
Coverage Control for A Mobile Robot Patrolling A Dynamic and
Uncertain Environment

Yi Guo and Zhihua Qu

Abstract— In mobile robot applications such as cleaning and
security patrolling, a fundamentally important problem is to
design feasible trajectories and steering control so that the
robot moves collision-free and covers all the points (in its
sensor/effector range) in a dynamic and uncertain environ-
ment. We formulate such a problem and propose constructive
algorithms in sequential modules to solve it. First, a minimum-
area rectangle is placed encasing the boundary of the set to be
covered. Second, minimum number of circles of the radius of
coverage range are placed to completely cover the rectangle.
Third, a patrolling path is searched along the boundary of
the set in a spital. Feasible trajectories are then designed
to account for the nonholonomic kinematics of the robot
and to avoid collisions from the dynamic obstacles detected
by the robot onboard sensors. Since analytic solutions are
given in generating feasible trajectories, the algorithm can be
implemented in real time.

I. INTRODUCTION

Motion planning for a mobile robot to reach a goal
position from its start position has been intensively studied
for decades. Up to date, limited research attention has been
received to the problem of planning a path of complete
coverage of an environment by a mobile robot, although
such a problem is very important in various applications
such as clearing, security patrolling, and sensor network
deployment (see [1], [2], [3], [4]). Particularly, considering
the nonholonomic kinematic constrains posed by the mobile
robot, and the constrains posed by dynamic obstacles in the
uncertain environment, the complete coverage path planning
and control problem becomes challenging. Recent progress
has been made in [5] to generate real time feasible trajec-
tories using parameterized polynomial steering control for
nonholonomic robots moving in 2D dynamically changing
environments. This paper is to study the complete coverage
path planning problem, and extend the results of [5] to the
so-defined patrolling control problem.

In the remainder of the paper, we first formulate the
patrolling control problem and give necessary assumptions
in Section 2. And then in Section 3, patrolling control design
is proposed with constructive algorithms given. Finally, the
paper is concluded in Section 4.

II. PROBLEM FORMULATION

We consider the problem of designing a steering control
for a mobile robot to patrol a connected region in a dynamic
and changing environment. As shown in figure 1, patrolling

The authors are with the Department of Electrical and Computer
Engineering, University of Central Florida, P.O. Box 162450, Orlando,
FL 32816-2450, USA. Emails: yguo@ee.ucf.edu for Yi Guo, and
qu@mail.ucf.edu for Zhihua Qu.

control is to generate a trajectory and the corresponding
control to cover the region over time, and possible changes
in the environment are due to limited ranges of on-board
sensors and to appearance of and/or motion of obstacles.
Specifically, the problem is formulated as follows.

1O

2O

3O

4O

)(1 tv

)(2 tv

)(3 tv

)(4 tv

x

y

),(00 yx

3r

1r

4r

2r

O

Rm

rv

0
theta

cR

Omega

Fig. 1. Patrolling a connected region in the presence of dynamically
moving obstacles

Assumption 1: The robot under consideration is repre-
sented by a 2-dimensional circle with center atO(t) =
(x, y) and of radiusr0. Its motion is controlled but non-
holonomic and is represented by the velocity vectorvr(t).
Assumption 2: Set Ω to be covered is two-dimensional,
connected (with respect to a circle of radiusr0), and has a
convex shape.T is the time period to achieve the coverage.
Assumption 3: The range of robot’s motion sensors is
described by a circle centered atO(t) and of radiusRm,
while its coverage range (by its end-effector or detection
sensors) is described by a circle centered atO(t) and of
radius Rc.
Assumption 4: The ith object, i = 1, · · · , no, will be
represented by a circle centered at pointOi(t) and of
radius ri, denoted byBi(Oi(t), ri). For moving objects,
the origin Oi(t) is time varying and moving with linear
velocity vectorvi(t), but velocityvi is assumed to be a
constant, denoted byvk

i , within a specified period of time
t ∈ [t0 + kTs, t0 + (k + 1)Ts) (whereTs is often small).
Patrolling Control Problem: Given initial positionOo and
initial orientation θ0 of the robot and under assumptions 1
to 4, find a piecewise continuous steering control under
which the robot moves collision-free and covers all the
points in setΩ over time.Mathematically, the problem is
to determine a path p(t) by ensuring

min
t∈[t0,t0+T]

