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Abstract—We investigate the problem of achieving global opti-
mization for distributed channel selections in cognitive radio net-
works (CRNs), using game theoretic solutions. To cope with the
lack of centralized control and local influences, we propose two spe-
cial cases of local interaction game to study this problem. The first
is local altruistic game, in which each user considers the payoffs
of itself as well as its neighbors rather than considering itself only.
The second is local congestion game, in which each user minimizes
the number of competing neighbors. It is shown that with the pro-
posed games, global optimization is achieved with local informa-
tion. Specifically, the local altruistic game maximizes the network
throughput and the local congestion game minimizes the network
collision level. Also, the concurrent spatial adaptive play (C-SAP),
which is an extension of the existing spatial adaptive play (SAP),
is proposed to achieve the global optimum both autonomously as
well as rapidly.

Index Terms—Cognitive radio networks (CRNs), local interac-
tion game, local altruistic game, local congestion game, spatial
adaptive play (SAP).

I. INTRODUCTION

PPORTUNISTIC spectrum access (OSA), which is

mainly built on the cognitive radio (CR) technology [1],
has been regarded as a promising solution to address the spec-
trum shortage problem and has drawn great attention recently
[2]-[4]. In OSA systems, there are two types of users. One is
the primary user which is the licensed owner of the spectrum,
and the other is the cognitive user which is allowed to transmit
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in the licensed spectrum at a particular time and location when
and where the primary users are not active [5]. There are two
fundamental tasks in OSA systems: spectrum discovery, i.e.,
detecting the spectrum holes [6], and spectrum utilization, i.e.,
selecting the best unoccupied channel for transmissions [7].
In this paper, we consider the problem of distributed channel
selections in cognitive radio networks (CRNs), where mutual
interfere occurs only between neighboring users [8]-[10]
instead of all users in the network.

The users in CRNs are generally distributed in different
locations; moreover, normally multiple primary users exist,
with their interference regions partially but seldom completely
overlap. Although the topic of distributed channel selections for
CR systems has been widely studied, using, e.g., game theory
[11], partially observable Markov decision process [12], op-
timal stopping rule [13], etc., the following distinctive features
of CRNs were rarely considered: 1) only local information of
neighbors rather than global information of all other users is
readily available, 2) the transmission of a user only interferes
with its neighbors rather than with all other users, and 3) the
spectrum opportunities are generally heterogeneous, i.e., vary
from user to user. Therefore, we need to reinvestigate the
problem of distributed channel selections in CRNs with the
above considerations.

Notably, the considered CRNSs are characterized by a lack of
centralized control and the restriction that global information
is not available, which requires that the channel selection algo-
rithms should be completely distributed relying on local infor-
mation. However, as was pointed in [14], it is a challenging task
to achieve global optimization for distributed systems where
only local information is available. Thus, for a better under-
standing of the distributed channel selection problem in CRNS,
the task of how to achieve global optimization with local infor-
mation should be first addressed.

The lack of a centralized control and restricted access to
global information motivate us to employ local interaction
games [15], which have been recently introduced in CRN
research known as graphical game in [9], to study this problem.
The reason of using game model rather than other decentralized
optimization approaches is that game model is a powerful tool
to analyze the interactions among autonomous decisions. In a
local interaction game, the utility function of a player is only
dependent on itself and its neighboring players. This aligns with
the nature of local interactions among users in CRNs. Although
some progress has been achieved in [9], the problem is not yet
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solved. Specifically, in local interaction games, or in general
game models, players are assumed to be selfish, which leads to
inefficiency and dilemma. This is referred to as the fragedy of
commons [16] and is the inherent limitation of game models.

The main contribution in this paper is that we propose
two special cases of local interaction games, the local altru-
istic game and the local congestion game, to achieve global
optimization for CRNs in terms of network throughput max-
imization and network collision minimization. In the local
altruistic game, we do not adhere to the assumption of selfish-
ness of users as in traditional game models; instead, we consider
local altruistic behaviors between neighboring users. In order
to reduce the communication overhead between neighbors,
we then propose a local congestion game, in which each user
minimizes the number of competing neighbors. It is analyti-
cally shown that with the two games, the global optimization
is achieved via just local information exchanges. In comparing
the two local games:

* the local altruistic game maximizes network throughput
while requiring relatively more information exchange be-
tween neighbors;

e the local congestion game minimizes network collision
level while requiring less exchange of information.

In addition, we investigate two learning algorithms to achieve
global optimization for the proposed games. First, a spatial
adaptive play (SAP) [17] based algorithm is developed for
the CRN channel selections. Second, a concurrent spatial
adaptive play (C-SAP) is proposed, which is implemented in
an autonomous manner, to overcome the drawbacks of SAP
(e.g., requiring a global coordination mechanism and slow
convergence).

The rest of this paper is organized as follows. In Section II, we
present related work and highlight the differences between this
work with existing work. In Section III, we present the system
model and establish the local interaction game framework. In
Section IV, we present the local altruistic game model and the
local congestion game, and investigate the properties of their
Nash equilibrium. In Section V, we propose two learning algo-
rithms that converge to the global optimum with arbitrary high
probability. In Section VI, simulation results are presented. Fi-
nally, we present discussion in Section VII and make conclusion
in Section VIIIL.

II. RELATED WORK

Game theory [18], as a powerful tool for distributed deci-
sion problems where the individual decision mutually influences
each other, has been widely applied to CR networks and var-
ious versions of game models can be found in the literature [11],
[19]-[25]. Most existing work do not consider the spatial aspect
of CR networks. That is, they explicitly or implicitly assume that
the CR users are located closely and hence the transmission of
a user interferes with all other users. Notably, existing solutions
can not be applied to CRNs where limited interference ranges
and scenarios are considered.

There are approaches to improve the Nash equilibrium
(NE) efficiency in the literature, and the current methods
mainly include using coordination games [26], pricing [27]
and bargaining [28], [29]. However, a main drawback of these

methods is that they need global information, which leads
to unsustainable communication overhead, especially when
the network scale is large. Thus, as stated before, the desired
solutions for CRNs should be completely distributed relying
on local information.

It should be mentioned that our proposed local altruistic
game belongs to noncooperative games. In other words, NE is
still central to local altruistic game. Moreover, a game similar to
the local congestion game, called spatial congestion game [30],
[31], has been proposed recently. Both the local congestion
game and spatial congestion game capture the local interactions
in CRNs. In [30] and [31], the authors focus on analyzing
the existence of NE and investigating the finite improvement
properties of best response dynamic, whereas we not only pay
attention to the existence of NE but also develop algorithms
achieving global optimization with local information.

