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Abstract— We consider distributed estimation on a directed
graph with switching topologies. Motivated by a recent PI
consensus filter, we modify the protocol and remove the re-
quirement of bi-directional exchange of neighboring gains for
fixed topologies. We then extend the protocol to switching
topologies and propose a new hybrid consensus filter design.
Convergence results under both balanced directed and general
directed graphs are given for switching graphs. We finally show
satisfactory simulation results.

Index Terms— Distributed estimation, consensus filter, di-
rected graph, switching topology.

I. INTRODUCTION

Distributed estimation is a fundamental problem in net-

worked systems. Direct applications of conventional estima-

tion methods often need all-to-all communications, which

causes large communication burdens. Much attention has

been paid recently to consensus or gossip algorithms to

relax the all-to-all communication requirements to neighbor-

to-neighbor communications. In this paper, we present new

distributed consensus filter algorithms for directed graphs,

and extend it to switching communication topologies.

Average consensus estimations on fixed graphs have been

discussed in [1]–[7]. In [1], average consensus protocol is

directly applied for the distributed sensor fusion to reach

a final estimation with least mean square errors. Although

this protocol allows topological switching, it does not have

explicit input and cannot track the average of time varying

inputs. In more general cases of distributed sensing, each

agent has a different input and the goal is to track the

average of the set of inputs. In [2]–[4], Olfati-saber and co-

authors introduced a distributed low pass consensus filter and

a distributed high pass consensus filter, which are able to

track the average of inputs to all sensors in a network. In

the case that the input to sensors are not identical, estimation

error exists even for a set of constant inputs. Progresses were

made in [5]–[7] to reduce the estimation error. In [5], [6],

Freeman et. al. proposed a PI consensus filter, which is able

to converge accurately to the average of the inputs when the

inputs are time-invariant. Examining the PI filter proposed

by [5], [6] in frequency domain, the integral term introduces
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a zero zero, which cancels out the zero pole introduced by

the constant input. This idea is generalized to ideally track

the average of time varying inputs by exploiting the internal

model principle in [7].

The average consensus protocol converges on switching

topologies under some additional mild conditions [8]. In [9],

a consensus filter is proposed for distributed map merging un-

der switching topologies. However, the time interval between

switching is larger than the convergence time of the filter,

i.e., switching happens when the filter almost converges to

the desired value. As to arbitrary switching, the system may

lose stability even though it is convergent and stable under

a fixed topology [10]. In the case of consensus filters with

a PI structure, the order of each agent’s dynamics increases,

which makes it challenging to extend existing convergence

results to arbitrary switching.

Motivated by recent advances on consensus filters, we

modify the PI consensus filter proposed in [5] and remove the

requirement of bi-directional exchange of neighboring gains.

We also extend the result to arbitrary switching topologies.

By considering switching as a time varying signal under the

concept of Dirac delta function and compensating it using

a hybrid consensus filter, we rigorously prove convergence

under the joint connectivity condition of the switching graph.

Simulation results show satisfactory performances.

II. PRELIMINARIES

A. Fundamental Knowledge on Graphs

A directed graph G(V,E,A) is denoted by (V,E,A),
where V is the set of nodes, E is the set of edges with E ⊆
V ×V , and A = [aij ] is the weighted adjacency matrix. The

in-degree and out-degree of a node in the directed graph is

defined as degin(vi) =
∑n

j=1 aji and degout(vi) =
∑n

j=1 aij
respectively. The directed graph G is said to be balanced

if the in-degree equals the out-degree for each node in the

graph. A special case of balanced graph is undirected graph,

which bears the property of aji = aij for all i, j. A directed

graph G is called strongly connected if there always exists a

sequence of consecutive edges starting from a given node i
to another given node j, where node i and node j could be

any node in the graph only if i �= j. A directed graph G is

called connected if there is an undirected path between any

pair of nodes. The degree matrix ∆ = [∆ij ] is a diagonal

matrix with ∆ij = 0 for all i �= j and ∆ii = degout(vi) for
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all i. The Laplacian matrix L of the graph G is defined as

L = ∆− A. For a directed graph, the rank of its Laplacian

matrix is equal to (n− 1), where n is the dimension of the

Laplacian matrix L if the graph contains a spanning tree.