‖q − p(t)‖φ(q, t) ≤ Rc ∀q ∈ Ω, (1)

subject to

‖p(t) − Oi(t)‖ ≥ r0 + ri,

∀t ∈ [t0, t0 + T] and ∀i ∈ {1, · · · , no}, (2)

where φ(q, t) is a weighting function to be chosen by the
designer.

Intuitively, the patrolling problem has at least one so-
lution if the robot is capable of moving sufficiently fast,
if motion of the obstacles does not make any part of Ω
unconnected, and if those obstacles with ri > Rc are not
stationary. The default value for φ(q, t) is 1. If φ(q∗±v, t) =
φ(q∗) = 2 for any v satisfying ‖v‖ = 0.5Rc, path p(t)
either encircles q∗ or covers q∗ twice. If φ(q∗, t) = φ(q∗) =
∞, path p(t) will pass through q∗. If φ(q, t) = ∞ for all
t �= t∗, the path covers q at time t = t∗. For simplicity,
the default value of φ(q, t) = 1 is used in the following
sections.

III. PATROLLING CONTROL DESIGN

To tackle the proposed patrolling control problem, we
first study the static complete coverage problem. And
dynamic feasible trajectory is then designed with steering
control explicitly constructed.

A. Complete Region Coverage

Since the coverage range of the robot is represented by
a circle, the static coverage problem is to find a number
of circles of radius Rc to completely cover Ω. Obviously,
there are many solutions to this problem. Our objective is to
find an optimal solution to minimize the repeated coverage.
Therefore, the problem in concern is defined as:

Find a minimum number of circles of radiusRc to
completely coverΩ in the two-dimensional plane.

1) Minimum Number of Circles to Cover A Rectangle:
Minimal number of circles to cover a rectangle was reported
in [6]. However, placement pattern of the circles to achieve
the minimum number has not been seen in literatures. We
present a solution to the optimal placement in the following.

To describe the solution, we refer the circle of radius Rc

as a Rc-disk, and the rectangle to be covered is denoted
by W . A pattern of Rc-strip is composed of a string of
Rc-disks placed along a vertical line such that the distance
between the centers of any two adjacent Rc-disks is

√
3Rc.

We place m columns of Rc-strips oriented parallel to the
y-axis with the distance between the centers of any two
adjacent Rc-strips is 1.5Rc. In a global cartesian coordinate
with the origin is at the left bottom of the rectangle W , we
place m Rc-strips parallel to the y-axis which contain n Rc-
disks in each strip to completely cover the rectangular W ,
as shown in Figure 2. The center of the kth row (1 ≤ k ≤ n)

and lth column (1 ≤ l ≤ m) disk is at [xkl
c , ykl

c]:

[xkl
c , ykl

c] =

[
0.5 + (l − 1) 3

2Rc, (k − 1)
√

3Rc

]
,

if l is an odd integer;

[
0.5 + (l − 1) 3

2Rc,
√

3
2 Rc + (k − 1)

√
3Rc

]
,

if l is an even integer.
(3)

The number of disks needed in each column and row, n
and m, can be found as:

n =

Int
(

yW√
3Rc

)
+ 1, if Rem

(
yW√
3Rc

)
≤ 1

2 ,

Int
(

yW√
3Rc

)
+ 2, if Rem

(
yW√
3Rc

)
> 1

2 ;
(4)

m =

Int
(

xW

1.5Rc

)
+ 1, if Rem

(
xW

1.5Rc

)
≤ 2

3 ,

Int
(

xW

1.5Rc

)
+ 2, if Rem

(
xW

1.5∗Rc

)
> 2

3 .