The problem of resource sharing in distributed networks in
which mutual influence occurs only between neighbors (called
as spatial resource sharing networks [33]) begins to draw at-
tention recently [8], [9], [30]-[32], and our work differs from
existing work in the following key aspects: 1) the spectrum op-
portunities are heterogeneous (vary for different users), 2) the
proposed games are potential games with network throughput
or network collision level serving as the potential functions, and
3) global optimization is achieved via just local information ex-
change between neighbors.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a CRN involving N cognitive transmitter—re-
ceiver pairs and M licensed channels, N > M. For simplicity,
we call a cognitive transmitter—receiver pair as a CR link or CR
user. The licensed channels are owned by the primary users and
can be opportunistically used by the CR users when not occu-
pied by the primary users. That is, the CR users use the licensed
channels in an overlay manner. Denote the set of the CR users as
N,ie, N ={1,2,..., N}, and the set of the licensed channels
as M,ie, M ={1,..., M}.Ttis assumed that all the channels
support the same transmission rate for all users. This represents
the case that all channels yield the same bandwidth and same
transmission rate to each user, although different users may ex-
perience different channel conditions [31]. Note that such an as-
sumption holds in some practical systems, e.g., IEEE 802.16d/e
standard [34]. An example of the considered CRN is shown in
Fig. 1, which involves four CR links or CR users, two primary
users and four licensed channels (1,2,3,4). It is shown in the
figure that different primary users occupy different channels and
their interference range partially overlap, which leads to hetero-
geneous spectrum opportunities for the CR users.

First, we characterize the heterogeneous spectrum opportu-
nities by the channel availability vector C,,, for each n € N.
Specifically, C,, = {Chr1,Chna,...,Cnar}, where Cppy = 1,
m € M, indicates that channel m is available for user n, while
Crnm = 0 means that it is not available. For the CRN example
shown in Fig. 1, we have C; = {0101}, C, = {0100}
and C3 = C4 = {1 11 0}. Moreover, it is assumed that the
spectrum opportunities vary slowly in time.
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Fig. 1. Example of the considered CRN.
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Fig. 2. Corresponding interference graph of the CRN example, where each
small circle represents a CR transmitter—receiver pair.

Second, we characterize the limited range of transmission or
interference in the CRN using an interference graph. The struc-
ture of the interference graph is determined by the distance be-
tween users. Specifically, each node on the interference graph
represents a CR user. In addition, two CR users, say m and n,
are connected by an edge if the distance between them is less
than a predefined interference distance Dy. Denote the edge set
as £, & C N2. The connection topology is completely arbitrary
(i.e., it might include loops). Furthermore, each user has infor-
mation only about its local connection topology. Denote .J,, as
the set of connected (neighboring) users of user ., i.e.,

Jp={m e N :(n,m) € E}. (1)

For simplicity, it is assumed that the communication range is
equal to the interference range. As a result, neighboring users
can exchange information directly and interfere with each other
when simultaneously transmitting on the same channel. For the
example shown in Fig. 1, the corresponding interference graph
is shown in Fig. 2. It is shown that the transmissions of the CR
users are location dependent, e.g., User 1 interferes with User 2
when simultaneously transmitting on the same channel, whereas
it never interfere with User 3.

B. Problem Formulation

It is assumed that all the CR users can sense all channels, but
can only transmit on one channel due to hardware limitation;

moreover, the spectrum sensing is assumed to be perfect.! We
consider a collision channel model, i.e., a collision occurs when
two or more neighboring CR users are transmitting simultane-
ously on the same channel. In this paper, the slotted Aloha trans-
mission mechanism is considered.? Specifically, when a CR user
decides to use a channel, it transmits with probability p in a slot,
while being silent with probability 1 — p.
Let A,, be the available channel set of user n, i.e.,

A ={meM: Cpm =1} 2)

Suppose that user n chooses a channel a,, € A,, for transmis-
sion. Specifically, when there is no idle channel available for
user n, which leads its available channel set to be empty, i.e.,
A,, = 0, the user n does not choose any channel, i.e., a,, = 0;
otherwise, a,, # . Then, for a user n with non-empty action
., the individual throughput is given by

can) =p [[ @ —pem) 3)

keJn

gn(ay, ...

where .J,, is the neighbor set of n specified by (1), and f(a,, ax)
is the Kronecker delta function defined as

1, ap, =ay

flama) = {5 o @

On the other hand, any user m with empty action a,, = ) has
to be silent and hence achieves zero throughput, i.e., g,,, = 0.
According to (3), the network throughput is given by

Uo=> gn=pY [[@-p . 5

neN neN ke,

Then, the first global objective is to find the optimal channel
selection profile to maximize the network throughput, i.e.,

(P1): maxUy. (6)

Although the current optimization technologies in CR sys-
tems are explicitly maximizing the network throughput, there
are other alternative methods that implicitly maximize the net-
work throughput, e.g., interference reduction [11], [35]. Mo-
tivated by this idea, we consider the problem of opportunistic
spectrum access for CRNs from the perspective of network col-
lision minimization.

For a CR user n with non-empty action a,, the individual
collision level is defined as follows:

sn=Y_ flan,ax) (7

keJ,

where f(am,a,) is the Kronecker delta function specified by
(4). That is, the individual collision level of a user is defined as
the number of neighboring CR users that compete for the same
channel. According to (7), the individual throughput specified

ISince spectrum sensing is beyond the scope of this paper, we assume that
spectrum sensing is perfect for simplicity of analysis. However, the results pre-
sented in this paper can easily be extended to the scenario with imperfect spec-
trum sensing.

2Slotted Aloha is considered for illustrations, and the discussion can easily be
extended to other transmission models, e.g., various versions of carrier sensing
multiple access (CSMA).
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by (3) can be rewritten as g,,(a1,...,an) = p(1 — p)*". Thus,
lower value of s,, is desirable from the user-side since it leads
to higher throughput. Also, lower aggregate collision level ex-
perienced by all CR users is more preferable for overall network
performance. Accordingly, a quantitative characterization of the
network collision level is given as follows:

Iy = % Z Sy = % Z Z flan, ar).

neN neN ke,

®)

In other words, the network collision level I is defined as
the total number of competing neighboring pairs which select
the same channel.

The motivation behind the individual collision level concept
is due to the fact that the individual achievable throughput of
user n is a decreasing function of s,,. Moreover, the network col-
lision level I reflects the whole collision level of the network.
Specifically, smaller I implies less collision among users, and
hence higher network throughput can be obtained. Thus, the
second global objective is as follows:

(P2): minly. 9

It can be seen that both P1 and P2 are combinatorial opti-
mization problems and are NP-hard [36]. They can be solved by
using exhaustive search in a centralized manner, which obtains
the optimal solutions but has untractable complexity. Heuristic
methods are alternative approaches, but they can not obtain the
optimal solutions. Thus, a distributed approach with low com-
plexity that can obtain the optimal solutions is desirable for
CRNE.