For a balanced graph, containing a spanning tree is equiv-

alent to being connected. A directed graph with topology

series {G1(V1, E1, A1), G2(V2, E2, A2), ...Gk(Vk, Ek, Ak)}
with V1 = V2 = ... = Vk = V , is called jointly-containing-

spanning-tree if the union of the topologies
∑k

i=1 Gi, defined

as
∑k

i=1 Gi = G(V,
⋃k

i=1 Ei,
∑k

i=1 Ak), has a spanning tree

[11]. Particularly, if all topologies in the topology series are

balanced,
∑n

i=1 Gi having a spanning tree [11] is equivalent

to being connected. In this case, this set of topologies is

called jointly connected [12].

B. Graph Centrality

Centrality defines the relative importance of a node on

a graph. There are several different measures of centrality,

such as degree centrality, betweenness centrality, pagerank

centrality [13], [14]. In this paper, we particularly consider

the pagerank centrality. The pagerank centrality of node i has

the following definition:

α(i)dout(vi) =

n
∑

j=1

wjiα(j) (1)

where α(i) ≥ 0 denotes the pagerank centrality of the ith
node, dout(vi) represents the out-degree of node i, wji is the

weight for the edge from i to j. For all nodes in the graph,

the vector α = [α(1), α(2), ..., α(n)]T satisfies,

αTL = 0 (2)

As the Laplacian matrix of a graph always has a zero

eigenvalue, Eq. (2) implies the pagerank centrality vector α is

the left eigenvector of L corresponding to the zero eigenvalue

(referred to as zero left eigenvector from now on). Clearly,

the centralities of all nodes on a balanced connected graph

are identical since 1 = [1, 1, ..., 1]T is always the zero left

eigenvector of L for balanced graphs. In addition, it can be

justified that the centrality of a node with zero out-degree

equals zero, meaning that this node has no impact to others

since there is no out flow from it.

C. An Existing Consensus Filter

In [5], Freeman et al. proposed an average consensus filter,

which reads as follows,

ẋi = −γxi −
∑

j �=i

aij(xi − xj) +
∑

j �=i

bji(λi − λj) + γui

λ̇i = −
∑

j �=i

bij(xi − xj) (3)

where ui ∈ R is the input, xi ∈ R is the decision variable

and λi ∈ R is the co-state, γ ∈ R
+ is a constant.

The compact matrix form of this protocol writes:

ẋ = −LPx− γ(x− u) + LT
I λ (4a)

λ̇ = −LIx (4b)

where u ∈ R
n, x ∈ R

n and λ ∈ R
n are the input vector,

the decision variable vector and the co-state variable vector,

respectively. LP and LI are Laplacian matrices constructed

by [aij ] and [bij ], respectively.

Note that both LI and LT
I appear on the right side of (4)

as coefficients (corresponding to the fact that both b ij and

bji appear in (3)). This indicates that “weight information

must be communicated between agents in addition to the

estimator state values” as claimed in [5]. In this paper, we

modify the above consensus filter and remove this require-

ment of bidirectional communication between agents, so that

the algorithm works for directed graphs where bidirectional

communication is not possible.

III. CONSENSUS FILTER FOR DISTRIBUTED ESTIMATION

In this main section, we present our consensus filter

protocols. We first study the case with a fixed topology.

We replace LT
I λ in (4) with γλ to relax the bi-directional

communication requirement and carefully select parameters

to guarantee convergence for the modified protocol. Then,

the protocol on a directed balanced graph with switching

topologies is presented by introducing compensation terms.

Finally, the convergence on a general direct graph with

switching is analyzed.

A. Directed Graph with a Fixed Topology

We propose the following protocol by modifying (3),

ẋi = −
∑

j∈N(i)

wij(xi − xj)− γ(xi − ui)

−γ

∫ t

0

∑

j∈N(i)

wij(xi − xj)dt (5)

where xi is the decision variable, ui is the input, N(i)
represents the neighbor set of the ith node, w ij ∈ R, wij > 0
if j ∈ N(i) and otherwise wij = 0, γ ∈ R

+.

Its realization writes:

ẋi = −
∑

j∈N(i)

wij(xi − xj)− γ(xi − ui)− γλi

λ̇i =
∑

j∈N(i)

wij(xi − xj) (6)

where λi is the co-state with the initialization λi(0) = 0 for

all i. The compact form of (5) writes,

ẋ = −Lx− γ(x− u)− γ

∫ t

0

Lxdt (7)

where x and u are the decision variable and the input vector,

respectively, L is the Laplacian matrix constructed by [w ij ].
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Remark 1: In the protocol realization (6), the update of

xi, λi only requires information from the neighboring set

N(i). The communication structure is relaxed to be generally

directional by replacing LT
I λ in (4) with γλ in (6).