(5)

where Int is the integer operation and Int(x) equals the
integer part of x, Rem(x) = x− Int(x), xW is the length
of the rectangular edge along the x-axis, yW is the length
of the rectangular edge along the y-axis.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 2. Covering a rectangle using a minimum number of circles

Theorem 1:The disk placement pattern described above
with centers of disks placed at (3) has a minimum number
of disks to cover the rectangle W .

Proof: From (5), it can be readily obtained that the
number of disks needed is:

N =
(

1√
3
1.5

) (
yW xW

R2
c

)
=

2
√

3
9

(
yW xW

R2
c

)
(6)

The area covered by these disks is

A = πR2
cN =

2π
√

3
9

(yW xW) (7)

Therefore, the ratio of the area to that of the rectangle
(which may be thought of as measuring the proportion of
unavoidable overlapping) is

d =
A

yW xW
=

2π
√

3
9

= 1.209 (8)

It has been proved in [6] that 1.209 is the optimal value.

2) Minimum-Area Encasing Rectangle for an Arbitrary
Closed Curve: In [7], a stepwise construction algorithm
suitable for computer processing is presented to find the
rectangle of minimum area in which a given arbitrary plane
curve can be contained. It first utilizes the chain-coding
scheme to represent an arbitrary plane curve in terms of
a connected sequence of short, straight-line segments by
overlaying a fine-spaced square grid and then connecting in
sequence the grid notes that lie closest to the intersections
of the curve with the grid. Then in the chain code, the octal
digits 0 to 7 are used to represent different directions in the
counter-clockwise sense beginning with the positive x direc-
tion. The minimum-perimeter convex polygon that encases
the convex hull of the given curve is then determined. And
finally the minimum-area rectangle that encases this convex
polygon is found. It was proved that the obtained rectangle
is the minimum-area encasing one for the given curve.

3) Minimum Number of Disks for Region Coverage:
Based on the above subsections, we present an algorithm
for placing a minimal number of disks to completely cover
the region Ω.

Step 1: Determine a minimum-area rectangle that encases
the boundary of the Ω using the algorithm presented in
Section III-A.2.

Step 2: Rotate the global cartesian coordinate so that
the origin is at the lower-left corner of the rectangle and
two edges of the rectangle is on the positive x and y axes
respectively.

Step 3: Place disks using the pattern described in Section
III-A.1 to cover the rectangle generated in the previous step.

Step 4: Exclude the disks whose centers are outside the
region, and denote the centers of all rest disks as the set of
points A:

A : (xi, yi), i = 1, . . . , nA (9)

where nA is the total number of points in the set A, and
(xi, yi) are placed according to the pattern of (3).

Note that in Step 4, some points near the boundary may
not be covered by the disks whose centers are inside Ω.
An additional step may be added for a better coverage
for points near the boundary: Check the distance between
each vertex and the set A; if the smallest distance is bigger
than the radius of the disk Rc, then add the vertex to the
set A. Additional analysis to guarantee near-boundary-point
coverage is out of the scope of this paper.

Figure 3 shows a convex region being covered by mini-
mum number of disks.

B. Patrolling Paths

After the coverage disks are placed as shown in Figure 3,
a patrolling path can be planned for the robot to go through
the centers of the disks, i.e., the set A. It was presented in
[4] that complete coverage paths can be searched based on
cell representation of the environment according to different
rules. Intuitively, a path exists to go along the boundary

Fig. 3. Covering a convex region using a minimum number of disks

of the region in a spital. We first define the following
terminologies:

Definition 1: For each point (xi, yi) = (xkl
c , ykl

c) in the
set A, its six neighboring points are at
(x(k+1)l

c , y
(k+1)l
c), (x(k−1)l

c , y
(k−1)l
c),

(xk(l+1)
c , y

k(l+1)
c), (xk(l−1)

c , y
k(l−1)
c),

(x(k−1)(l+1)
c , y

(k−1)(l+1)
c), (x(k−1)(l−1)

c , y
(k−1)(l−1)
c).