Remark 1: The channel selection profile that minimizes
the network collision level can also achieve higher network
throughput. In other words, there is an inherent connection
between problems P1 and P2. However, exact characterization
of this connection is difficult to obtain, due to its dependence
on the network technology.

IV. LOCAL INTERACTION GAME FRAMEWORK FOR
OPPORTUNISTIC SPECTRUM ACCESS

Since there is no centralized controller available, the channel
selections are self-determined by the CR users. This motivates
us to formulate the problem of distributed channel selection in
CRNs as a game. Moreover, in order to capture the local interac-
tions among users, local interaction game is applied. However,
we do not restrict ourselves to the topic of existence of NE as in
most existing work; instead, we focus on achieving global opti-
mization. First, we define action graph in the following, which
is central to the local interaction game.

Definition 1 (Action Graph): We call G, = (N, A,€) an
action graph where:

o N is the set of nodes.

e For each node n € N, let a,, € A,, be an action of node
n, where A,, is the set of its available actions. Then, a pure
strategy profile is a n-tuple a = (a1, ...,a,) and the set
of action profiles is A = @ A,,Vn € N, where ) is the
Cartesian product.

o & is the set of edges. We say node m is a neighbor of n if
they are connected by an edge, i.e., (m,n) € €.

For notational convenience, we define A;, = @ A,,Vn €
J, as a set of action profiles of node n’s neighbors, and an ele-
mentof Ay, asay, . Also,wedefine A_,, = Q) A,,Vn € N\n
as a set of action profiles of all the nodes except 7, and an ele-
ment of A_,, as a_,.
Based on the action graph, the local interaction game can be
defined in the following.
Definition 2 (Local Interaction Game): A local interaction
game is a tuple ' = (G,, U) where:
* (@, is an action graph, in which each node corresponds to
a player.

* U is the set of utility functions for the players. Specifi-
cally, the utility function of each player n € A is given
by Un(an,ay,) : ap @ ay, — R.

That is, the local interaction game is a kind of game, in which
the utility of a player is only dependent on the action profile of
its neighbors and itself. We now define Nash equilibrium (NE)
in the following, which is the steady state of a noncooperative
game.

Definition 3 (Nash Equilibrium): An action profile o* =
(a3, ...,a¥) is a pure strategy NE if and only if no player can
improve its utility by deviating unilaterally, i.e.,

Unlak,ab ) > Un(an,al)

VneN, Va, € An,a, #a’. (10)

Although a local interaction game fits the nature of local in-
teractions in CRNs well, the efficiency of NE needs to be care-
fully considered. It is known that the efficiency of NE is mainly
dependent on utility function. For a given utility function, gener-
ally multiple NEs exist; and in some cases, even the optimal NE
of the game can not lead to the optimal network utilities, e.g.,
the maximum network throughput or minimum network colli-
sion level, not to mention other suboptimal NE points. Thus, in
order to achieve global optimization, the following two points
should be considered.

1) Design the utility function carefully, such that it guarantees
the existence of NE and the optimal NE points coincide
with the optimal solutions for network throughput maxi-
mization problem P; and network collision minimization
problem P, respectively.

2) Develop efficient learning algorithms that can achieve the
optimal NE but only require local information.

In the following, we propose two special cases of local inter-
action games to solve the distributed channel selection problem
in CRNs. One is a local altruistic game which maximizes the
network throughput, and the other is a local congestion game
which minimizes the network collision level.

A. Local Altruistic Game for Network Throughput
Maximization

1) Utility Function: In traditional game models, players al-
ways act selfishly. Then, a straightforward approach is to de-
fine the individual achievable throughput as the utility function
for each player [9], [19], [24], [30], [31]. However, such ap-
proaches are selfish and can not guarantee to obtain the global
optimization. To improve the efficiency of the games, we con-
sider local altruistic behaviors among neighboring users, which
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is motivated by local cooperation in biographical systems [37],
[38]. Specifically, we define the utility function as follows:

Uly(an,as,) = gn(an,as,) + Y grlar,az) (1)
k€Jn
where_ g Qn 21
Ts the tndividbal achievable throughput of player k, k € N,

as defined in (3). Note that the above defined utility function
consists of two parts: the individual throughput of player n and
the aggregate throughput of its neighbors. In other words, when
a player makes a decision, it not only considers itself but also
considers its neighbors. Then, the local altruistic game is ex-
pressed as follows:

(G1): Vn e N

max Uly(an,ay,) (12)

an€Anp
where A,, is the action set (i.e., the available channel set) of

Player teed by (2).

Here, we present the utility functions of the players on the in-
terference graph given in Fig. 2. Specifically, user 1 maximizes
the aggregate throughput of users 1 and 2, user 2 maximizes the
aggregate throughput of users 1, 2, 3, and 4, while both users 3
and 4 maximize the aggregate throughput of users 2, 3, and 4.

2) Analysis of NE: The properties of the proposed local al-
truistic game is characterized by the following theorem.

Theorem 1: G1 is an exact potential game which has at
least one pure strategy NE, and the optimal solution of the
network throughput maximization problem P1 constitutes a
pure strategy NE of G1.

Proof: We construct the potential function as follows:

D1(an,a—pn) = Z Gn(an,ay,)

neN

where g, (an,ay,) = gn(aq,...,a,) is the individual achiev-
able throughput of player . Moreover, it is seen that the poten-
tial function is equal to the network throughput Uy as defined in
(5).

Suppose that an arbitrary player n unilaterally changes its
channel selection from a,, to a,,, then the change in individual
utility function caused by this unilateral change is given by

13)

Uln(&n,a,]n)—Ul (an aJn) {Qn(an a]n.) gn (a'n7a'r]n.)

+ Z(gi(ai,@h) - .qi(auaJi))} - (14)
i€,

On the other hand, the change in the potential function caused
by this unilateral change is given by

®L(an,a_p) — Pl(an,a_n)
= {gn(an,a‘]ﬂ)
+ Z (gr(ak,a.,) — gr(ak, ay,))

keJ,

LD

ke{N\J, },k#n

- gn(an: a‘v]n)

(gr(ar,ay,) — gr(ar,az,)) ¢ (15)
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where gr(ar, @, ) denotes the achievable throughput of player
k after unilaterally changing the selection of player n, and A\ B
means that B is excluded from A. Since player n’s action only
affects the payoffs of its neighbors, then the following equation
is known:

VEk € {N\J,}. k # n.
(16)

gr(ak,ay,) — gr(ar,ay,) =0,

Then, from (14)—(16), we have the following equation:

D1(ap,a—pn) — Pl(an,a—pn) = UL, (Gn,ay,) — Ulp(an,ay,).

a7

It is seen from (17) that the change in individual utility func-
tion caused by any player’s unilateral deviation is the same as
the change in the potential function. Thus, according to the def-
inition given in [39], it is known that G; is an exact potential
game with network throughput U serving as the potential func-
tion.

