (29)
whered;; = 1 for i = j andé;; = 0 for i # j. Because of where y;,1 = 1,..., N — 1 are the positive eigenvalues
VTQV = diag(u1, piz2, - - -, un), we further have of the matrix(—@), the average control (6) asymptotically
n stabilize the error system (20) i, and k, are chosen to
(-Q)i; = Zﬂkvikvg‘k- (23) satisfy
i h=t k1 >k min (p;), ko > 0. (30)
Because the eigenvectorg,k = 1,2,...,N — 1, are iISN—1

Proof: We use the classic Lyapunov theory to prove the

orthogonal tovy, the following property holds: . ) .
g N g propery stability of the error system (20). Define the matrix

N

w = 0,k=1,2,...,N—1 Lie, +22) L)\
Zvﬂ“ o ’ b= [ 2 X) o] ] (31)
=t 2 2
1
oy = —=[11...1]" (24)  wheres;, \; are positive design parameters.
vN
Then,
Therefore, we have:
T p. (.
VIQV = —Do (25) Ci P+ BG
G =1,2,...,N—1
where Dg is a diagonal matrix with the diagonal entry A —(vy=X) T S T 3’2
Mi,i=1,2,...,N. o _)\Nkl AN ( )
Due to property (24), the matrik transforms the all 1's Ay —(ka+v—=2An) |’
matrix © to a diagonal one as well:
where
valev = [(V7'eV)u] 1
N A, = E(Ei-i-/\?—)\i’y—ﬂili),i:1,2,...,N—1,

N
= Vig Vik = D@ (26) 1
; i) {2 Ax = Glei+ A = Xilka +7) — kul. (33)

j=1



To makeA;,i=1,...,N zero, we choose

g = /\i(7_/\i)+ﬂiﬂ>0§ 1=1,2,...,N—1,
AN < ’Y+I€2,

en = An(ka+v—2An)+ k1 >0. (35)

Define the following Lyapunov function candidate:

W (t,e) ETHE,

(36)
where

TPT™!
VoL (INoP)(V'eh) =IyeP,

We can see thdll/ (¢, e) can be re-written as:

H

N

>

i=1

€
3 6121

W(t,e)

1
+ 5(/\1-81-1 —|— €i2)2} . (37)

Take the time derivative oWV (¢, e) along the closed-loop
dynamics (20). Denote

Wi(t,e)

Wi + W, (38)

whereW; is generated by the linear part of the dynamic
and W, is by the nonlinear part of the dynamics.
We have:

Wy

E" (G"TPT™'+TPT'G)E
BT |[T(17'GT)" PT 4 TP(T7'GT) T | E

Because of (27), we have

Wi

E" [Ixn ® (CI'P + PCy)| E

We see that[ly ® (C'P; + P,C;)] is a block diagonal
matrix with diagonal entries as shown in (32).
Now consideringiVs, from (37), we obtain:

N
Wy
i=1

al T; 1
Z {()‘1 + Ez) ey + 2_71-6122

\E

B (1ve |

where we bounded|sin(a)|| by |ja|l, and applied the
inequality 2ab < Ta? + }bz (for a,b € R), 7; is a positive
constant.

Substitute (39) and (40) into (38), we obtain:

IN

)\i-i-% 0

1
0 2T1',

W(t,e) = ET(Ix®S)E (41)
where
. =ik + A + % 0
5= 0 SCREORE A

ET [T (Iv ® C)T PT + TP (Iy ® Cy) T—l} E
(39)

D (Aiei + €i2)[sin(vsargert) — sin(ei + Vargert)]

0

=ik + X+ 5
(k2 +7 = N) + 2

Sy = 0

To makeS; negative definite, we check; fori < N — 1
first. We need:

S,

ik + A + % < 0 (42)
=Mk <0 (43)
Let u;x > 1, from (42), we get
i < 2[Ai(uik—1))]. (44)
From (43), we get
1
Ti =) (45)
To make sure that; exist, we need
o < AMs— 1) (46)
which turns into a second-order inequality:
Apik — DA —dy(pk — DX +1 < 0 (47)
Since0 < \; < v, we need
[y (pie = 1)]* > 4-d(pir — 1), (48)
which turns to
P o> (49)

pik — 1"

Therefore, the sufficient conditions fé% (i < N —1) to be
negative definite are:

1
k> ——,
mlnigN—l(Mz')
1
v o> . (50)
Vming<n 1 (pi)k — 1
Choosing the control parameters:
> i ;
ki s min ()
k2 > 01 (51)

Sy will be negative definite.
The proof of the theorem follows directly from Lyapunov
theory because of the positive definitenes$lofn (36) and

(40)the negative definiteness o in (41).

V. SIMULATION RESULTS

We have performed numerical simulations on arrays of
different sizeq3 < N < 256). First, we verified that the set
of fixed points of un-forced frictional dynamicé&p;, ¢'>1-)
(Iw,0) with [ even numbers, are locally stable. This can be
seen from Fig. 2, where a 5-particle system is simulated.
The system parameters ave= 0.1,x = 0.26 ([2], [10]).
Random initial conditions are used in the simulations. lLoca
stability of individual particles in the five-particle sgsh
can be observed in the figure.



We show the single particle dynamics in the closed-
loop system under the average control (6) in Fig. 3. The o«
system parameters used aye= 4,x = 1.5 for a three-
particle interconnected system. The control paramete&rs ar
chosen to be:; = 5.8, ko = 4. The targeted velocity is
Vrarget = 1.5. Fig. 3 shows that the tracking error for each
individual particle tends to zero which indicates that the
velocity of each particle in the interconnected systemkisac

the targeted value. This verifies the result in Theorem 4.
VI. CONCLUSIONS

state of particle positions

We studied the single particle stability for a one- L Y I
dimensional particle array sliding on a surface subject
to friction. The well-known Frenkel-Kontorova model is @

used to describe the dynamics, which is a nonlinear inter-  °s
connected system. The feedback control uses the averac
guantity of the system which are physically accessible.
It was revealed first that a set of equilibrium points of
the un-forced system is asymptotically stable. Then, we
derived sufficient conditions for the average control to
stabilize single particles in the interconnected traclémgr

system. The Lyapunov theory based method is utilized in the
stability analysis. Simulation results were shown to werif o

state of particle velocities

the theoretical claim. The results of the paper can be applie  °° = © & & @
to other physical systems whose dynamics can be describea (b)
by the Frenkel-Kontorova model.
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