In other words, its neighbors are the vertices of the hexagon
whose center is at the point.
Figure 4 shows the six neighbors of a point.

Fig. 4. Six neighbors of a point

Definition 2: Assume that the boundary is represented
by a set of points B. The distance of a point (x, y) to
the boundary, denoted by dist((x, y), B), is the smallest
distance of (x, y) to all points of B. That is,

dist((x, y), B) = min
(a,b)∈B

‖(x, y), (a, b)‖ (10)

where ‖(x, y), (a, b)‖ denotes the Euclidean distance of the
two points (x, y) and (a, b).

Our algorithm to find a complete coverage path is as
follows:
Set Start point to Current
Set all other points inA to Unvisited
LOOP
Find Unvisited Neighboring point whose distance to the
boundary is the smallest
If no Neighbor point found then Mark as Visited and Stop
at End
Mark as Visited and set Current point to Neighboring point
LOOP END

Figure 3 shows such a path covering a convex region.
The path is represented by a sequence of points, denoted
by:

P : (xj , yj), j = 1, . . . , nA. (11)

Fig. 5. A coverage path

Note that the difference of the set P and A is that the
points in P are in sequence while the points in A are not.
In other words, (x1, y1) in P is the Start position of the
robot, and (xnA

, ynA
) in P is the End position.

C. Feasible Patrolling Trajectories for Nonholonomic
Robots

It is well known that nonholonomic constraints of mobile
robots (kinematic constraints) make time derivatives of
configuration variables of the system non-integrable, and
any given path in the configuration space does not neces-
sarily correspond to a feasible path for the nonholonomic
system. To make the planned path trackable by nonholo-
nomic robots, we have to design feasible trajectories which
accounts for the kinematic constrains of the robots, and are
also free of collision to obstacles in the environment. We
apply the recently developed real time trajectory generation
algorithm, published in [5], to connect every two adjacent
path points in the set P . To make the paper self-complete,
we cite the main result from [5].

For a car-like mobile robot whose front wheels are
steering wheels and rear wheels are driving wheels but have
a fixed forward orientation, the state space representation
of the kinematic model taking nonholonomic constrains is
given by:

ẋ
ẏ

θ̇

φ̇

 =

1 0 − l
2 sin(θ) 0

0 1 l
2 cos(θ) 0

0 0 1 0
0 0 0 1

·

ρ cos(θ) 0
ρ sin(θ) 0
ρ
l tan φ 0

0 1

 ·

(
u1

u2

)
(12)

where q = [x y θ φ] is the state vector: [x y] represents the
Cartesian coordinates of the guide point, θ is the orientation
of the robot body with respect to the x-axis, φ is the steering
angle; l is the distance between the two wheel-axle centers,
ρ is the radius of back driving wheel; u1 is the angular
velocity of the driving wheel, and u2 is the steering rate of
front guiding wheel. The range of φ is limited to be within(−π

2 , π
2

)
due to singularity, and θ is within

(−π
2 , π

2

)
to

ensure an one-to-one map of the coordinate transformation.

The kinematic model (12) can be transformed into the
well-defined chained-form:

ż1 = v1

ż2 = v2

ż3 = z2v1

ż4 = z3v1 (13)

under the following coordinate and input transformations:

z1 = x − l

2
cos(θ)

z2 =
tan(φ)

l cos3(θ)
z3 = tan(θ)

z4 = y − l

2
sin(θ), (14)

u1 =
v1

ρ cos(θ)

u2 = − 3 sin(θ)
l cos2(θ)

sin2(φ)v1

+l cos3(θ) cos2(φ)v2. (15)

Based on the main results of [5], we give our patrolling
control algorithm as follows:

Considering every adjacent pair of points in P , take the
robot configuration at the points as boundary conditions
q0 = [x0, y0, θ0, φ0]T and qf = [xf , yf , θf , φf]T with
φ0 = φf = 0. If satisfying the condition that x0− l