Exact potential game belongs to potential games, which have
been widely applied to wireless communication systems. Poten-
tial game exhibits several nice properties and the most important
two are as follows.

» Every potential game has at least one pure strategy NE.

* Any global or local maxima of the potential function con-

stitutes a pure strategy NE.
Based on the above properties, Theorem 1 is proved. |

B. Local Congestion Game for Network Collision
Minimization

1) Utility Function: In this subsection, we propose another
local interaction game, from the perspective of minimizing
network collision level. It is seen from (3) that the individual
achievable throughput of a CR user is a decreasing function of
the number of competing neighbors, s, = >, c; f(an,ax).
Therefore, minimizing s, is equivalent to maximizing the
individual throughput. This motivates us to define the utility
function as follows:

Z f an ak

keJ,

U2,(an,ayz,) (18)

where .J,, is the neighboring user set of player n, and f(a,, ax)
is the Kronecker delta function specified by (4).
Then, the local congestion game is expressed as follows:

(G2) : max U2 (an,ay,) VEN (19)

a, €A
where A,, is the action set (i.e., the available channel set) of
player n specified by (2).

The above defined utility function is motivated by the under-
lying idea of congestion games [41], in which the utility func-
tion is defined as a function of the number of the players who
select the same action. Congestion game has been proved to
be potential game, and has been well studied. However, note
that the utility function of the proposed local congestion game
is only dependent on its neighbors, whereas that of congestion
game is dependent on all other players. This differentiates the
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proposed local congestion game from the traditional congestion
game. That is, the local congestion game is not pure congestion
game and actually a new game. Therefore, we need to reinves-
tigate its properties.

2) Analysis of NE: The property of the local congestion game
is characterized by the following theorem.

Theorem 2: G2 is an exact potential game which has at least
one pure strategy NE, and the optimal solution of the network
collision minimization problem P2 constitutes a pure strategy
NE of G2.

Proof: We construct the potential function as follows:

O2(an,a_n) = _% Z Z flan,ar)

neN ke,

(20)

which is exactly the negative value of the network collision level
defined in (8).

First, let us define I,,(a,,ay,) as the interference neighbor
set which also selects the same channel with player n, i.e.,

To(an,az,) = {k € Ju : ax = a) @1

where .J,, is the neighbor set of player n. Then, according to (4)
and (7), we have

$0= 3 S a) = Tu(an.ay,)

keJn

(22)

where | A| is the cardinality of set A.

Now, suppose that an arbitrary player » unilaterally changes
its channel selection from a,, to a};, then the change in individual
utility function caused by this unilateral change is given by

U2 (ay; a7,)=U2n(an; ag,) = [Ln(an, az,)|=In(a;,; as,)|-
(23)

On the other hand, the change in the potential function caused
by this unilateral change is given by

D2(at,a_p) — P2(an, a—y,)

1
= 5\ Halan, a5,)| = [u(ay, az,)|

>

kel (an,ar,)

>

kel, (aTnaJn)

[Tk (ak, az,)| = [x(ak, aj, )]

[Tk (ak, az,)| = [x(ak, aj, )]

+ > elar, ag)| = Ti(ak, az,)]]

kEK k#£n

(24)

where —|I(ax,a’ )| denotes the utility function of player &
after unilaterally changing the selection of player n and X =
NM\{I(an,ay,)UI,(ak,ayz,)}, and A\ B means that B is ex-
cluded from A. Since player n’s action only affects the pay-
offs of its neighboring players, then the following equations are
easily known:

Ik (ar, ar ) = k(ax, af,)| =1

Vk € I,(an,ay5,) (25)

[k(ak, az,)| — [k(ak,a}, )] = —1
Vk € I,(ak,a5,) (26)
(i (ak, az,)| — Hk(ak, af, )| = 0,
Vke K, k#n. (27)
Based on —(27), we have
(pZ(a:wa—n) - (I)z(a’fua—n) = |In(an,a,]n) - |In(a27a»]n) .
(28)

From (23) and (28), it is seen that the change in individual
utility function caused by any player’s unilateral deviation is
the same as the change in the potential function, i.e.,

D2(ay,a_p)—P2(an,a—n) =U2,(a),ay5,)—U2,(an,ay,).
(29)

Then, according to the definition of potential game presented in
the last subsection, it is known that G, is also an exact potential
game with the negative value of the network collision level, — I,
serving as the potential function. Thus, Theorem 2 follows. H

Remark 2: Tt is noted from (20) that the potential function of
the local congestion game is different form that of the traditional
congestion game. Most importantly, the potential function of the
local congestion game reflects the network collision level, which
does not hold in the traditional congestion game.

C. Discussion of the Two Potential Games

With the proposed utility functions, we now have two po-
tential games for the problem of distributed channel selection
in CRN, i.e., the local altruistic game and the local congestion
game. The most interesting feature of potential games is that if
exactly one player is scheduled to change its strategy using best
response dynamic in each iteration, then it always makes the
potential function increase and finally converges to a NE in fi-
nite iterations. This is referred to as finite improvement property
(FIP) [39].

Another important property of the proposed games is that
the potential functions have physical meanings. Specifically,
the potential function of the local altruistic game is equal to
the network throughput, while that of the local congestion
game is equal to the network collision level. Therefore, the
optimal channel selection profiles that maximize the network
throughput or minimize the network collision level can be
achieved by finding the optimal NE points of the games.

According to Theorems 1 and 2, if there is an algorithm
that can achieve the optimal NE points of the two games, the
global optimum (i.e., network throughput maximization or
network collision minimization) is achieved through distributed
implementation. However, normally multiple NE points exist in
G1(G2), and most of them are suboptimal [18]. Thus, although
there are a large number of learning algorithms available in the
literature to achieve pure strategy NE of potential games, e.g.,
best response dynamic [39], [40], no-regret learning [11], [20]
and fictitious play [42], [43], a main drawback is that they may
converge to some suboptimal NE points. Thus, we seek for the
learning algorithms that achieve the optimal NE points in the
following.
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V. ACHIEVING GLOBAL OPTIMIZATION WITH
LocAL INFORMATION

The tasks of identifying and finding the optimal NE points
of games are different, and the latter is generally much harder
than the former [18]. In this section, we propose two learning
algorithms to achieve the optimal NE points of the games. The
first is based on an existing algorithm, called spatial adaptive
play (SAP), which is originally designed for investigating the
stochastic stability of social networks [17]. However, SAP is not
suitable for CRNs since it implicitly needs a global controller
and its convergence speed is slow. We then propose the second
improved learning algorithm, called concurrent spatial adaptive
play (C-SAP), which overcomes the drawbacks of SAP and is
suitable for the CRNs.