On this protocol, we have the following theorem.

Theorem 1: For the consensus protocol (7) or its realiza-

tion (6) running on a directed graph, x converges to 1

αT 1
αTu

for time-invariant u, where α is the pagerank centrality of the

communication graph (i.e., α is the zero left eigenvector of

L), provided the graph contains a spanning tree.

Proof: Define θ = γ
∫ t

0 xdt+ x. The time derivative of

θ is as follows,

θ̇ = γx+ ẋ = γx− Lx− γ(x− u)− γ

∫ t

0

Lxdt

= γu− L(x+ γ

∫ t

0

xdt) = γu− Lθ (8)

Compared with conventional linear consensus protocol, there

is a constant input appears in the dynamics of θ. Calculating

the time derivative on both sides of (8) yields, θ̈ = −Lθ̇,

which is actually a consensus protocol in terms of the variable

θ̇. Therefore, according to the results for linear consensus

protocols, we conclude that θ̇ reaches consensus under the

condition that the graph has a spanning tree [15], and θ̇ →
1

αT 1
αT θ̇0. By multiplying αT on both sides of (8), we get

αT θ̇ = γαTu. Accordingly, θ̇ → γ1
αT 1

αTu. Defining ∆ =

θ̇ − γ1
αT 1

αTu, we know ∆ converges to zero. According to

the definition of θ, ẋ = −γx+ θ̇. Defining z = x−xe where

xe =
αTu
αT 1

1, the dynamics of z can obtained as,

ż = −γz +∆ (9)

We can see that z in (9) is bounded in transition since the

linear system (9) is bounded-input-bounded-output (BIBO).

Additionally, we can conclude that z in (9) converges to

zero as derived as follows based on the final value theorem:

limt→∞ z(t) = lims→0 sF (s)∆(s), where F (s) = (sI +
γI)−1 is the transfer function from ∆(s) to z(s) in complex

domain. Note that, lims→0 s∆(s) = limt→∞ ∆(t) = 0.

All together, we have limt→∞ z(t) = lims→0 F (s)s∆(s) =
lims→0 F (s) limt→∞ ∆(t) = F (0) × 0 = (γI)−1 × 0 = 0,

which means that z(t) converges to zero. We thus conclude

that x = xe + z is bounded and converges to xe =
αTu
αT 1

.

For a balanced graph, whose pagerank centrality is equal

for all nodes, Protocol (7) results in an average consensus

with equal weights. On this point, the following corollary

holds.

Corollary 1: For the consensus protocol (7) or its realiza-

tion (6), x converges to average consensus with the common

value 1
n
1
Tu for time-invariant u, provided the graph is

balanced and connected.

B. Switching Topology for Balanced Graphs

Switching topology is unavoidable in practical applica-

tions. For example, the increase (decrease) of communication

power enlarges (narrows down) the neighborhood of a com-

munication device thus changes the communication topology.

The design of average consensus filter becomes challenging

due to the interaction between the variation of topology and

the dynamics of the filter. With the aid of the Dirac delta

function, we consider the topological switching as a time

varying signal and introduce an extra term to compensate the

impact imposed by switching. The resulted consensus filter

on switching directed graph is described as a hybrid system.

We first define the following notations following the con-

vention of impulsive and hybrid systems [16]:

z(t+) : the right limit of z(t) at t, which is defined as

z(t+) = limδ→0 z(t+ δ) with δ > 0;

z(t−) : the left limit of z(t) at t, which is defined as

z(t−) = limδ→0 z(t− δ) with δ > 0;

∆z(t) : the difference of z(t) at t, ∆z(t) = z(t+)−z(t−).

Note that ∆z(t) equals zero for continuous z(t) while does

not equal zero when jump happens for z(t). Following the

above notations, we denote the right and the left limits of the

Laplacian matrix, and the difference of it, as L(t+), L(t−),
∆L(t), respectively. At the time instant when switching

happens, L(t+) �= L(t−) and ∆L(t) �= 0. The right limit

and the left limit of the connection weight wij(t) at time t is

denoted as wij(t
+) and wij(t

−), respectively. The difference

of wij(t
+) and wij(t

−) is denoted as ∆wij(t).