2 sin θ0 �=
xf − l

2 sin θf , and that |θ0 − θf | < π, a collision-free
path can be generated analytically by undertaking following
steps:
(i) Select coordinates (x, y) of the working space such

that θ �= π
2 , apply state and input transformations

(14) and (15), determine the corresponding boundary
conditions z0 = [z0

1 , z0
2 , z0

3 , z0
4], zf = [zf

1 , zf
2 , zf

3 , zf
4],

and obtain the dynamics in the chained form (13).
(ii) Let Tj be the time for the mobile robot to complete

its maneuver between the adjacent pair of points, and
T j

s be the sampling period such that k = Tj/T j
s is

an integer, that the centers of objects Oi are located
at (xk

i , yk
i) at t = t0 + kTs, and that these objects

are all moving with known constant velocities vk
i

�
=

[vk
i,x vk

i,y]T for t ∈ [tj0 +kT j
s , tj0 +(k +1)T j

s)]. Then,
for k = 0, · · · , k − 1, determine recursively constants
ak
6 by ensuring the following second-order inequality

(or inequalities): ∀i ∈ {1, · · · , no}
min

t∈[t∗
i
,t

∗
i]

g2(z1(t), k)(ak
6)2 + g1,i(z1(t), k, τ)ak

6

+g0,i(z1(t), k, τ)|τ=t−tj
0−kT j

s
≥ 0, (16)

where [t∗i , t
∗
i] ⊂ [tj0 + kT j

s , Tj] is the time interval (if
exists∗) during which

xk
i ∈ [z1(t)−vk

i,xτ−ri−R, z1(t)−vk
i,xτ+0.5l+ri+R].

∗If the interval does not exist for some or all i, inequality (16) is not
needed for those objects.

In (16), functions z1(t), g2(·), g1,i(·) and g0,i(·) are
defined as follows:

z1(t) = zk
1+

zf
1 − z0

1

T
(t−tj0−kT j

s) ∀t ∈ [tj0+kT j
s , Tj];

x0
i = xi(t

j
0), y0

i = yi(t
j
0); xk

i = x0
i +T j

s

k−1∑
j=0

vj
i,x,

yk
i = y0

i + T j
s

k−1∑
j=0

vj
i,y, if k > 0;

z0
4 = y0 − l

2
sin(θ0), z0

3 = tan(θ0), z0
2 = 0,

zk
2 = zk−1

2 +
∫ tj

0+kT j
s

tj
0+(k−1)T j

s

v2(t)dt,

zk
3 = zk−1

3 +
zf
1 − z0

1

k

∫ tj
0+kT j

s

tj
0+(k−1)T j

s

∫ s

tj
0+(k−1)T j

s

v2(t)dtds,

zk
1 = z0

1 +
k(zf

1 − z0
1)

k
, if k > 0; (17)

Y k =

zk
4

zk
3

zk
2

yf − l
2 sin(θf)

tan(θf)
0

, Ak =

(zk
1)6

6(zk
1)5

30(zk
1)4

(zf
1)6

6(zf
1)5

30(zf
1)4

,

Bk =

1 zk
1 (zk

1)2 (zk
1)3 (zk

1)4 (zk
1)5

0 1 2zk
1 3(zk

1)2 4(zk
1)3 5(zk

1)4

0 0 2 6zk
1 12(zk

1)2 20(zk
1)3

1 zf
1 (zf

1)2 (zf
1)3 (zf

1)4 (zf
1)5

0 1 2zf
1 3(zf

1)2 4(zf
1)3 5(zf

1)4

0 0 2 6zf
1 12(zf

1)2 20(zf
1)3

and

f(z1(t)) =
[
1 z1(t) (z1(t))2 (z1(t))3 (z1(t))4 (z1(t))5

]
,

g2(z1(t), k) =
[
(z1(t))6 − f(z1(t))(Bk)−1Ak

]2
,

g1,i(z1(t), k, τ) = 2
[
(z1(t))6 − f(z1(t))(Bk)−1Ak

]
· [f(z1(t))(Bk)−1Y k − yk

i − vk
i,yτ

]
,

g0,i(z1(t), k, τ) =
[
f(z1(t))(Bk)−1Y k − yk

i − vk
i,yτ

]2
+(z1(t) − xk

i − vk
i,xτ)2 − (ri + R + 0.5l)2.