A. Spatial Adaptive Play (SAP)

It is shown that in potential games, spatial adaptive play
(SAP) which is a learning algorithm [17], [44], converges to
a pure NE that maximizes the potential function with arbi-
trarily higher probability. To characterize SAP, we extend the
game to a mixed strategy form. Let the mixed strategy for
player n at iteration & be denoted by probability distribution
an(k) € A(A,), where A(A4,,) denotes the set of probability
distributions over action set A,,. In SAP, exactly one player
is randomly selected to update its selection according to the
mixed strategy while all other players repeat their selections.
This process is repeated until some stop criterion is met (see
Algorithm 1).

Algorithm 1: Spatial adaptive play (SAP)

Step 1) Initially, set k = 0 and let each CR usern € N/
randomly select an available channel a,,(0)
from its available channel set A,, with equal
probability.

Step 2) All the CR users exchange information with their
neighbors.

Step 3) A CR users is randomly selected, say <.

Step 4) All other CR users repeat their selections, i.e.,
a_;(k 4+ 1) = a_;(k). Meanwhile, with the
information received from the neighbors, user
1 calculates the utility functions over its all
available actions, i.e., U;(a;,ay, (k)),Va; € A;.
Then, it randomly chooses an action according
to the mixed strategy ¢, (k + 1) € A(A;), where
the a,,th component ¢} (k + 1) of the mixed
strategy is given as

exp{ﬂUi(ai; a.j, (k))}
ZaieAi exp{AU;(a;,ay, (k))

for some learning parameter 3 > 0. The utility
function U;(a;, a s, in the above equation for
local altruistic game is U1;(a;, ay,) which is
specified by (11), and that of local congestion
game is U2,(a;, az,) which is specified by (18).

Step 5) If the predefined maximum number of iteration
steps is reached, stop; else go to Step 2.

g;i'(k+1)= (30)

Note that in Step 2 of SAP, different games require different
exchange information. Specifically, in local altruistic game, the
neighbors exchange the current channel selection a,, (k) and the
current individual achievable throughput g, (k); on the other

hand, it only requires to exchange the current channel selection
an (k) in local congestion game.

Note that in Step 5 of SAP, the stop criterion is dependent on
specific applications. For example, the following can also serve
as the stop criterion:

1) If Yn € N, the individual throughput g, remains un-

changed for a certain number of iterations.
2) ForVn € {k : Ay # 0}, there exists a component of p, (k)
which is sufficiently approaching one, say 0.99.

Denote the set of available selection profiles of all the CR
users as A, ie, A = A; ® --- ® Ay, then the asymptotic
behavior of SAP is determined by the following theorems.

Theorem 3: In a potential game in which all players adhere
to SAP, the unique stationary distribution u(a) € A(A) of the
joint action profiles, V3 > 0, is given as

exp{fP(a)}
> sca exp{BP(s)}

where ®( ) is the potential function of the games specified by
(13) and (20), respectively.
Proof: The following proof follows the proof for Theorem
6.2 in [17].
First, let us denote the network state at the kth iteration by

p(a) =

(3D

player n. Note that a channel selection profile corresponds to a
network state. Notably, a(k) is a discrete time Markov process,
which is irreducible and aperiodic. Therefore, it has an unique
stationary distribution.

Second, we show that the unique stationary distribution must
be (31) by verifying that the distribution (31) deduces to the
balanced equations of the Markov process. Denote any two ar-
bitrary network state by a and b, a, b € A, and the transmission
probability from a to b by P,, = Prla(k + 1) = bla(k) = a].
Since only exactly one node is selected to update its selection
in the proposed algorithm, there is at most one element that can
be changed in the network states between any two successive
iterations. Thus, there are only two nontrivial cases: 1) a and b
differ by exactly one element, or 2) a = b.

Now, let us study the transition probability P,;. Specifically,
suppose that a and b differ by the ith element. Since node i
has probability 1/N of being chosen in any given iteration, by
omitting the iteration index k, it follows that

op (L exp{A®(a)}
p(a)Pap = <N> (ZSGA exp{[)’@(S)})
exp{BU;(b;, by, (k))}
X <ZE7€A7 eXP{BUi(bhin(k))) ¢

where U;(b;, by, (k)) is the utility function of node 7 under the
network state b, and the last item represents Pgy,.
Letting

1N
(Xeaexp{B0(s)}) (X5, ca, exp{BU:(bi, b, (k)))
1N
(Xeaexp{B(s)}) (X4, ca, exp{BUi(as, az,(k)))
(33)

A=
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where we use the fact that the network states a and b differ by
the ith element, i.e., a_;(k) = b_;(k) and ay, (k) = by, (k), we
obtain

(@) Pay = Xexp{B®(a) + Ui(b)5}. (34)
Due to symmetry, we also have
(b Pra = Aexp{BB(b) + Uy(a)B}. (35)

Considering that ®(a) — ®(b) = U;(a) — U;(b), as specified
by (17) and (29), respectively, (34) and (35) immediately yield
the following balanced equation:

M(a)Pab = M(b)Pba- (36)
The above analysis is for the case that a and b differ by exactly

one element. In addition, (36) naturally holds when a = b.
Thus, we have

S (@) Pas = 37 15 Pra = () 3 Pra = pu(h)
acA acA acA
(37)

which is exactly the balanced stationary equation of the Markov
process. Then, we conclude that its stationary distribution must
be (31) since SAP has unique distribution and the distribution
(31) satisfies the balanced equations of its Markov process.
Therefore, Theorem 3 is proved. ]

Theorem 4: With a sufficiently large (3, SAP achieves the
global optimum of problems P1 or P2 with an arbitrarily high
probability.

Proof: For the two proposed games, the number of the op-
timal action profiles may be unique or multiple; moreover, this
number is hard to obtain [18]. Even so, we will prove that SAP
achieves the maximum potential function values of the games
with an arbitrarily high probability. Specifically, the situation
can be categorized as follows.

1) CaseI: There is an unique optimal action profile that maxi-
mizes the potential function, which is denoted by aqpt, i.€.,

Gopt = arg max ®(a). (38)

acA
Then, the maximum potential function value is determined
by Prmax = P(aopt). When [ becomes sufficiently large,
i.e., f — o0, the following inequality holds:

exp(fBP(acpt)) > exp(BP(a)), (39

Va € A\aopt
Then, based on (31) and (39), the following can be ob-
tained:

lIm p(aept) =1 (40)

B—o00
which substantiates that SAP converges to a,p¢ in proba-
bility. In other words, SAP achieves @, with arbitrarily
high probability in this case.