With the above notations, we propose our consensus filter

on switching directed graphs as follows,

ẋi = −

n
∑

j=1

wij(t)(xi − xj)− γ(xi − ui)

+

m(t)
∑

k=1

n
∑

j=1

∆wij(T (k)) [xi(T (k))− xj(T (k))]

−γ

∫ t

0

n
∑

j=1

wij(t)(xi − xj)dt (10)

where xi = xi(t) represents the ith decision variable at

time t, T (k) denotes the time at which the kth topological

switching happens, ∆wij(T (k)) represents the difference of

the connection weight of the edge i− j at the switching time

T (k). Given time t, we can find an integer m(t) : R+ → I,

where I ⊂ N is the index set of the switching, such that

T (m(t)) is the latest time before t when switching happens.

Note that
∑

j∈N(i) wij(xi − xj) =
∑n

j=1 wij(xi − xj) since

wij = 0 for j /∈ N(i).

The realization of this protocol can be written following
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the notations defined above:

ẋi = −

n
∑

j=1

wij(t)(xi − xj)− γ(xi − ui)− γλi + yi

λ̇i =
n
∑

j=1

wij(t)(xi − xj)

{

ẏi = 0 when no switching

∆yi =
∑n

j=1 ∆wij(t)(xi − xj) switching happens
(11)

where λi and yi are both co-states for the ith node, which

are initialized as λi(0) = 0 and yi(0) = 0. xi is randomly

initialized. ∆wij(t) = wij(t
+) − wij(t

−) and ∆yi =
∆yi(t) = yi(t

+) − yi(t
−) are the difference of the weight

wij(t) and the difference of yi(t) at the switching time t,
respectively. The compact form writes:

ẋ = −L(t)x− γ(x− u)− γ

∫ t

0

L(t)xdt

+

m(t)
∑

k=1

∆L(T (k))x(T (k)) (12)

where L(t) represents the Laplacian matrice of the communi-

cation graph constructed by weight [wij ] at time t, ∆L(T (k))
represents the difference of the Laplacian matrix at time

T (k).

Remark 2: Comparing the proposed consensus filter (11)

for switching topologies with the fixed topology (5), an extra

term yi is added in (11), which is to compensate the effect

introduced by the topological switching and is zero all the

time for the case without switching (since yi is initialized to

0).

The following theorem holds for switching balanced graphs.

Theorem 2: For the consensus protocol (10) or its real-

ization (11) running on a balanced graph with switching, x
converges to 1

n
1
Tu for time-invariant u, provided there exists

an infinite sequence of uniformly bounded, non-overlapping

time intervals, across which the graph is jointly connected.

Proof: There are two steps for the proof. The first step

uses Dirac delta function to define L̇(t) on switching topolo-

gies and simplifies the system using calculus properties. The

second step transforms the system using a dynamic transfor-

mation and analyzes the system in the new coordinates.

Step 1: To show the idea of compensating the topological

switching using yi in (11), we first use Dirac delta function

[17] to define the time derivative of the Laplacian function:

L̇(t) = ∆L(t)

∞
∑

k=1

δ(t− T (k)) (13)

where k = 1, 2, ...,∞ represents the sequence when the first,

second, ..., topological switching happens, T (k) represents

the time when the kth switching happens, δ(t − T (k)) is

the Dirac delta function, whose integration is 1 across the

time instant T (k) and equals zero elsewhere. Note that (13)

is consistent with the fact that L̇(t) = 0 when no switching

happens at t and the integration of L̇(t) across t equals ∆L(t)
when switching happens at t. According to the so-called sift-

ing property of the Dirac delta function, we can express the

summation of the switching signal
∑m(t)

k=1 ∆L(T (k))x(T (k))
in (12) as follows,

m(t)
∑

k=1

∆L(T (k))x(T (k)) =

∫ t

0

L̇(t)xdt (14)

With (14), (12) changes to,

ẋ = −L(t)x− γ(x− u)− γ

∫ t

0

L(t)xdt+

∫ t

0

L̇xdt (15)