(iii) A feasible, collision-free path in the transformed state
has the form

z4(z1) = F (z1) = akf(z1) (18)

where ak is solved according to

ak =
[

ak
0 ak

1 ak
2 ak

3 ak
4 ak

5 ak
6

]
,[

ak
0 , ak

1 , ak
2 , ak

3 , ak
4 , ak

5

]T
= (Bk)−1(Y k − Akak

6). (19)

(iv) The steering inputs to achieve path (18) are given by,
for t ∈ (tj0 + kT j

s , tj0 + (k + 1)T j
s],

v1(t) = v1 =
zf
1 − z0

1

T
,

v2(t) = 6[ak
3 + 4ak

4zk
1 + 10ak

5(zk
1)2 + 20ak

6(zk
1)3]v1

+24[ak
4 + 5ak

5zk
1 + 15ak

6(zk
1)2](t − tj0 − kT j

s)v2
1

+60(ak
5 + 6ak

6zk
1)(t − tj0 − kT j

s)2v3
1

+120ak
6(t − tj0 − kT j

s)3v4
1 . (20)

(v) The corresponding feasible, collision-free Cartesian
trajectory is given by

y = F (x − 0.5l cos(θ)) + 0.5l sin(θ), (21)

where θ can be found in closed form from state
transformation (14) under steering inputs (20) and
control mapping (15).

IV. CONCLUSIONS

We have studied the patrolling control problem, which
is defined to find a piecewise continuous steering control
under which the robot moves collision-free and covers all
the points in a convex set over time. Constructive algorithms
are given in sequential modules to solve the problem.
First, we place a minimum-area rectangle that encases the
boundary of the set. Second, minimum number of circles of
the radius of coverage range are placed to completely cover
the rectangle. Third, a patrolling path is searched along the
boundary of the set in a spital. Feasible trajectories are
then designed to account for the nonholonomic kinematics
of the robot and the dynamic obstacles detected by the
robot onboard sensors. Since analytic solutions are given
in generating feasible trajectories, the algorithm can be
implemented in real time. Future work exists to refine the
design in the last step and to enable performance evaluation.

REFERENCES

[1] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” in Proceedings of IEEE International
Conference on Robotics and Automation, 2002, pp. 1327–1332.

[2] R. N. de Carvalho, H. A. Vidal, P. Vieira, and M. I. Ribeiro,
“Complete coverage path planning and guidance for cleaning robots,”
in Proceedings of IEEE Int. Symposium on Industrial Electronics,
1997.

[3] Y. Guo, L. E. Parker, and R. Madhavan, “Towards collaborative robots
for infrastructure security applications,” in Proceedings of The 2004
International Symposium on Collaborative Technologies and Systems,
San Diego, CA, Jan. 2004, pp. 235–240.

[4] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta, “Planning paths
of complete coverage of an unstructured environments by a mobile
robot,” in Proceedings of IEEE International Conference on Robotics
and Automation, 1993, pp. 2612–2619.

[5] Z. Qu, J. Wang, and C. E. Plaisted, “A new analytical solution
to mobile robot trajectory generation in the presence of moving
obstacles,” in Proceedings of 2003 Florida Conference on Recent
Advances in Robotics, May 2003, also to appear in IEEE Transactions
on Robotics.

[6] R. Kershner, “The number of circles covering a set,” Amer. J. Math.,
vol. 61, pp. 665–671, 1939.

[7] H. Freeman and R. Shapira, “Determining the minimum-area encasing
rectangle for an arbitrary closed curve,” Communications of the ACM,
vol. 18, no. 7, pp. 409–413, 1975.