2) Case II: There are multiple optimal action profiles indexed
by Gopti, - - - Gopti, K > 1. Then, the maximum poten-

tial function value is determined by ®max = P(aopt1) =
-+« = ®(aoptx ). Also, based on (31) and (39), we have:

K
i 3 ) = @
k=1
and
. 1
ﬁlil?;o u(aoptk) - E? Vk = 17 v 7K (42)

That is, when 3 becomes large, the aggregate stationary
distribution over all the optimal channel selection profiles
asymptotically approaches one, and the stationary distribu-
tion over each profile are equal. In this case, SAP may os-
cillate around pairs of different optimal channel selection
profiles but never converge. However, no matter whether
the action profile converges or not, we conclude that it fi-
nally achieves the maximum potential function ®,,,,, with
arbitrarily high probability. The reason is that each pro-
file aoptr, Yk = 1,..., K, leads to the maximum poten-
tial function ®,,,, and the aggregate stationary distribution
over all optimal profiles are one.

To summarize, the action profile converges in Cases I, while
may oscillate in Cases II. Even so, it achieves the maximum
potential function values for Cases I and II with arbitrarily high
probability. Then, according to the property that the potential
functions of the games coincide with the network utilities, i.e.,
the network throughput or the network collision level, Theorem
4 follows. ]

Theorem 4 validates the optimality of SAP. It is a desired
learning algorithm because the optimal solutions for the net-
work throughput maximization problem P1 and the network
collision minimization problem P2 are achieved via just local
information exchange between neighbors.

It should be pointed that the update of SAP, as specified by
(30), was also used in reinforcement learning (RL) [45]. In fact,
the update rule is referred to as Boltzmann exploration strategy
[45], where actions with higher utilities have a greater chance
of being selected than those with lower utilities. Such a random
action selection provides with an opportunity to escape from
local optimal points and finally achieves the global optimum.

This rule has been used for single-agent and multi-agent RL
technologies extensively, and a comprehensive review can be
found in [46]. Recently, an active research topic is to investigate
the asymptotic behaviors by incorporating RL technologies with
game theory [46]-[48]. The new knowledge in this paper is that
the formulated games are local interaction games and potential
games, which differentiates our work from previous work.

The learning parameter 3 in Step 4 of SAP balances the
tradeoff between exploration and exploitation. Smaller 3 im-
plies that the CR users are more willing to choose an suboptimal
action to explore, whereas higher (3 implies that they are prone to
choose the best response action. Specifically, 5 = 0 means that
CR user ¢ will select any action a; € A; with equal probability,
while  — oo means that it will select an action from its best
response set, i.e., a;(k+1) € arg, 4, maxU;(a;,az, (k)).
Therefore, it is advisable that at the beginning phase, the value
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of [ is set to small number and it keeps increasing as the
learning algorithm iterates [49].

For practical implementation, the empirical frequency of
the channel selection profile a(k) asymptotically converges to
the stationary distribution p(a) given by (31), as the iteration
number goes sufficiently large. As a result, the algorithm
asymptotically converges to a global optimum as the iteration
number goes sufficiently large, but may converge to a global or
local optimum in finite iterations. Thus, there is a tradeoff be-
tween convergence iteration and optimality, and the selection of
iteration number should be application-dependent in practice.

B. Concurrent Spatial Adaptive Play (C-SAP)

Although SAP achieves the global optimum, there are still
two drawbacks: 1) it needs a global coordination mechanism to
guarantee that only one player is scheduled to update its action
in each iteration, e.g., random token mechanism given in [49],
and 2) the convergence speed is slow since there is only one
player updating its action in each iteration.

To overcome the above drawbacks, we seek for a method with
which multiple players are selected in an autonomous fashion
in each iteration, and then they concurrently update their ac-
tions. Specifically, by exploiting the nature of limited interfer-
ence range in CRNs, we propose the concurrent spatial adaptive
play (C-SAP). The procedure of C-SAP is similar to that of SAP,
except that there are multiple CR users selected to update their
actions in each iteration. Steps 3 and 4 in Algorithm 2 differen-
tiate C-SAP from SAP.

Algorithm 2: Concurrent spatial adaptive play (C-SAP)

Step 1) Initially, set ¥ = 0 and let each CR usern € N’
randomly select an available channel a,,(0)
from its available channel set A,, with equal
probability.

Step 2) All the CR users exchange information with their
neighbors.

Step 3) Randomly select multiple CR users provided that
they are not neighboring with each other.

Step 4) Each CR user, selected 1n Step 3, randomly
chooses an action from its available channel set
?3c(c)ording to the mixed strategy specified by

).

In Step 3 of C-SAP, multiple CR users are selected in an au-
tonomous fashion rather than using a global coordination mech-
anism as in SAP. To achieve this, we assume that there is a
common control channel (CCC) available and an 802.11 DCF-
like contention mechanism can be applied. Specifically, each CR
user n € N executes the following steps:

1) Generate a backoff time 7,, according to uniform distribu-

tion in the interval [0, 7p,.x] for some fixed parameter 7pax.-

2) Upon expiry of the backoff timer, monitor the CCC and
then send a updating request-to-send (URTS) message in-
dicating that it is about to update its channel selection.

3) On hearing the URTS message, all neighboring CR users
freeze their backoff timers and keep silent until the next
iteration.

The comparison of SAP and C-SAP is shown in Fig. 3, and an

illustration of the idea of the two learning algorithms is shown in
Fig. 4. For detailed analysis of the above proposed autonomous

Silent CR user

— — — Neighboring relationship

O Updating CR user

Fig. 3. Comparison of SAP and C-SAP. (a) Spatial adaptive play. (b) Concur-
rent spatial adaptive play.

\
Update channel B
selection a,(k+1)
o, 1 expifUa,a, (k) > Heterogeneous
gkt =g — o .
D aen SPUBU @, (KD} spectrum environment
J

A

Local information of
neighbors

Local altruistic @{a_,‘ (%), g, (k)

game

Local information exchange

Local congestion
e " e, B}
\_ Selected user i J

Fig. 4. TIllustration of the two learning algorithms.

mechanism, refer to [11] where a similar 802.11 DCF-based
user selection scheme is proposed. The difference is as follows:
in [11], exactly only one CR user is selected to update its channel
selection at each iteration, while in this work, multiple non-
neighboring CR users are selected.