According to the rule of integration by parts, we have,
∫ t

0

L̇(t)xdt = L(t)x− L(0)x(0)−

∫ t

0

L(t)ẋdt (16)

where L(0), x(0) are the Laplacian matrix and the state value

at t = 0, respectively. With (16), (15) changes to,

ẋ = −L(t)x− γ(x− u)− γ

∫ t

0

L(t)xdt+ L(t)x

− L(0)x(0)−

∫ t

0

L(t)ẋdt = −γ(x− u)− γ

∫ t

0

L(t)xdt

− L(0)x(0)−

∫ t

0

L(t)ẋdt (17)

Step 2: The proof of the second step is similar to the proof

of Theorem 1. Similarly, we define new coordinate θ = x+
γ
∫ t

0
xdt. Then, we have the dynamics of θ,

θ̇ = ẋ+ γx = γu− γ

∫ t

0

L(t)xdt− L(0)x(0)

−

∫ t

0

L(t)ẋdt = γu− L(0)x(0)−

∫ t

0

L(t)(ẋ+ γx)dt

= γu− L(0)x(0)−

∫ t

0

L(t)θ̇dt (18)

Left multiplifying 1
T yields,

1
T θ̇ = γ1Tu (19)

On the other hand, recall that u is time-invariant and therefore

u̇ = 0, and calculating time derivative on both sides of (18)

yields θ̈ = −L(t)θ̇, which is exactly a linear consensus

protocol with respect to θ̇. According to the results on linear

consensus protocol, we know that θ̇ converges to a common

value for all elements if the communication topology is

jointly connected across an infinite sequence of uniformly

bounded, non-overlapping time intervals [18], [19]. With

(19), we know this common value equals γ1Tu
n

, i.e., we

conclude that limt→∞ θ̇ = γ1Tu
n

1. Let us go back to examine

θ defined as θ̇ = ẋ+γx. With this equation, x can be regarded
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as the output of the BIBO system ẋ = −γx + θ̇ with θ̇

regarded as the input, which ultimately attenuates to γ1Tu
n

1.

For such a system, x stabilizes to 1
γ
γ1Tu

n
1 = 1

Tu
n

1, which

is the average of input u.

Remark 3: Theorem 2 provides convergence results for a

balanced graph with an infinite sequence of jointly connected

switching topologies. Actually, for the case that the centrality

of each node in the graph is not identical, i.e., the graph is not

balanced, but keeps constant over time, i.e., the topologies in

the switching family share a common zero left eigenvector

α(t) = α, average consensus can still be reached, and x

converges to αTu
αT 1

1.

C. Switching Topology for General Directed Graphs

In the last sub-section, we assumed that the communication

graph is balanced for all switching topologies, implying that

the centrality of the graph is equal for all nodes all the

time, i.e., the zero left eigenvector of the Laplacian matrix

L(t) equals 1 all the time. This assumption may not be

true for a general directed graph with switching topologies.

Nevertheless, consensus can still be reached under some mild

conditions. On this point, we have the following theorem.

Theorem 3: For the consensus protocol (10) or its realiza-

tion (11) running on a directed graph with switching topolo-

gies, xi converges to consensus for all i for time-invariant u,

provided that there exists an infinite sequence of uniformly

bounded, non-overlapping time intervals, across which the

graph is jointly-containing-spanning-tree. The common value

of consensus is µ∞

γ
, where

µ∞ =
1
T

n
lim
k→∞

e−Lk(T (k)−T (k−1))e−Lk−1(T (k−1)−T (k−2))

. . . e−L1(T (1)−T (0))(−L0x(0) + γu)

and T (k) is the time when the kth topology switching

happens, Lk is the Laplacian matrix between the time T (k)
and T (k + 1), L0 is the initial Laplacian matrix, γ > 0 and

u is the constant input.

Remark 4: The consensus value in the above theorem,
µ∞

γ
, is identical to the steady state common value of the

linear consensus protocol µ̇ = −L(t)µ with the initialization

µ(0) = −L0x(0) + γu where u is a constant input.

Proof: Define θ = x + γ
∫ t

0 xdt. By following the

same procedure as in the proof of theorem 2, we can

obtain the dynamics for θ as θ̈ = −L(t)θ̇. This is a linear

consensus protocol in terms of the variable θ̇. According

to results on the linear consensus protocol, we know

that θ̇ reaches consensus with time elapse provided that

L(t) is jointly-containing-spanning-tree over an infinite

sequence of uniformly bounded, non-overlapping time

intervals [18], [19]. We denote the consensus value as

µ∞, i.e., limt→∞ θ̇ = µ∞1. Note that the initial value

θ̇(0) = ẋ(0)+γx(0) = −L(0)x(0)−γ(x(0)−u)+γx(0) =

0 1 2 3 4 5
−5

0
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10
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time(s)0 1 2 3 4 5
−40

−20
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Input average weighted by centrality
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(c)

Fig. 1. Protocol (7) on a directed graph with a fixed topology: (a). Graph
topology. (b). Time profile of x(t). (c). Time profile of λ(t).

−L(0)x(0) + γu. Solving the linear dynamic system

θ̈ = −L(t)θ̇ relative to θ̇, we obtain that lim
t→∞

θ̇ =

lim
k→∞

e
−Lk(T (k)−T (k−1))

e
−Lk−1(T (k−1)−T (k−2))

...e
−L1(T (1)−T (0))·

θ̇(0). Together with the fact that limt→∞ θ̇ = µ∞1, we get

the expression of µ∞ in the theorem.

Following the definition of θ, we can obtain the dynamics

for x as ẋ = −γx+ θ̇. In this equation, x can be regarded as

the output of a BIBO system with θ̇ regarded as the input,

which ultimately converges to µ∞1. For such a system, x
converges to 1

γ
limt→∞ θ̇ = µ∞

γ
1. This completes the proof.

IV. SIMULATIONS

In this section, we use simulations to validate the theoret-

ical conclusions. Both fixed topology and switching topolo-

gies will be considered in this section.

We perform simulations on a small scale network with

10 nodes to show the performance (the network topology is

shown in Fig. 1). For this graph, the connection weight is set

as 1 for existing links. The centrality of this graph can be

calculated as α = [0.6982, 0.0578, 0.0578, 0.0096, 0.0144,
0.6163, 0.0241, 0.0193, 0.1637, 0.3130]. In the simulation,

we choose γ = 4 and u = [5.2312, 32.0100, 12.6290,
28.0824, 23.5652, 2.0058, −3.4135, 14.2183, −23.3582,
−2.5974]. As shown in Fig. 1, with a set of random ini-

tialization of x, x converges to the average of u weighted

by α (in this simulation, the weighted average is 1.8405) by

running the proposed Protocol (7). The time history of λ is

also shown in Fig. 1.

For the case with balanced switching topologies, four

different topologies switch in the order indicated in Fig. 2

with each topology running for 0.2 seconds. Note that the

four topologies are jointly connected but are not connected

for a single one. This simulation considers the same input u,

and the same γ as in the fixed topology case. As shown in
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Fig. 2. Protocol (10) on a balanced graph with switching topologies: (a).
Graph topologies in the switching family. (b). Time profile of x(t). (c). Time
profile of λ(t). (d) Time profile of y(t).
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Fig. 3. Protocol (10) on a general direct graph with switching topologies:
(a). Graph topologies in the switching family. (b). Time profile of x(t). (c).
Time profile of λ(t). (d) Time profile of y(t).

Fig. 2, x converges to the desired average by running Protocol

(10) under the switching of topologies. The corresponding

time evolutions of λ and y are also shown in Fig. 2.

By deleting some directed connections on the topologies

shown in Fig. 2 (a), a general directed graph with switching

topologies is obtained as shown in Fig. 3 (a). Note that none

of the four topologies for this graph is balanced. Also note

that the graph is jointly-containing-spanning-tree but does not

has a spanning tree for any particular topology. With the

same input and the same γ as in the fixed topology case, and

switching the four topologies in the same order as in the bal-

anced switching topology case, x in Protocol (10) converges

to consensus, as shown in Fig. 3. The corresponding time

evolutions of λ and y are also shown in Fig. 3.

V. CONCLUSION

In this paper, consensus filters running on a directed

graph with switching topologies were investigated. Theo-

retical results proved the convergence to average consensus

of constants inputs under different graph configurations. For

directed graphs with a fixed topology, the proposed consensus

filter removes the bi-directional communication constraints of

an existing PI filter algorithm. Extending to balanced directed

graphs with switching topologies, we proposed a hybrid filter

to compensate the effect introduced by switching. We finally

showed convergence results of the proposed protocol on gen-

eral directed graphs with switching. Numerical simulations

validated theoretical claims.
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