In C-SAP, the selected CR users in each iteration do not af-
fect each other since they are not neighbors. Therefore, it can
be viewed as the concurrent version of SAP. Hence, the unique
stationary distribution p(a) € A(A) of the joint action pro-
file is also determined by (31). Then, according to Theorem 4,
C-SAP also converges to the global optimum with arbitrary high
probability. To summarize, the proposed C-SAP overcomes the
drawbacks of SAP, and enjoys the following attractive features:

* it does not need global coordination mechanism; instead,
it is implemented in an autonomous fashion;

* it rapidly converges to the global optimum since there are
multiple non-neighboring CR users concurrently updating
their channel selections.

For the above advantages, C-SAP is suitable in CRNs, and

can be regarded as a significant improvement of SAP.

Remark 3: The most important characteristic of the proposed
learning algorithms, including SAP and C-SAP, is that they
achieve the global optimum of the local altruistic game (or
the local congestion game) with arbitrary high probability via
just local information exchange between neighbors. Here, arbi-
trarily high probability means that the convergence probability
sufficiently approaches one. For example, suppose that there
are multiple NE points in the local altruistic game, and they
lead to the following network throughput, U = {8 8.5 8.5 9}.
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Fig. 5. Interference graph for a small CRN with four primary users and 20 CR
users (the interference range is set to D; = 250 m).

Denote P, as the probability that the learning algorithms con-
verge to the global maximum throughput Uy = max{U} = 9.
Then, according to Theorem 3, it is known that P. = 0.9867
for 4 = 10. Moreover, when the value of 3 increases, P.
sufficiently approaches one, e.g., P. = 0.9999 for 5 = 20 and
P.=1-6.1x 1077 for 8 = 30.

VI. SIMULATION RESULTS

In the following simulation study, the CR users are randomly
located in a square region. A CR user m interferes with n if
the distance between them is less than a predefined interference
range, Dy. Moreover, there are multiple licensed channels and
multiple primary users. It is assumed that the licensed chan-
nels are independently occupied by the primary users with the
same probability f, 0 < § < 1; and the spectrum opportunities
are randomly generated according to the occupied probability.
However, note that the spectrum opportunities vary slowly in
time, or are at least static during the convergence. Moreover, all
the channels are assumed to have the same transmission rate,
R = 1 Mbps. To balance the tradeoff between exploration and
exploitation, we choose 3 = k in our simulation study, where &
is the iteration step.

A. Convergence of the Learning Algorithms

1) Example of Small Networks: We consider a small CRN
consisting of four primary users and 20 CR users, as shown
in Fig. 5. The interference distance is set to Dy = 250. It is
assumed that there are three licensed channels. Then, we have
N ={1,2,...,20} and M = {1,2,3}. It can be seen that in
this scenario, the maximum number of possible channel selec-
tion profiles is about 3 x 107.

For an arbitrary realization of the heterogeneous spectrum
opportunities, the convergence behavior of the local altruistic
game is shown in Fig. 6, in which the global optimum is obtained
by using the exhaustive search method. For the local altruistic
game based solution, both the C-SAP and SAP are applied. It is
noted from the figure that C-SAP catches up with the global op-
timum and so does SAP. Moreover, it is also noted that C-SAP

10.5 T T T T T T T

Network throughput (Mbps)

—*— Global optimum (exhaustive search)
—©6— Local altruistic game based solution (C-SAP)

6.5 ¢ —<&O— Local altruistic game based solution (SAP) [
0 10 20 30 40 50 60 70 80
Iteration (k)

Fig. 6. Convergence behavior of the local altruistic game for an arbitrary spec-
trum opportunities (20 CR users).

8 H4 —%— Global optimum (exhaustive search) 4
—6— Local congestion game based solution (C-SAP)
—<&— Local congestion game based solution (SAP)

9

Global collision level (1)

Iteration (k)

Fig. 7. Convergence behavior of the local congestion game for an arbitrary
spectrum opportunities (20 CR users).

converges to the global optimum faster than SAP. The reason is
that there are multiple non-neighboring CR users concurrently
changing their channel selections in each iteration, as stated be-
fore.

Also, for the same realization of the heterogeneous spectrum
opportunities, the convergence behavior of the local congestion
game is shown in Fig. 7. It is noted that both the C-SAP and SAP
converge to the global optimum, and the convergence speed of
C-SAP is faster than that of SAP. The results presented in Figs. 6
and 7 validate the optimality of the proposed local altruistic
game and local congestion game, in terms of maximizing net-
work throughput or minimizing network collision level.

2) Example of Large Networks: It is seen that in the proposed
game-based solutions, there is no need to collect information at a
central controller and the global optimums are achieved via just
local information exchange between neighbors. Therefore, the
autonomous behavior and decentralized implementation make
them suitable in large scale CRNs.
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Fig. 8. Interference graph for a relative large CRN with eight primary users

and 30 CR users (the interference range is set to D; = 250 m).

We consider a relatively large CRN consisting of eight pri-
mary users and 30 CR users, as shown in Fig. 8. The interfer-
ence range is also set to Dy = 250. It is also assumed that there
are three licensed channels. Then, we have A" = {1,2,...,30}
and M {1,2,3}. Note that in such a network, the max-
imum number of possible channel selection profiles is about
2 x 104, Simulation results show that using C-SAP or SAP,
both local altruistic game and local congestion game converge
to the global optimums for any spectrum opportunity and initial
channel selection.

For both local altruistic game and local congestion game,
the iterations needed to converge to the global optimums are
random variables, which is inherently determined by the sto-
chastic nature of the learning algorithms. Thus, we compare the
convergence speeds towards the global optimum of C-SAP and
SAP, from a statistical perspective. Specifically, the cumulative
distribution function (cdf) of the iterations needed to converge
to the global optimum of the local altruistic game is shown in
Fig. 9, and that of the local congestion game is shown in Fig. 10.
It is noted from the figures that for a given network scale (e.g.,
N = 20), the convergence speed of C-SAP is faster than that of
the SAP as expected. Moreover, when the network scales up, the
convergence speed of C-SAP decreases slightly, whereas that of
SAP decreases significantly. The results show the advantage of
C-SAP over SAP in CRNEs.

B. Throughput Performance

It is noted that the neighboring relationship is determined by
the interference range Dj. Specifically, larger D implies that a
user will have more neighbors. As a result, the number of com-
peting neighbors increases accordingly. In this subsection, we
study the impact of the interference range D on the throughput
performance of the proposed game theoretic solutions.

In this simulation study, we consider the CRN consisting of
20 CR users and four primary users. Moreover, there are three
licensed channels. The C-SAP learning algorithm is applied to
achieve the optimal NE. The maximum number of iterations is

CDF of the convergence iterations
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Fig. 10. Convergence speed of the local congestion game for different network
scales.

set to 200 and the results are obtained by simulating 10* trials
for different spectrum opportunities and different initial channel
selection profiles.

1) Scenario of Small Interfering Range: In the first scenario,
the interference range is set to Dy = 250 m. The deployment of
the simulated CRN is as shown in Fig. 5. The corresponding ex-
pected network throughput when varying the access probability,
p, is shown in Fig. 11.

It is noted from the figure that the expected achievable net-
work throughput increases almost linearly with p. The reason
is that small interference range means that the CR users are lo-
cated sparsely. Then, there are sufficient spectrum opportunities
available, and hence neighboring users are spread over different
channels. Therefore, the collision between neighbors becomes
trivial, and the number of competing neighbors can be ignored.
As a result, the expected achievable throughput of a user can
be approximated by g,, = 6 Rp and the network throughput by
Uy = NORp. Thus, the results in the figure follow. Also, it is
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Fig. 12. Interference graph for a CRN with large interference range (D; =
400 m).

noted from the figure that larger channel idle probability 6§ leads
to higher network throughput as expected.

Moreover, it is noted from the figure that the obtained ex-
pected network throughput of the two game theoretic solutions
is trivial. The reason is as follows: the optimal NE solutions
for the games are that neighbors are spread over different chan-
nels, since there are sufficient spectrum opportunities available.
Then, the optimal solutions for network throughput maximiza-
tion P1 and network collision minimization problem P2 are
the same in most cases. In other words, the connection between
problem P1 and problem P2 is strong.

2) Scenario of Large Interference Range: In the second sce-
nario, we consider a relatively large interference range. Specif-
ically, the interference range is set to Dy = 400 m. The de-
ployment of the simulated CRN is shown in Fig. 12. The corre-
sponding expected network throughput when varying the access
probability, p, is as shown in Fig. 13.
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Expected network throughput for large interference range (D; =

For the larger channel idle probability, i.e., § = 0.8, itis noted
that the achievable throughput for both local altruistic game and
local congestion game increases nonlinearly with p. The reason
is that in this case, the spectrum opportunities become limited,
and then the number of competing neighbors could not be ig-
nored anymore. In particular, it is noted that the achievable net-
work throughput for the local altruistic game keeps increasing
when p increases. On the other hand, there is a peak in the
achievable expected network throughput for the local conges-
tion game (i.e., pmax ~ 0.65) as can be expected in any Aloha
transmission mechanism.

It is also noted from the figure that when the access proba-
bility is less than a value, i.e., p < 0.4, the obtained network
throughput of local congestion game is close to that of local al-
truistic game. However, as the access probability increases, i.e.,
p > 0.4, there is an increasing throughput gap. The reason is
as follows: (1 — p)*~ decreases significantly when p increases,
which makes the connection between the network collision min-
imization problem P2 and the network throughput maximiza-
tion problem P1 weak. In other words, there exists an channel
selection profile that minimizes the network collision whereas
it does not maximize the network throughput.

For a smaller channel idle probability, i.e., # = 0.2, it is noted
from the figure that the achievable network throughput for local
altruistic game is slightly greater than that of the local conges-
tion game.

3) Result Analysis: From the above simulation results, it is
seen that both two proposed game theoretic solutions are desir-
able in CRNSs. Specifically:

* The local altruistic game always maximizes network
throughput, for any interference range and any access
probability p. Also, it should be mentioned that it needs to
exchange relatively more information between neighbors.

* The local congestion game requires less exchange informa-
tion and minimizes the network collision. For a network
with small interference range, it maximizes the network
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throughput as the local altruistic game. When the interfer-
ence range increases, it still maximizes network throughput
for a less access probability p and achieves higher network
throughput for larger p.
Therefore, there is a tradeoff between network throughput
and communication overhead, and the selection of a game
model should be application-dependent in practice.

VII. DISCUSSION

The most important characteristics of the proposed games are
that they achieve global optimization with local information.
The key idea is that the game models are carefully designed such
that the utility functions are properly aligned with the global ob-
jective. We believe that the results presented in this paper pro-
vide a good understanding for distributed decision problems,
and can be applied to other current research topics in CRNs,
e.g., decentralized cooperative spectrum sensing and resource
allocation. Also, it is noted that further studies are needed to ad-
dress additional practical considerations.

1) This paper assumes perfect detection of primary users.
However, interference from a secondary user to a primary
suer due to misdetection is a significant issue in a prac-
tical cognitive radio network. We will investigate in the
near future the impact of the secondary user interference
(including aggregate interference from multiple secondary
users).

2) In addition, various channel scenarios and parameters
need to be examined to evaluate the impact of different
communications and interferences ranges. Specifically, the
channel transmission rate is not only associated with each
channel, but also determined by the channel conditions.
Moreover, the interference range in practical systems is
generally larger than the communication range, which
makes direct information exchange between some inter-
fering users not feasible.

3) The algorithms proposed in this paper are more suitable
for static networks rather than time-varying networks, as
they admit the asymptotic optimality when the iteration
number goes sufficiently large. We will investigate in the
near future new algorithms for time-varying networks.

It is seen that in the proposed solutions, there is no need to
collect information at a central point, which makes it suitable
for large scale networks. However, it still needs to exchange
some key information among neighboring users. For example,
in the local altruistic game, the exchanged information include
the current selected channel and the current individual achiev-
able throughput; in the local congestion game, it only requires
the current selected channel. For some resource-limited sys-
tems, this may lead to heavy communication overhead. To cope
with this problem, the following can be promising methods: 1)
new utility functions which require less information exchange
between neighbors, and 2) efficient learning algorithms which
can converge to the optimal NE more rapidly.

VIII. CONCLUSION

We proposed two special local interaction games: local al-
truistic game and local congestion game, to achieve global

optimization with local information for distributed channel
selections in cognitive radio networks. In the local altruistic
game, each CR user considers the payoffs of itself as well
as its neighbors rather than itself only as in general game
models. In the local congestion game, each CR user mini-
mizes the number of competing neighbors. It is shown that
with the two games, global optimization in terms of network
throughput maximization and network collision minimization
are achieved with local information. Specifically, local altru-
istic game maximizes network throughput, which, however,
needs more information exchanged between neighbors; on the
other hand, local congestion game minimizes network colli-
sion level and achieves near-optimal throughput (optimal col-
lision minimization), but requires less information exchange.
Also, the concurrent spatial adaptive play (C-SAP), which is
an extension of the existing spatial adaptive play (SAP), is
proposed to achieve the global optimum both autonomously
as well as rapidly. Future work will consider more practical
system models and reduced communication overhead between
neighbors.
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